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Abstract. We present a simple finite element framework which enables numerical simulations
of transport problems in fractured porous media based on equi-dimensional models, i.e., mod-
els where fractures are considered heterogeneities of the same geometrical dimension as the
embedding background. The two main ingredients of the proposed framework are an adaptive
mesh refinement strategy, and an algebraic flux correction stabilization.

The proposed finite-element method for equi-dimensional models is inherently simple and
can be easily implemented in any common simulation software, as it does not require the com-
plicated management of different meshes and discretizations, which are necessary for numerical
simulations based on hybrid-dimensional models, i.e., models where fractures are considered
as heterogeneities of a lower geometrical dimension than the embedding background. Actu-
ally, our equi-dimensional approach provides a strategy to validate hybrid-dimensional models.
Our adaptive approach is inherently conservative and naturally reduces the discretization error
which, for problems with heterogeneities, is concentrated at the interfaces.

1 Introduction

Numerical simulations of transport problems in fractured porous media are of fundamen-
tal importance for numerous applications, such as geothermal energy production, hydrocarbon
exploration, nuclear waste disposal, and CO2 storage. Fractures in a porous medium are hetero-
geneities in an embedding background that can be arranged in complex networks. Fractures are
characterized by one dimension, the aperture, which is orders-of-magnitude smaller than the
characteristic size of the background, and by material properties which also differ by orders-of-
magnitude from the ones of the background.

Numerical simulations of fractured media are particularly challenging for the following rea-
sons. First, the mesh generation of full equi-dimensional models, i.e., models which represent
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the fractures as heterogeneity of the same geometric dimension as the background, is consid-
ered practically unfeasible for realistic fracture networks [1, 2, 3, 4]. Second, analytical so-
lutions of problems with heterogeneous material properties and/or mixed boundary conditions
are generally characterized by a singular behaviour, i.e., there exist so-called singular points
where the solution and/or its derivative are not bounded [5]. In the vicinity of singular points,
standard discretization methods are characterized by a low accuracy with respect to the or-
der of the method [6]. Third, standard discretization methods for the numerical simulation of
pure advection problems, which describe the transport of a concentration in a fractured porous
medium, usually do not satisfy the discrete maximum (DMP) and the discrete monotonicity
principles [7]. A violation of the DMP manifests itself in unphysical oscillations and negative
values of the solution, which are not acceptable for positive quantities, such as concentrations.
Stabilization techniques, which consist in or are equivalent to the introduction of a mesh depen-
dent diffusion term [8, 9, 7], are at best first-order accurate due to the Godunov barrier [10] and
may produce overly diffusive numerical results.

In this work, we propose a simple finite element (FE) approach based on the adaptive mesh
refinement (AMR) technique and algebraic flux correction (AFC) stabilization for numerical
simulations of transport problems in porous fractured media based on an equi-dimensional
model. We employ an AMR strategy similar to the one proposed in [11, 12] to adapt an initial
coarse mesh to any fracture distribution. As these meshes do not resolve the interfaces, they
will be referred to as unresolved. We point out that this approach has been already employed to
solve for single-phase flow problem in porous fractured media [12] and validated in [13].

The paper is organized as follows. In Section 2, we briefly describe the AMR strategy for the
mesh generation. In Section 3, we present the differential equations of the transport problem,
introduce their FE formulation and present the AFC strategy. In Section 4, benchmark problems
are used to evaluate the performance of our approach in terms of approximation properties.
Finally, in Section 5, we draw some concluding remarks.

2 Geometry of fractured media

For the generation of meshes for heterogeneous fractured media, we employ the adaptive
mesh refinement (AMR) strategy proposed in [11]. The fundamental concept in their approach
involves initiating with a coarse (uniform) initial mesh. Then, given a distribution of fractures,
the algorithm refines the elements that have non-empty overlap with at least one of them, at
each step of the AMR algortithm. In our approach, we focus on refining the elements that have
a non-empty intersection with the boundary of a fracture.

