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Abstract. This work exposes a computational procedure designed to aid in modeling mechani-
cal systems featuring stiffness nonlinearity. The basis of the procedure is the Harmonic Balance
Method, which is combined with a numerical continuation technique. To present the efficacy of
the approach, a one-dimensional nonlinear metamaterial is analyzed. The aim is to demonstrate
the suitability of the procedure to extract information regarding higher harmonic generation and
the influence of the amplitude of excitation on the system dynamic response.

1 INTRODUCTION

Periodicity and local resonance are features managed to achieve efficient metamaterials. In
the vast majority, the latter aspect is studied by applying linear resonators. Recently, due to
dynamic characteristics provided by nonlinearity, such as the dependence of the response on
the excitation amplitude and wave energy transfer to higher harmonics, nonlinear resonators
have been considered [1]. However, nonlinear behavior is typically a challenging aspect to
address. It often increases complexity and must be carefully analyzed at the design stage to
avoid trial-and-error approaches in the design of mechanical devices [2].

This requirement is pursued in this work, where the objective is to develop a computational
procedure capable of capturing some nonlinear behaviors in a one-dimensional metamaterial
chain, such as the emergence of higher harmonics in the response and the influence of excitation
amplitude. The Harmonic Balance Method (HBM) is the basis of the procedure mentioned
above, which also includes a numerical continuation technique considering the pseudo-arc-
length and Newton method.

Initially, the implementation of the HBM method is validated on a 2-DOF system with non-
linear cubic stiffness. Subsequently, a system with 10 unit cells is analyzed, each cell composed
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of a main chain mass connected to a local oscillator by a nonlinear cubic spring, a linear spring,
and a viscous damper. Between consecutive unit cells, there is a linear spring and a viscous
damper. Considering the periodicity provided by the composition of unit cells, such a system
may be defined as a metamaterial [1, 3].

Applying a harmonic force to the first unit cell aims to observe the vibration transmissibil-
ity throughout the structure and changes in behavior depending on force amplitude. Besides,
observing the harmonics that compose the response should allow one to evaluate the energy
transfer to higher harmonics.

2 NUMERICAL PROCEDURE

2.1 Harmonic balance for periodic solutions

Consider the system of differential-algebraic equations:

r(x, ẋ, ẍ, t) = 0, (1)

where r represents a function defined as

r(x, ẋ, ẍ, t) = flin(x, ẋ, ẍ) + fnl(x, ẋ, t)− fex(t), (2)

where x, ẋ, ẍ represent displacement, velocity and acceleration, respectively. flin represents
the linear part, fnl the nonlinear part, fex a periodic excitation imposed to the system, and t the
time.

A periodic solution for this system can be expressed as

x(t) = x(t+ T ), (3)

with T > 0.
In many cases, r represents a complicated nonlinear function that prevents the obtention

of the exact solution. In such a situation, approximation methods are required, in which the
solution can take the form of a linear combination as

xh(t, βk) =
H∑
k=0

βkbk(t), (4)

where xh is an approximated solution, and the index h indicates terms related to this approxi-
mation of the result of Eq.(2). bk is ansatz or base functions, and βk the coefficients.

As xh is an approximation, naturally it does not satisfy Eq.(2) to all t ∈ [0, T ]. Defining a set
of ansatz functions and assuming Eq.(4) as solution produces a residual rh(t, βk) ̸= 0, which
depends on time and the coefficients. Hence, to get as close as possible to the exact solution,
the goal of this approach becomes to determine the coefficients βk. This procedure follows the
weighted residual approach, which is used by most methods to approximate periodic solutions.
This approach requires satisfying Eq.(2) in a weighted average sense, i.e.,
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1

T

∫ T

0

ρj(t)rh(t, βk)dt = 0, j = 1, ..., H, (5)

where ρj are the weight functions and H is the truncation order in Eq.(4).
In the HBM, Fourier base functions are used as ansatz as well as weight functions, which

classify the weight residual approach as the Galerkin method. Because of this, HBM is some-
times called the Fourier-Galerkin method [2]. Defining b1 = 1, b2 = cos(ωt), b3 = sin(ωt) and
so on, Eq.(4) can be rewritten as

xh(t, βk) = β1 +
H∑
k=1

β2kcos(kωt) + β2k+1sin(kωt), (6)

where ω is the angular frequency.
It can be observed that the total number of ansatz functions is 2H + 1, and the coefficients

β correspond to the Fourier coefficients of xh. Also, as xh and its time derivate ẋh are T-
periodic, so is the residual rh. Then, following the Galerkin approach and using the Fourier
coefficients definition, HBM requires that the residual’s Fourier coefficients vanish up to the
ansatz’s truncation order [4].

