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Summary. In the realm of Structural Health Monitoring (SHM), much research in recent years 
has been devoted to automated methods that allow real-time, unsupervised monitoring of 
structures. When damage occurs, extended monitoring of a structure should include detection, 
localization, quantification, and prognosis of the residual life. While there is broad consensus 
on the use of control charts for damage detection purposes, various techniques are found in the 
literature concerning damage identification, encompassing both localization and quantification. 
When monitoring is conducted through vibration-based techniques, damage identification 
typically involves the inverse calibration of finite element models through non-linear 
optimization, presenting computational challenges incompatible with real-time SHM. 
Therefore, the identification of high-fidelity surrogate models for real-time model updating 
based on continuous monitoring data is a challenging task in structural system identification. A 
surrogate model is a mathematical function or algorithm that approximates the behavior of a 
structure based on collected data from the actual structure (i.e., accelerations, deformations, 
displacements) in an inexpensive computational manner. Subsequently, surrogate models can 
be employed to make predictions about the future structural health of the system based on 
current and past observations. While surrogate models have been often applied to heritage 
masonry structures, there is no evidence in the literature regarding the application of these 
powerful techniques to infrastructures like bridges. To address this gap in the literature, the 
effectiveness of surrogate models is demonstrated in the case study of a real, in-operation, 
multi-span Italian roadway bridge. 
 

1 INTRODUCTION 

Bridges stand as vital lifelines in our infrastructure network, facilitating transportation and 
commerce while symbolizing engineering prowess and societal progress. However, the 
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relentless forces of time, environmental stressors, and unforeseen events pose continuous 
threats to the integrity and safety of these structures. Unlike cultural heritage buildings, bridges 
endure constant dynamic loading and exposure to environmental factors, rendering them 
susceptible to progressive deterioration and unforeseen failures. Recent events in the worldwide 
context [1-3] underscore the urgency of implementing advanced Structural Health Monitoring 
(SHM) techniques to safeguard these fundamental infrastructures [4]. Therefore, the 
governments are starting to increase the investments on infrastructures and to enact new 
regulations in terms of maintenance [5]. In this context, there is a strong call for collaboration 
between research entities and infrastructure management authorities in order to enforce the 
technological transfer of SHM techniques and create real-time bridge monitoring networks all 
over the countries.   

In the framework of vibration-based SHM, Operational Modal Analysis (OMA) [6] 
techniques offer a promising avenue for assessing the health of bridges in real-time. Indeed, by 
harnessing ambient vibration data collected under operating condition by mean of permanent 
sensors installed on the bridge, these techniques allow the extraction of its modal parameters, 
(i.e. resonant frequencies, mode shapes, and damping ratios). The ability to continuously 
monitor these parameters provides early warning signs of potential damage, enabling timely 
intervention and targeted maintenance efforts to mitigate risks and prolong the service life of 
bridges. Among the many OMA algorithms, one of the most used for real-time monitoring is 
the covariance-driven Stochastic Subspace Identification (cov-SSI) [7] because of its easy 
automation capability.  

One of the key advantages of applying SHM to bridges lies in its potential to perform a 
comprehensive assessment of the structure. In this frame, it is worth to recall the classification 
originally performed by Rytter [8] in which SHM systems are hierarchically divided in four 
levels of complexity depending on the tasks they address: damage detection, localization, 
quantification and prediction of residual operating life. These levels are hierarchically 
connected, with each one relying on knowledge of the previous level. While the capability of 
SHM techniques to accomplish real-time damage detection tasks was widely demonstrated, the 
localization and quantification tasks still need to be formalized to become widely applicable in 
a large scale. Indeed, real time damage detection can be performed in a fully data-driven 
approach, by reconducting the presence of a damage in the structure to persistent changes in 
the statistical distribution of the modal features by mean of continuously updated statistical 
distance control charts [9-13]. The localization and quantification tasks require a physics-based 
approach, including Finite Element Models (FEM). The inverse calibration procedure of a FEM 
of the structure, also called FEM updating, aims to minimize the mismatch between the FEM 
response and the experimentally identified modal features by the calibration of the model 
parameters (e.g. material properties, boundary conditions, connections). Therefore, the 
localization and quantification task may be performed by matching the altered (damaged) 
experimentally identified modal features and the ones of the FEM, that will thus be able to 
highlight the damage-induced variations in the mechanical parameters of the structure [14]. 
Nonetheless, the model updating procedure can be extremely time and computationally 
demanding, due to the complexity of some bridges (soil-structure interaction, joint connections 
between consecutive spans, support conditions, large number of elements composing the 
bridge, periodic variations of the section). In this field, surrogate-based model updating emerges 
as a particularly promising approach to bridge SHM, offering computational efficiency and 



E. Tomassini, E. García-Macías, I. Venanzi and F. Ubertini 
 

 

 3

scalability. The construction of surrogate models trained on a detailed FEM simulation permits 
to bypass the continuous model updating of the structure and streamline the process of damage 
assessment. The surrogate models consist in high-dimensional representations of the dynmic 
response of the bridge, able to create a correspence between the the modal features of the 
structure and corresponding  damage sensitive parameters used in the training. Some successful 
applications of surrogate-based SHM techniques can be found in literature, demonstrating the 
capability of surrogate models to aid damage localization and quantification in heritage 
structures [15-17]. Nevertheless, there are no similar experiences in the literature regarding 
applications to bridge structures. 

