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Summary. A common engineering practice is to optimize the geometry of a structure by
an iterative process, in which an objective function is minimized by systematically choosing
the value of design variables and computing the value of the objective function many times.
However, regarding multiscale problems, this direct numerical approach is not feasible for a
number of reasons. The model has to take into account both the structural and unit cell
(UC) scale, because the objective function to be minimized is a global quantity, while the
parameters are related to the shape or material parameters of the UC. In the absence of a
clear separation of scales, the direct resolution of both scales in the numerical model leads to a
significant increase in computational cost, which makes it impossible to repeatedly evaluate the
model during the optimization process. The main goal of this contribution is to overcome the
aforementioned limitations and develop an efficient computational framework for the optimal
design of lattice structures. To this end, parametric model order reduction is combined with
domain decomposition methods. In offline simulations, suitable localized approximation spaces,
that account for the change in geometry of the UC and its neighbours, are constructed using the
concept of oversampling and random sampling. The global approximation space is constructed
from the local spaces via the partition of unity method. The reduced order model is validated
on the example of a stress-constrained shape optimization problem.

1 INTRODUCTION

Additive manufacturing is a manufacturing technique that allows for the production of a wide
range of structures and complex geometries. The technology offers numerous advantages over
conventional manufacturing, including greater design flexibility, reduced material waste, and the
possibility to produce complex structures with tailored material properties. It has been used
in a wide range of applications, including the construction industry [1]. The great flexibility
regarding the geometry motivates the solution of topology or shape optimization problems to
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determine the optimal design for a structural problem. In this contribution, we focus on shape
optimization in the context of multiscale problems, i. e. our aim is to optimize the geometrical
parameters of the microstructure, e. g. the unit cell of a lattice structure. However, the solution
of the optimization problem requires many evaluations of the numerical model, which may be
infeasible if solving the high fidelity finite element (FE) model, also called full order model
(FOM) is a computationally demanding task. Reduced order models (ROMs) are powerful
tools to mitigate this problem, but for multiscale or large-scale industrial applications with
high-dimensional parameter spaces, the nowadays established “single-domain” approaches are
limited [2], and the construction of a fast-to-evaluate and accurate ROM is a challenging task.

Therefore, we propose a framework based on localized, also called component-based (CB),
parametric model order reduction (pMOR). The main idea is to precompute, in a localized
manner, empirical basis functions which approximate the solution for some part of the domain
without the need to solve the global FOM even once. The global approximation is obtained by
a suitable coupling of the local reduced spaces spanned by the aforementioned basis functions,
in which one naturally relies on domain decomposition (DD) strategies. A review of concepts
in localized pMOR is presented in [3]. In particular, regarding lattice structures, this approach
allows to take advantage of the repetitiveness of the lattice, such that a computation of the local
basis is required only for few components, i. e. unit cells. The computation of the local basis is
an essential task in localized pMOR and is often done using the concept of oversampling [4]. In
this approach, the target subdomain Ωin, i. e. that part of the domain for which one would like to
construct basis functions, is extended and boundary conditions are prescribed on the boundary
of the larger so-called oversampling domain Ω to explore possible solutions. In the literature,
this oversampling problem is also expressed in terms of a transfer operator T that maps the val-
ues on the boundary ∂Ω to the unknown solution restricted to the target subdomain u|Ωin . The
construction of (optimal) local approximation spaces then comprises the calculation of the left
singular vectors of this transfer operator [5, 6]. The direct calculation via eigenvalue problems
is, however, computationally expensive and the range of the transfer operator, and thus the op-
timal local approximation spaces can be efficiently approximated by random sampling [7]. Here,
the authors treat non-parametrized partial differential equations (PDEs) and to our knowledge
the extension to the parametric setting for linear problems has not been done yet. In [6], the
authors propose a spectral greedy algorithm to construct parameter-independent local approxi-
mation spaces and Taddei and Patera [8] propose a combination of transfer eigenproblems and
proper orthogonal decomposition (POD). For parameterized nonlinear elliptic PDEs Smetana
and Taddei [9] present a randomized local training procedure with global enrichment.