Through the iterative application of this AMR procedure, we generate a hierarchy of meshes
that progressively refine toward the interfaces between fractures and the embedding background
and in the neighbourhood of singular points. The AMR strategy automates the creation of
meshes for any heterogeneity distribution without requiring human intervention. As the result-
ing meshes do not resolve the interfaces between the background and the fracture domains, we
refer to them as unresolved meshes.

We start from a mesh Ube that is uniform and regular. The integer be refers to the number
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of elements of elements along the x1 axis. The number of elements along the other axis are
chosen proportionally to the size of the domain ⌦. We denote the mesh obtained from amr
steps of refinement process by U be

amr. By increasing values of amr, we can generate meshes,
which become progressively finer close to the interface between fractures and matrix, where
the discretization error is usually larger.

A fundamental parameter for unresolved meshes is the accuracy with which they approxi-
mate the interface. We denote this parameters by w defined as

w =
�
L1

be 2amr

. (1)

We observe that w is the ratio between the fracture aperture � and the dimension of the smallest
elements generated by the AMR strategy.

3 Transport problem

The discretization proposed in this work is based on low-order FE and meshes which are
automatically adapted to the geometrical features of domain.

Meshes are a decomposition of ⌦ into elements, which are axis-aligned squares in two-
dimensional settings, or cubes, in three-dimensional settings. As they are supposed to be created
from an adaptive process, they may present hanging nodes, i.e., there could be a vertex of an
element which may belong to the edge or to the face of another element. Non-hanging nodes
are instead said to be regular.

We consider low-order nodal conforming FE discretizations and we associate a Lagrangian
basis function to each regular node. Hanging nodes do not have an associated basis function in
case of conforming discretizations.

We denote the index set of regular nodes by JR, and define JD ⇢ JR as the index set of the
nodes which belongs to the Dirichlet boundary �D, i.e. JD = {i : xi 2 �D}. We let Sh denote
the nodal interpolation space over T defined as

Sh = {v 2 C0(⌦) : vE 2 Q1},

where Q1 is the space of multi-linear functions on E. We call Ni the Lagrangian basis function
associated with the vertex Vi. Observe that the space Sh = span{Ni}i2JR .

We also define

Uh = {vh 2 Sh such that vh(xi) = g(xi) 8i 2 JD}

and
V h = {vh 2 Sh such that vh(xi) = 0 8i 2 JD}.

Transport problem

We let I = (0, Tfin] denote a time interval, �in := {x 2 @⌦ : u · n < 0} denote the inflow
boundary, and �out := {x 2 @⌦ : u · n � 0} denote the outflow boundary. Moreover, we

3



Maria Giuseppina Chiara Nestola, Marco Favino

also assume �in = �D. The strong formulation of the equi-dimensional transport problem for a
concentration c = c(x, t) reads

8
><

>:

�
@c

@t
+r · (u c) = 0 in ⌦⇥ I

c( · , 0) = c0 in ⌦
c = g on �in ⇥ I

(2)

where c0 is the initial condition, � is the porosity (i.e. a material parameter which may attain
different values in the background matrix and in the fracture network), and g is the Dirichlet
boundary condition. The transport problem is coupled to the flow problem through the velocity
field u = �krP , where k represents the permeability and P is the solution field of the flow
problem. The flow problem is solved by means of the approach presented in [12] and validated
in [13]. The finite-element discretization of the transport problem (2) reads as

For all t 2 I , find ch( · , t) 2 Uh such that c( · , 0) = c0, and

m

✓
@ch
@t

, qh

◆
= a(ch, qh) 8qh 2 Vh.