2.2 Application to mechanical systems

Considering a mechanical system, Eq.(2) can be rewritten as

Mẍ+ Cẋ+Kx+ fnl(x, ẋ, t) = fex(t), (7)

where M , C, and K are mass, damping, and stiffness matrices, respectively. Then, it is possible
to consider that the linear part of the equation is composed by

flin(x, ẋ, ẍ) = Mẍ+ Cẋ+Kx. (8)

If the approximation of Eq.(6) is substituted into Eq.(7), a residual is obtained. As stated
in the last section, HBM requires that the Fourier coefficients of this residual vanish up to the
truncation order of the ansatz. As presented by Krack et al. [4], the equation featuring these
coefficients contains terms relative to fnl, fext, and flin, according to

f̂lin,H(x̂h, ω) + f̂nl,H(x̂h, ω)− f̂ex,H(ω) = 0, (9)

where the hat indicates the Fourier coefficients.
The term f̂ex,H is usually known, and obtaining the linear part is a straightforward task. Then,

the main challenge stays on the nonlinear coefficients. In this work, the Alternating Frequency-
Time scheme (AFT) is used to obtain the Fourier coefficients of the nonlinear part. The method,
proposed by Cameron et al. [5], seeks to use the system’s time response as a means to get the
nonlinear coefficients in the frequency domain. This procedure can be presented as
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x̂h
FFT−1

−−−→ xh(t) −→ fnl(x, ẋ, t)
FFT−−→ f̂nl,H , (10)

which indicates that through the inverse Fourier transform of x̂h, the time signal xh(t) is ob-
tained. Using the mathematical formulation describing the nonlinearity of the system on xh(t),
the nonlinear force in the time domain is achieved fnl(x, ẋ, t). Applying the Fourier transform
on the latter, results in the Fourier coefficients of the nonlinear part f̂nl,H .

2.3 Numerical continuation

Implementing the HBM involves root-finding steps, which require standard methods for ap-
proximating solutions, such as Newton method. However, as such methods break down at
turning points because the Jacobian matrix becomes singular, continuation methods need to be
employed together.

To access the evolution of the response amplitude under variation of frequency, numerical
continuation is used considering the predictor-corrector technique, as in the analyses of interest
turning points may be present. This approach predicts a solution advancing a distance ∆s (step
length) from a given initial solution. In the implemented approach, the step is taken over the
Fourier coefficients and the excitation frequency.

Generally, the predicted point is not located on the solution branch, so this point is iteratively
corrected using iterative methods until a residual criterion is satisfied and the new solution point
is adopted. The aim is to generate a sequence of suitably spaced solutions within the given
frequency range and go around turning points. Besides overcoming turning points, continuation
increases the numerical robustness and efficiency. This is especially important in ranges near
resonances [4].

This procedure considers the frequency as a free parameter and additional unknown, which
makes the HBM’s system of equations underdetermined. This issue is solved by using an ad-
ditional equation, which determines where on the solution path the next solution point ends up
and, in this sense, parameterizes the solution path.

This additional equation, also known as parametrization constraint, is defined in the imple-
mentation as

N(u(s), λ(s), s) = (u(s)− u0)
Tu′

0 + (λ(s)− λ0)
Tλ′

0 −∆s = 0, (11)

where the prime represents differentiation with respect to the arclength variable s and λ is
the free parameter. The form of Eq.(11), known as pseudo-arc-length method, is selected to
approximate the usual arclength definition. Its graphical interpretation can be seen in Figure 1.
In this study, the excitation frequency is taken as λ and the Fourier coefficients as u.

3 APPLICATION OF THE PROPOSED APPROACH TO MECHANICAL SYSTEMS

3.1 Validation

To validate the implementation of the HBM, a system of 2 degrees of freedom with cubic
nonlinear stiffness is analyzed. Assuming that the system is weakly damped with weak nonlin-

4



Rangel M. Barbosa and Alberto L. Serpa

Figure 1: Graphical interpretation of pseudo-arc-length continuation.

ear stiffnesses and applying a low amplitude excitation force, the equation of motion takes the
form

mẍ1 + kx1 + ϵc1ẋ1 + ϵknlx
3
1 + ϵkcoupnl(x1 − x2)

3 = 2ϵP1cos(ωt), (12)
mẍ2 + kx2 + ϵc2ẋ2 + ϵknlx

3
2 + ϵkcoupnl(x2 − x1)

3 = 2ϵP2cos(ωt),

where |ϵ| ≪ 1. The parameters adopted for the analysis are m = 1, k = 1, c1 = 0.05, c2 = 0.07,
knl = 1, kcoupnl = 0.1, P1 = 0.2, P2 = 0 and ϵ = 0.01.