The contributions of the present work are given as follows. First, as references [6, 8] do
not make use of range approximation via random sampling, a suitable training strategy to
construct local approximation spaces for parameterized linear problems via random sampling
is discussed. Herein, the approach given in [8], identified as a distributed approximate POD
(see also [10]), is adopted to range approximation via random sampling. Second, a framework
for the shape optimization of lattice structures is proposed. It combines the aforementioned
algorithm to construct local approximation spaces with an auxiliary problem, as in [11], to
facilitate geometrical parametrizations of the unit cell and the matrix version [12] of the empirical
interpolation method (EIM) [13, 14] to ensure online efficiency of the final ROM. Furthermore,
the global approximation space is constructed from the local spaces using the partition of unity
method or generalized finite element method (GFEM) [15, 16].
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The rest of the article is organized as follows. In section 2, the building blocks of the shape
optimization framework are described. In particular, the range approximation of a parametric
transfer operator is discussed. Section 3 comprises the numerical experiments. Based on the
example of a graded concrete slab, the quality of the local spaces generated by the proposed
method is analyzed, the resulting ROM is validated, and results for the solution of a stress-
constrained shape optimization problem are presented. Finally, conclusions are given in section 4.

2 METHOD

The method proposed in this article is a localized pMOR framework for the shape optimiza-
tion of lattice structures. First, the auxiliary problem to model geometrical parameterizations
is introduced in section 2.1. Second, the construction of local approximation spaces is described
in section 2.2. Herein, the parametric oversampling problem and training strategy to approx-
imate the range of the corresponding parametric transfer operator are discussed. Third, it is
outlined how a global approximation is obtained from local approximation spaces via the GFEM.
Finally, the hyper-reduction (in the form of empirical interpolation) to ensure an online-efficient
ROM is detailed in section 2.4.

2.1 Auxiliary Problem

The approach adopted in this work to facilitate geometrical parameterizations belongs to
the class of surface-based deformations [17] and is based on transformations Φµ that map each
material point xp of a parameter-independent reference or parent domain Ωp to a point xµ in
the parameter-dependent current or physical domain Ωµ. Throughout the paper, the parameter
value (design variables) are denoted by µ and dependence on the parameter is indicated by a
sub- or superscript (·)µ, (·)µ. The sub- or superscript (·)p, (·)p indicates that the quantity does
not depend on the parameter. In the context of shape optimization of lattice structures, our
objective is to determine the mapping Φµ for a single unit cell, see fig. 1, and use it to describe
the change in geometry of each unit cell throughout the structure. An auxiliary problem based
on the equations of linear elasticity is solved to obtain such domain transformations, following
the approach outlined in [11], and briefly repeated here for completeness.

The transformation map Φµ from parent to physical domain Φµ : Ωp 7→ Ωµ is given by
xµ = Φµ(xp) = xp + d(xp;µ), with d(xp;µ) being the transformation displacement field. The
transformation displacement is determined by solving the following linear elastostatic auxiliary
problem.

∇ ·
(
Ĉ ··1

2
(d⊗∇+∇⊗ d)

)
= 0 , in Ωp , (1)

d = 0 , on ∂Ωp , (2)

d = xµ − xp , on ∂Ωp
int . (3)

The stiffness tetrad Ĉ of the auxiliary problem is defined as

Ĉ = λ̂I ⊗ I + 2µ̂I , with λ̂ =
ν

(1 + ν)(1− 2ν)
and µ̂ =

1

2(1 + ν)
. (4)

With xµ known for all points on the parent interface ∂Ωp
int, the desired transformation (e. g.

enlarging/shrinking of the voids radius) is enforced by prescribing eqs. (2) and (3). Given
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µ̄

∂Ωp
int

Φµ ∂Ωµ1

int

∂Ωµ2

int

µ1µ2

Parent domain Ωp Physical domain Ωµ

Figure 1: Transformation map Φµ from parent to physical domain on the example of the unit
square domain with a circular void placed in the center. The parameter µ controls the radius
of the void.