(3)

where we have used the following discrete bi-linear forms:

m

✓
@ch
@t

, qh

◆
=

Z

⌦

�
@ch
@t

qh dV,

a(ch, qh) =

Z

⌦

ch u ·rqh dV �
Z

�out

ch qh u · n dA ,

and ch = ch( · , t) 2 Uh is the approximation of the concentration c at time t.
Problem (3) admits the following algebraic representation

M
dc
dt

= Ac, (4)

where the matrices M and A are the scaled mass matrix and the discrete advection operator,
respectively, and c is a the time dependent array having as components the unknown coefficients
cj with respect to the basis Nj.

3.1 Discrete maximum principle for the transport problem

A classic theorem that provides sufficient conditions to ensure the maximum principle and
positivity preservation for the semi-discrete transport problem (4) is the following [7]:

Theorem 1 Suppose that:

• [M]ii > 0, and [M]ij = 0 8i 6= j

• [A]ij � 0 8i 6= j.
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Then the following a-priori estimates hold for the coefficient ci:

1a The semi-Discrete Maximum Principle (DMP) is satisfied:

X

j

[A]ij = 0, and ci � cj, 8j 6= i =) dci
dt

 0.

1b The positivity preservation is satisfied:

cj(0) � 0, 8j =) ci(t) � 0, 8t > 0.

Continuous FE discretizations applied to transport problems are characterized by under-
shoots and overshoots of the numerical solution as the matrices arising are not M-matrices [14].
Several stabilization strategies have been proposed to make M and A consistent with the hy-
pothesis of theorem 1. In the following, we refer to the AFC predictor-corrector strategy pro-
posed by [7]. The basic idea of this method is to employ an algebraic diffusion operator that
allows ensuring the DMP and preserve of positivity of the solution.

The first step of the AFC scheme is to introduce artificial diffusion into the high-order scheme
to develop a positivity-preserving scheme. To this aim, a lower order linear transport operator
is designed to satisfy the hypotheses of Theorem 1. In particular, one needs to 1) approximate
the consistent mass matrix M by its lumped counterpart ML and 2) eliminate the negative off-
diagonal entries of the transport operator A by adding a discrete diffusion operator SAsuch
that:

• [SA]ij = max(�[A]ij, 0,�[A]ji) for i 6= j,

• [SA]ii = �
P

j 6=i[S
A]ij .

and replacing A with Ã = A+ SA.
In the process of AFC, the discrete problem (4) is split into a good diffusive part of the form

Tcn+1 = MLc
n,

with T = ML ��t Ã and a bad anti-diffusive part given by

f = (ML �M)cn+1 ��tSAcn+1 � (ML �M)cn.

The bad anti-diffusive term admits the decomposition [ f ]i =
P

j 6=i[F]ij where the components
of the sum represent a numerical flux which attain a local conservation property, i.e. [F]ij +
[F]ji = 0.

The good diffusive counterpart is positivity-preserving but overly diffusive due to its linear-
ity. Indeed, due to Godunov’s theorem [15] the accuracy of the stabilized FE method decreases
to first order. A high-resolution scheme can be reconstructed by locally adding an anti-diffusive
correction.
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By following the approach proposed in [7], we disregard the antidiffusive term f and solve
the linear system

Tcn+1
L = MLc

n.

Then, we add the anti-diffusive correction term [ f̃ ]i =
P

j 6=i[F]ij[↵]ij to recover the accuracy
of the original high-order discretization as follows

ML cn+1 = MLc
n+1
L +�t f̃ ,

where 0  ↵  1 is solution-dependent correction factor computed to restrict the amount of
anti-diffusion at every regular node [7]. We point out that if all the factors [↵]ij are equal to 1
the original high-order Galerkin discretization is recovered, while the lower order discretization
is attained for [↵]ij = 0.

4 Numerical examples

In the following, we validate our approach on two benchmark problems proposed in litera-
ture: Regular Fracture Network [16, 17], and Small Features [13]. The software used to solve
the numerical examples is Parrot2 (https://github.com/favinom/parrot2), an
application implemented in the FE framework MOOSE (https://mooseframework.inl.
gov). Parrot2 allows for the simulation of several problems in heterogeneous materials, such
as flow, transport, Biot’s equations in the space-time and space-frequency domains [18, 19, 11].