Vakakis [6] has proposed and investigated this system using the method of multiple scales,
and the results serve as a basis for comparison. The results obtained from HBM are presented
in Figure 2, where the frequency detuning parameter is σ = (ω−1)/ϵ, indicating the difference
between the excitation frequency and the linearized natural frequencies of the system is used.

Figure 2: Fundamental resonance curves.
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The harmonic truncation orders H = 1 and H = 7 were considered. Comparing these
cases, slight variations are observed. It can be concluded that higher harmonics do not have
considerable influences on the responses of this system and a lower truncation order can be
adopted for the analysis.

The results show a similar shape to what is expected from [6]. Although not presented here,
at values in which Vakakis[6] validated the results, HBM values are the same. Thus, it can be
concluded that the implementation of the HBM worked properly.

3.2 Analysis of the chain of oscillators

The chain of oscillators analyzed is shown in Figure 3. It is composed of 10 unit cells, each
containing a main mass (m) belonging to the chain and a second mass (m0) representing the
local resonator. The excitation force emerges as result of an imposed displacement to the spring
at the left end of the system. It is represented by F (t) = F0cos(ωt), where F0 = (A0k), being
the A0 the amplitude of the imposed displacement and ω the angular frequency [3].
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Figure 3: Oscillator chain model.

The equation of motion for the nth unit cell can be given as

mẍn + k(2xn − xn−1 − xn+1) + c(2ẋn − ẋn−1 − ẋn+1) + (13)
k0(xn − yn) + c0(xn − yn)− knl(yn − xn)

3 = 0,

m0ÿn + k0(yn − xn) + c0(yn − xn) + knl(yn − xn)
3 = 0.

In the analyses H = 5 is used, and the parameters values are m = 0.1Kg, c = 0.02Ns/m, k =
2400N/m,m0 = 0.01Kg, c0 = 0.08Ns/m, k0 = 210N/m and knl = 4000N/m3. Besides,
the adopted amplitudes to the imposed displacement are A0 = 0.01m,A0 = 0.008m and
A0 = 0.005m.

To graphically express the results, the frequency is taken as Ω = ω
ω0

, where ω0 is the res-
onator’s natural frequency. Besides, the transmissibility curves are calculated as the ratio of the
amplitude of displacement of the last main mass to the amplitude of the displacement imposed
on the spring on the left end in Figure 3.

The first analysis using HBM on this system is presented in Figure 4, where knl = 0. In
the absence of nonlinear stiffness, this system can be classified as linear. Therefore, its results
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are independent of the amplitude of the excitation force, and no higher harmonics are generated
in its response. However, the resonances of the system and the effect of the resonator can be
observed through this analysis. It can be observed that around Ω = 1, the transmissibility value
reduces considerably. This behavior is expected since this frequency corresponds to ω0, the
natural frequency of the resonator. As a result, the vibration of the mass in the main chain is
considerably attenuated.

Figure 4: Transmissibility of the linear metamaterial.

As the nonlinear stiffness is present in the resonator, behavior changes concerning the non-
linearity tend to be more relevant near its natural frequency, Ω = 1. Then, observing this and
using the information provided from Figure 4, a frequency range is defined to observe the in-
fluence of the force amplitude and higher harmonic generation in the nonlinear system. The
analysis is presented in Figure 5.

Comparing the curves, it can be observed that increasing the amplitude of the force has the
effect to slightly shifts the band gap to the right and slightly decreases the level of displacement
attenuation, as reported by Silva et al. [1]. Furthermore, the inclination of the peak of reso-
nances is increased with the force amplitude. This behavior is expected from HBM analysis, as
unstable responses are also extracted from the method.

Regarding higher harmonic generation, Figure 6 presents the ratio between first and third
harmonics amplitudes, the latter is expected to occur due to cubic nonlinearity. It is possible to
observe that higher force amplitudes lead to more relevant third harmonics amplitude values.
From this, it is possible to infer that the differences between the responses in Figure 5 are in-
duced by higher harmonic effects, which shows the relevance of such a mechanism in modeling
nonlinear mechanical systems.
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Figure 5: Transmissibility of the nonlinear metamaterial.

Figure 6: Third and first harmonics amplitude ratio.

4 CONCLUSIONS

This paper proposes analyzing a mechanical system using the harmonic balance method
considering higher harmonics effects. First, a code was developed to simulate the system and
tested on a two-degree-of-freedom mechanical system for which the response was known. This
first step made it possible to validate the code. Subsequently, a metamaterial composed of 10
unit cells was analyzed. At this stage, the proposed procedure led to expected results, such
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as higher harmonic generation and the dependence of the system response to the amplitude of
the force, indicating a trend to nonlinear behaviors even more prominent with higher excitation
amplitudes. Therefore, the results indicate the suitability of the adopted approach for such
analysis. It is expected that it may aid in further analyses of nonlinear mechanical systems.
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