the transformation displacement d(xp;µ), the variational formulation is formulated over the
parameter-independent parent domain Ωp instead of the parameter-dependent physical domain
Ωµ. This introduces the parameter dependence in the variational formulation as shown in the
following subsections, but has the advantage that numerical integration can be carried out over
the fixed parent domain and thus no re-meshing is required. However, for each new parameter
value µ for which the model is to be evaluated, we first need to solve the auxiliary problem.
Nevertheless, this does not pose a problem, since the solution of the auxiliary problem is well
amenable to acceleration via established MOR techniques and we refer to [11] for further details.

2.2 Construction of local approximation spaces

In this paper, local approximation spaces are constructed by solving an oversampling problem
many times for different parameter values µ and different (random) boundary conditions. It is
therefore useful to cast this oversampling problem in the form of a parameter-dependent transfer
operator Tµ that maps the boundary function g to the solution u(µ) in the target subdomain
Ωµ

in. The approximation of the range of this transfer operator is then the local approximation
space, see [7].

First, the global domain Ωµ
gl and a non-overlapping domain decomposition

Ωµ
gl = ∪

Ncells
i=1 Ωµ

i (5)

is introduced. In the context of lattice structures, each subdomain Ωµ
i corresponds to a unit

cell. Next, a coarse grid partition of the global domain and a fine grid partition of the unit
cell is introduced as shown in fig. 2. Figure 2 also shows one exemplary oversampling domain
Ωµ. The oversampling problem (given for linear elastostatics) then comprises the solution of
the following boundary value problem.

−∇ · σ(u(µ)) = 0 in Ωµ ⊂ Ωµ
gl ,

σ(u(µ)) · n = 0 on Γµ
N := ∂Ωµ ∩Σµ

N ,

u(µ) = 0 on Γµ
D := ∂Ωµ ∩Σµ

D ,

u(µ) = g on Γµ
out := ∂Ωµ \ ∂Ωµ

gl .

(6)
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Here, σ is the Cauchy stress, n the normal vector and g Dirichlet boundary data to be
prescribed on the boundary Γµ

out. The boundaries Γ
µ
N and Γµ

D denote the part of the boundary of
the oversampling domain that coincides with the global Neumann boundary Σµ

N or Dirichlet
boundary Σµ

D, respectively. Note that the topology is dependent on the target subdomain Ωµ
in

and the size of the oversampled region. Considering linear elastic isotropic materials

σ(u(µ)) = C ··ε(u(µ)) , (7)

with the linear strain tensor as

ε(w) :=
1

2
(w ⊗∇+∇⊗w) , (8)

and the stiffness tetrad given in component form as

Cijkl = λδijδkl + µ (δikδjl + δilδjk) , (9)

the weak form reads ∫
Ωµ

∂δu

∂xµ
··C ··∂u(µ)

∂xµ
dxµ = 0 . (10)

Herein, δu denotes the test function. The weak form is implicitly dependent on the parameter µ
due to the integration carried out over the physical domain Ωµ. By introducing the deformation
gradient of the geometrical transformation1 as introduced in section 2.1

Fµ :=
dxµ

dxp
and dxµ = det(Fµ) dx

p , (11)

the integration can be carried out over the fixed parent domain∫
Ωp

(
∂δu

∂xp
· F−1

µ

)
··C ··

(
∂u(µ)

∂xp
· F−1

µ

)
det(Fµ) dx

p = 0 . (12)

The solution of the oversampling problem eq. (6) is then given as the solution of eq. (12) and
subsequent restriction of the solution to the target subdomain, denoted as u(µ)

∣∣
Ωp

in
. The transfer

operator Tµ : S → R maps, for a given parameter value µ, the boundary data g to the solution
on the target subdomain u(µ)

∣∣
Ωp

in
= Tµ(g). Here, S and R are appropriate source and range

spaces, respectively. Throughout the paper, we assume a suitable discretization and numerical
solution of eq. (12) using the FE method. For details concerning the discretization of the transfer
operator (for a fixed parameter value), we refer to [7].