4.1 Regular fracture network

The domain ⌦ of this benchmark example consists of a unit square, i.e., L1 = L2 = 1 [m],
and contains six axis-aligned fractures of aperture � = 10�4 [m] (see Figure 1a). The material
properties and boundary conditions are the ones employed in [16] and [17]. In [17], a further
approach based on a hybrid-dimensional formulation for transport problems and an embedded
FE method has been presented.

In Figure 1b, we report an example of a initial background mesh, while in Figures 1c and 1d,
we report the first two adaptive steps for the generation of unresolved meshes.

For the transport problem �in coincide with the left side of ⌦. The Dirichlet boundary
condition at the inflow is set as g = 1.0 [m�3]. We refer to [16, 13] for more details. We set
Tfin = 0.50 [s] and �t = 0.025 [s] and evaluate the concentration profile along the segments
CC0 (x2 = 0.5) and DD0 (x2 = 0.75) at t = 0.01 [s], t = 0.1 [s], and t = 0.5 [s]. We observe
that the segment CC0 is located along the center of a fracture, while the segment DD0 is located
in the background and crosses three fractures. We consider the solution obtained on the mesh
U1280
7 as the reference solution.

In Figure 2, we report the distribution of the concentration at the three considered times. The
concentrations are positive and are significantly different from zero in the horizontal fractures,
as the flow is along the horizontal direction.

We analyse the effects of amr and be on the concentration profiles in Figure 3. In Fig-
ures 3a, 3c, and 3e, we study the effect of amr by comparing concentration profiles with the
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(b) U32
0

(c) U32
1 (d) U32

2

Figure 1: Three steps of AMR procedure to create an unresolved mesh Ube
amr for the regular

fracture network example.

same be. We observe that amr plays a minor role on the concentration profiles, as the nu-
merical results obtained with U80

9 , U80
10 , and U80

11 are superimposed. The same holds for the
results obtained with U160

9 and U160
10 . This behavior can be observed for both segments CC0 and

DD0, although the differences are more visible along DD0, which is mainly located along the
background.

1.0

0

0.5

Figure 2: Concentration distribution at time t1 = 0.01 [s], t2 = 0.10 [s] , and t = Tfin = 0.50 [s]
computed with the mesh U1280

7 .
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These observations are confirmed from the plots reported in Figures 3b, 3d, and 3f, where
we study the effect of be by comparing numerical results with the same w. Numerical results
show that a fine background mesh is necessary to obtain the steep concentration profile.

These differences are explained mostly by the algebraic diffusion stabilization that ensures
the DMP. The algebraic diffusion stabilization is proportional to the local mesh size, i.e., larger
elements are characterized by a larger diffusion. Hence, numerical solutions on quite coarse
background meshes are overly diffusive, although they ensure the positivity of the concentra-
tions.
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Figure 3: Concentration profiles along the two segments CC0 and DD0 on unresolved meshes. In
the left column (Figures 3a, 3c, 3e) we study the effect of amr. In the right column (Figures 3b,
3d, 3f) we study the effect of be, keeping fixed w.
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(a) U12
1 (b) U12

3 (c) U12
4

Figure 4: Sequences of meshes generated by iterating the AMR strategy.

4.2 Small Features

This benchmark example has been presented in [16] with the objective of probing the accu-
racy of discretization methods in the presence of small geometric features. The domain ⌦ is
a box with dimensions L1 = L3 = 1 [m] and L2 = 2.25 [m] and embeds a network of eight
fractures. The geometrical setup and the material properties are the ones presented in [16].