Finally, we note that the images of Tµ are computed, such that they do not contain any
translations or rotations (rigid body modes are removed via orthogonal projection), i. e. they
comprise purely deformational modes. Moreover, (global) Neumann or Dirichlet boundary
conditions prescribed on Σµ

N or Σµ
D, respectively, have not been considered yet. Therefore, an

1We note here that the auxiliary problem described in section 2.1 needs to be extended to the oversampling
domain, which consists of a union of unit cells. This is straightforward in the current setup, but has the limitation
that eq. (2) needs to be satisfied for each unit cell, i. e. the interfaces between them.
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additional Neumann problem2 has to be solved to enrich the local spaces.

−∇ · σ(u(µ)) = 0 in Ωµ ⊂ Ωµ
gl ,

σ(u(µ)) · n = t̂ on Γµ
N := ∂Ωµ ∩Σµ

N ,

u(µ) = 0 on Γµ
D := ∂Ωµ ∩Σµ

D ,

u(µ) = 0 on Γµ
out := ∂Ωµ \ ∂Ωµ

gl .

(13)

Equation (13) is solved on the parent domain employing the pull back as above. Also, for
construction of a sufficiently rich local basis it has to be solved for many parameter values µ,
but a sampling of the boundary values on Γµ

out is not required.

Ωµ
i

Γµ
out

Σµ
D Σµ

N

(a) (b)

Figure 2: Exemplary coarse grid discretization of the global domain Ωµ
gl, with target subdomain

Ωµ
i within oversampling domain Ωµ in grey (a) and fine grid discretization of the unit cell (b).

2.2.1 Randomized range finder and proper orthogonal decomposition

Assuming a proper FE discretization of Tµ, the algorithm to approximate the range of Tµ
for any µ is discussed next. Herein, a strategy for the exploration of the parameter space and
sampling of the random boundary conditions in the oversampling are the key challenges. In the
present work, the strategy by Taddei & Patera [8] is adopted in which based on the connection
between the POD of images of the transfer operator (for certain boundary conditions) and the
singular values of the transfer operator they devise a training strategy which is recognized as a
distributed approximate POD (see [10]). For each µj in a predefined training set, they compute
the singular values of Tµj by solution of an eigenvalue problem and, subsequently, compute the
POD over the set of all eigenvectors. As the authors state, the resolution of the eigenvalue
problems may be prohibitive in some cases, and therefore we employ range approximation by
random sampling.

The procedure for the computation of parameter-independent deformational modes is summa-
rized in algorithm 1. The target tolerance ε∗ is used to control the quality of the approximation
space (by bounding the mean ℓ2-error), and to compute the local tolerances εα that steer the
range approximation of each transfer operator and the tolerance ερ for the final POD. First, an
empty snapshot set S and a training set Strain are initialized. The training set Strain has to be
sufficiently rich, such that it is a good representation of the parameter space, and the reader

2The case of inhomogeneous Dirichlet boundary conditions can be treated in the same way.
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is referred to [18]. Next, for each parameter value µj ∈ Strain, the range of Tµj which is now
fixed with respect to the parameter value is approximated using Algorithm 1 AdaptiveRan-
domizedRangeApproximation from [7] (line 6). If ∂Ωp ∩Σp

N ̸= ∅, the additional Neumann
problem eq. (13) is solved and the solution appended to the current range R (lines 7-9). The set
of snapshots is then extended by the current range R (line 11). Note that the parameter value
µ and boundary conditions g are not varied at the same time. Finally, the POD is computed
over the snapshot set S which yields the parameter-independent space Xn. The dimension of
the local space Xn, i. e. the number of local basis functions is denoted by n.

Algorithm 1 Randomized range finder (RRF) combined with POD.

1: function HapodRangeApproximation(T , ε∗, nt, εalgofail, Ntrain)
Input: Operator Tµ, target tolerance ε∗, number of testvectors nt, maximum failure prob-
ability εalgofail, number of parameter samples Ntrain

Output: space Xn

2: Compute ερ and εα from ε∗ according to Theorem 10 of [10]
3: S ← ∅ ▷ initialize snapshot set
4: Strain ← {µ1, . . . ,µNtrain} ▷ initialize training set
5: for µj in Strain do
6: R← AdaptiveRandomizedRangeApproximation(Tµj , εα, nt, εalgofail)
7: if ∂Ωp ∩Σp

N ̸= ∅ then
8: uNeumann ← Solve eq. (13) for µj

9: R← R ∪ uNeumann

10: end if
11: S ← S ∪R
12: end for
13: B ← POD(S, ερ)
14: return Xn = span (B)
15: end function

2.3 Construction of a global approximation

Given local approximation spaces Xn
i for each target subdomain Ωp

i , the construction of a
global approximation via the GFEM is discussed. The difficulty is that the basis functions of
the local spaces Xn

i and Xn
j of two neighboring subdomains Ωp

i and Ωp
j are not conforming on

the shared interface Γ p
ij = ∂Ωp

i ∩ ∂Ωp
j . However, given a suitably3 defined partition of unity

{φi}, the local basis functions can be included in the global FE space by multiplication with the
standard FE shape functions φi, such that a conforming approximation is obtained. The GFEM
function denoted as ψ(x) = φ(x)ξ(x),x ∈ ωα for a patch ωα is shown in fig. 3 to illustrate the
procedure of constructing the GFEM functions.

2.4 Global solution procedure

With the global GFEM space, each coarse grid cell (i. e. unit cell of the lattice) can be viewed
as a high order FE. For instance, assuming a coarse grid partition as shown in fig. 2, the coarse

3According to Definition 1 of [15].
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Figure 3: Construction of GFEM functions.

grid cell is a quadrilateral cell with special ansatz functions ψi. The components of the FE
matrix of the i−th coarse grid cell are given by

aikl =

∫
Ωp

i

(
∂ψk

∂xp
· F−1

µ

)
··C ··

(
∂ψl

∂xp
· F−1

µ

)
det(Fµ) dx

p ,

= (V T)kmKmn(µ)Vnl .

(14)

Here, V is the matrix that holds the FE vectors of the GFEM functions ψi as column vectors
and K(µ) is the stiffness matrix of the subdomain Ωp

i (i. e. unit cell). Since K is dependent on
the parameter µ, integration over the full fine scale mesh of the unit cell is required whenever the
model is evaluated for a new parameter value which will drastically reduce the computational
efficiency of our method.

To overcome this problem, the stiffness matrix K(µ) is approximated by Empirical Interpo-
lation (see [13, 14] and in particular [12] for the matrix version termed MDEIM employed here),
such that

K(µ) ≈KQ(µ) =

Q∑
q=1

θq(µ)Kq . (15)

Herein, Kq are parameter-independent matrices that can be precomputed4. The θ(µ) ∈ RQ are
called interpolation coefficients and can be determined via the interpolation equation

ΦIθ(µ) = kI(µ) . (16)

Considering the matrix version of DEIM, the interpolation is constructed for matrices that are
vectorized by stacking their columns on top of each other which is denoted by k = vec(K).
The suffix (·)I indicates the restricted evaluation, reduced integration respectively. The basis
Φ = [vec(K1), . . . , vec(KQ)] and the interpolation indices I are determined by applying the
DEIM algorithm as proposed in [14] to a set of snapshots {vec(K(µ1)), . . . , vec(K(µm))},m > 0.

4Due to the Galerkin projection onto V (eq. (14)) the matrices to be precomputed and stored are also suffi-
ciently small.
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By reversing the vec(·) operation, the approximation KQ(µ) can be formed using eq. (15) once
the interpolation coefficients are determined by solution of eq. (16). For more details on the
overall procedure the reader is referred to [12]. Finally, with a fast method to compute KQ(µ),
the calculation of the FE matrices aikl of each coarse grid cell are independent of the underlying
fine grid discretization of the unit cell. The assembly of the global system matrix follows the
usual assembly routine for FE methods.