Due to the high geometrical complexity of the fracture network, meshes for equi-dimensional
formulations, which resolve the interfaces between the background and embedded fractures, are
difficult to be generated. The AMR strategy at the base of the proposed approach enables a fully
automatic generation of meshes for domains that contain a large number of highly complex
heterogeneities. In Figure 4, we show some of the meshes generated by iterating several times
the AMR strategy. Here, the superscript be refers to the number of subdivisions along the
x1-direction.

t
0 0.2 0.4 0.6 0.8 1

c̄

0

0.2

0.4

0.6

0.8

1

MFD
U192
1

Figure 5: Comparison of the time evolution of mean concentration within one of the fracture
(see [13] for more details) between the test case U192

1 and reference solution [13].

For the transport problem �in coincides with the central strip on the left side of the domain,
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on which we impose g = 1.0 [m�3]. We refer to [16, 13] for more details. The rest of the
boundary is �out. We set Tfin = 1.0 [s] and �t = 0.01 [s].

In Figure 5 we report the mean concentration computed over the simulation time in one the
fracture and defined as

R
⌦F

c

|⌦F | , where c is the concentration in fracture ⌦F and |⌦F | is the corre-
sponding volume. In particular, we choose the same fracture as in the benchmark paper [13]. A
good agreement is found between the numerical solution computed on the mesh U192

1 and the
reference solution reported in [13].

In Figure 6, we show the distribution of the concentration at the time instants t1 = 0.0 [s],
t2 = 0.5 [s] , and t = T = 1.0 [s] on the mesh U192

1 . The concentrations are always comprised
between 0 and 1 for the entire simulated time, demonstrating the ability of the AFC scheme to
ensure the DMP and to preserve the positivity of the solution.

 0
 0.5
 1.0

Figure 6: Concentration distribution at time t1 = 0.0 [s], t2 = 0.5 [s] , and t = T = 1.0 [s] for
the test case U192

1 .

5 Conclusion

We have presented a simulation framework for transport problems in fractured porous media
based on an equi-dimensional model and a continuous FE method. These problems are par-
ticularly complicated to simulate due to the complex geometry of the fracture networks, and
the large discontinuities in the material properties, The former one introduces difficulties in the
mesh generation, while the latter one is responsible of introducing singularities in the solution,
which reduce the accuracy of standard discretization methods.

The proposed framework presents some inherent advantages: i) it can be straightforwardly
implemented in any standard FE library as, differently from the hybrid-dimensional models,
ii) it does not involve the coupling of models with different dimensionalities; iii) it is element-
wise conservative. Moreover, it provides an instrument to validate the commonly-used reduced
hybrid-dimensional models, in particular on complex geometries for which the generation of
suitable meshes is not feasible.
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47(3):271–306, 1959.

[16] Inga Berre, Wietse Boon, Bernd Flemisch, Alessio Fumagalli, Dennis Gläser, Eirik Kei-
legavlen, Anna Scotti, Ivar Stefansson, and Alexandru Tatomir. Call for participation:
Verification benchmarks for single-phase flow in three-dimensional fractured porous me-
dia. arXiv preprint arXiv:1809.06926, 2018.

[17] Lars H Odsæter, Trond Kvamsdal, and Mats G Larson. A simple embedded discrete
fracture–matrix model for a coupled flow and transport problem in porous media. Com-

puter Methods in Applied Mechanics and Engineering, 343:572–601, 2019.

[18] Jürg Hunziker, Marco Favino, Eva Caspari, Beatriz Quintal, J Germán Rubino, Rolf
Krause, and Klaus Holliger. Seismic attenuation in realistic fracture networks. In Porome-

chanics VI, pages 1565–1572. Sixth Biot Conference on Poromechanics, 2017.

[19] Jürg Hunziker, Marco Favino, Eva Caspari, Beatriz Quintal, J Germán Rubino, Rolf
Krause, and Klaus Holliger. Seismic attenuation and stiffness modulus dispersion in
porous rocks containing stochastic fracture networks. Journal of Geophysical Research:

Solid Earth, 123(1):125–143, 2018.

12