3 NUMERICAL EXPERIMENTS

3.1 Graded concrete slab

The numerical example investigated here is motivated by graded concrete in which voids are
created by inserting hollow bodies into the concrete formwork with the goal of mass reduction,
see https://gradientenbeton.eu/. The problem is simplified and we consider a two dimen-
sional beam under plane stress conditions as shown in fig. 4. The coarse grid partition of half
of the beam body Ωp

gl = [0, 10a] × [0, a] is given by 10 quadrilateral cells of size a, where a is

the unit length of the unit cell. Each unit cell, i. e. subdomain Ωp
i , is taken as a square of size

a with a circular void with radius R and is partitioned in 384 isoparametric quadrilateral FEs
of polynomial degree two, see fig. 2 (b). With regard to the geometrical parametrization, we
consider the variation of the radius R in each subdomain. For the global problem this results
in a parameter space Pgl = [R−, R+]

10, such that a parameter value µ ∈ Pgl has parameter
components µi ∈ [R−, R+], i = 1, . . . , 10, with ranges chosen as R− = 0.1a,R+ = 0.3a. For
the parent domain we set µ̄i = 0.2a, i = 1, . . . , 10 as the reference value. The point load is
distributed as a constant traction over the length of one unit cell (on the far left).

Full order model An auxiliary problem is defined on the global domain Ωp
gl to account for

the variation in the geometry. The full order model is given by a standard FE model using the
fine grid discretization of Ωp

gl as described above.

Reduced order model The ROM is constructed using the procedure for range approximation
described in section 2.2. Using the coarse grid as above, we choose to solve k = 1, . . . , 11
oversampling problems, such that for each of the target subdomains Ωp,k

in and Ωp,k+1
in an overlap

of size a× a is created. The pointwise overlap condition is required for the construction of the
GFEM functions. The size of the target subdomain Ωp,k

in is 2a × a for k = 2, . . . , 10 and a × a
for k = 1, 11. For each problem the oversampling layer has size a× a, i. e. the target subdomain
is extended by a unit cell on each side unless the boundary of the target subdomain intersects
with the boundary of the global domain (∂Ωp,k

in ∩ ∂Ωp
gl ̸= ∅).

The input parameters to algorithm 1 are ε∗ = 0.001 , nt = dim(S) and εalgofail = 1 · 10−14 for
k = 1, . . . , 11, where dim(S) denotes the dimension of the source space of the transfer operator
and corresponds to the number of degrees of freedom on the boundary Γ p

out in the FE model.
The number of training samples is chosen as Ntrain = 50 (k = 1, 11), Ntrain = 100 (k = 2, 10) and
Ntrain = 200 elsewhere, as the local parameter spaces have different dimensions. The singular
values of the POD at the end of algorithm 1 for each oversampling problem show a rapid
decay (fig. 5). As expected, a less rapid decay is observed for the larger oversampling domains.
Furthermore, for k = 1, 2, 3 in comparison to the oversampling problems of the same size on the

9
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right (k = 9, 10, 11), a difference in the total number of snapshots generated is observed which
is due to the additional Neumann problems.

F

x

A B

(a) Mechanical model of the beam

F/2

B

(b) Simulation model of half of the beam

Figure 4: Mechanical model of the beam and representation of the simulation model with loads
and kinematical constraints.

3.2 Reduced order model validation

For the validation of the ROM, the relative error with respect to the FOM is computed over
a parameter set of size 200. The error in the displacements is measured in the energy norm
(over the domain Ωp

gl) and defined as

eu(µ) :=
∥ufom − urom∥
∥ufom∥

. (17)

Apart from the displacement field as the primary unknown, we are interested in the first prin-
cipal component of the Cauchy stress as this will be used to define a stress constraint for the
optimization problem. The error in the stress is defined as

eσ(µ) = max
|sfom − srom|
∥sfom∥2

. (18)

Here, ∥·∥2 denotes the Euclidean norm and s ∈ RNg denotes the vector holding the first principal
stress values at the Ng integration points of the mesh. For ease of notation, the parameter-
dependence is omitted for u and s. The minimum, average and maximum of eu and eσ over
the validation set are shown in fig. 6. With regard to the error in the displacement, the average
value is much smaller than the maximum over the validation set. In both cases, for local basis
size ca. > 75 the error decreases only very slowly with increasing number of basis functions.
This is due to the rather moderate size of the training set, as e. g. Ntrain = 200 is used for a
local parameter space Pk = [R−, R+]

4 for k = 3, . . . , 9. However, the error in the stress is less
sensitive to variations in the parameter µ and a pointwise maximum relative error below 1% is
acceptable for the current application.

3.3 Shape optimization

The formulation of the shape optimization problem seeks to minimize an objective function,
J(µ,u(µ)), with constraints, gq(µ,u(µ)) ≤ 0, used to limit the first principal stress at each

10
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1Figure 6: Minimum, average (dashed) and maximum relative error over the validation set of size
200.
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Table 1: Result of the optimization. For the ROM a local basis size of 100 is used. µ∗ is used
as a placeholder for the optimum found by the respective model.

Model J(µ∗) m(µ∗) Iterations Function calls

FOM 0.941 7.855 4 45
ROM 0.946 7.897 13 155

integration point, q, with q = 1, . . . , Ng.

min
µ∈Pgl

J(µ,u(µ)) ,

s.t. gq(µ,u(µ)) ≤ 0, q = 1, . . . , Nq ,

with K(µ)u(µ) = f .

(19)

The objective function is defined as a weighted sum of mass m(µ) and compliance C(u(µ)).

J(µ,u(µ)) = (1− ω)
m(µ)

m(µ̄)
+ ω

C(u(µ))

C(u(µ̄))
, 0 ≤ ω ≤ 1 . (20)

The compliance is included, since we do not actively constrain the second principal component
and, therefore, designs leading to high compressive stresses would not be detected. The reference
values m(µ̄) and C(u(µ̄)) are used to normalize. The definition of the stress constraint follows
a risk factor approach [19] and is written as

gq(µ,u(µ)) =
sq
σ+
− 1 , q = 1, . . . , Nq , (21)

with the components of the vector of first principal stress sq and an upper bound σ+ on the
admissible tensile stress. Note that s depends on u and thus also µ although not explicitly
written. The load F is chosen so that the parameter value with µi = R+, i = 1, . . . , 10 yields gq >
0 (infeasible design), such that this trivial minimum of m(µ) is excluded from the set of possible
solutions. The shape optimization problem eq. (19) is then solved using the FOM and the ROM.
Note that the computation of the ROM output Jn(µ,un(µ)), with reduced displacement solution
un(µ), is not dependent on the dimension of the FOM. The results are obtained using sequential
least squares programming [20] (SLSQP) and finite difference approximation of the gradients,

and are given in table 1. The absolute error in the optimum is
√∑10

i=1(µ
∗
i − µ∗

n,i)
2 ≈ 2.44 ·10−2,

with the optimum, µ∗, found by the FOM and the optimum, µ∗
n, found by the ROM, respectively.

While the ROM is able to converge to a solution close to the FOM solution, over three times
more iterations and function evaluations are necessary.

4 CONCLUSIONS

In this contribution a hyper-reduced localized model order reduction framework for the shape
optimization of lattice structures is presented. The data compression strategy, adopted from [8],
is shown to work well with range approximation by random sampling. Furthermore, the ROM
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solution of the considered shape optimization problem is in good agreement with the FOM solu-
tion and this is regarded as a first proof of concept. A thorough comparison of the computational
efficiency including runtime measurements is planned for future work, as this is out of the scope
of the current investigation. Other directions of future research include the exploration of offline
training strategies in which the variation in the parameter value µ and the boundary data g are
addressed simultaneously and suitable sampling distributions of the boundary data g.
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