This paper proposes a preliminary study and discussion on the main steps and issues 
involved in the construction of surrogate models of a bridge. The steps are reported in detail in 
Section 2. Then, an application on the case study of the Viaduct over the Corno river (Italy) is 
proposed in Section 3. The paper concludes with some considerations on the broader 
implications and future directions of this research endeavor. 

2 THEORETHICAL BACKGROUND AND METHODOLOGY 

2.1 Surrogate modeling 

In essence, the goal of a surrogate model (SM) is to offer a computationally efficient 
alternative to a high fidelity model in the process of continuous model updating of a structure 
for damage localization and quantification purposes. Of specific interest to this paper are SMs 
that can capture the intricate relationship between the variations of the modal features of the 
structures and specific damage-sensitive parameters. Let us consider a vector 𝐱 = [𝑥ଵ, … , 𝑥], 
where 𝑥 ∈ ℝ, 𝑖 = [1, … , 𝑚] represent the selected damage-sensitive parameters of the 
structure deployed on the FEM. Denoting with 𝑦 the response of the FEM (e.g. in terms of 
natural frequencies, mode shapes and so on), the role of the surrogate model is that of creating 
a representation of the model’s behavior in the form 𝑦(𝐱). The creation of the surrogate model 
includes the following steps: 

- Sampling of the design space: The first stage is that of generating a dataset comprising 
𝑁   samples of input parameters 𝐱, 𝑗 = [1, … , 𝑁]  generated through direct Monte Carlo 
simulations using the FEM. It is a fundamental requirement to select the boundaries  of 
each design variable to create a subspace ℙ = {𝐱 ∈ ℝ ∶  𝑎 ≤ 𝑥 ≤ 𝑏} on which to 
define the sampling population. Therefore, the design matrix is 𝐗 =  [𝐱ଵ, … , 𝐱ே] ∈
ℙ×ே. 

- Definition of the training population: The FEM model is run several times to associate 
its response to each sample previously defined in the design space and so to create the 
observation vector 𝐘 =  [𝑦ଵ, … , 𝑦ே]், where  𝑦 ∈ ℝ  denotes the FEM's response to the 
input sample 𝐱. 

- Construction of the surrogate model: The previously defined training population is used 
to train the selected surrogate model. Many different surrogate models can be found in 
literature, such as response surface method and Kriging model [15]. Let us consider the 
case in which l mode shapes sampled by 𝑛ௗ degrees of freedom are employed. In that 
case, a total of  𝑙(1 +  𝑛ௗ) surrogate models must be developed, encompassing 𝑙 
models for representing the resonant frequencies and 𝑙 ⋅ 𝑛ௗ models for representing the 
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modal amplitudes.  
- Validation of the surrogate model: To validate the performance and the accuracy of the 

comprehensive meta-model, it is worth creating a second design sample defined in the 
same space ℙ for comparation purposes between the prediction of the surrogate model 
and the FEM’s results. 

 
Finally, the surrogate model can be used to continuously fit the structural response 

characteristics (in the present case natural frequencies and mode-shapes) continuously 
identified on the structure and track the damage-sensitive parameters used in the SM in real-
time. It is worth noting that this whole procedure does not take into account some steps that are 
usually considered in data-driven damage detection, such as the contribution of environmental 
effects. Therefore, the tracked damage sensitive parameters of the meta-model will be affected 
by fluctuations due to temperature and humidity. 

 

2.2 Kriging model 

The Kriging model originates from Geostatistics applications [18] and consists in a widely 
adopted interpolation method for spatial data. Here the response function 𝑦(𝐱) is defined as: 

𝑦(𝐱)  =  𝑦(𝐱)  +  𝐹(𝐱) (1) 

where 𝑦(𝐱) is a regression model offering a broad approximation of the design space, while 
𝐹(𝐱) is a stochastic function 𝑤ith a zero mean introducing localized fluctuations.  

The relation between the interpolated values 𝑦ො(𝑥) of the response 𝑦(𝑥) at an arbitrary design 
site 𝑥 is established by the Kriging predictor: 

𝑦ො(𝐱) =  𝐟(𝐱) 𝛃 +  𝐫(𝐱) 𝐑ିଵ [𝐘 −  𝐟(𝐱)𝛃] (2) 

where: 𝛃 =  ൣ𝛽ଵ, … , 𝛽൧   , and  𝐟(𝑥) =  ൣ𝑓ଵ(𝑥), … , 𝑓(𝑥)൧
்

, 𝑓: ℝ → ℝ are the regression parameters and 
functions on which the regression function 𝑦(𝐱) depends; 𝒓(𝐱) represents a vector containing 
the correlations between the design sites and 𝐱, expressed as 𝐫(𝐱)  =  [𝑟(𝜽, 𝐱ଵ, 𝐱), … , 𝑟(𝜽, 𝐱, 𝐱)];  𝐑 
denotes an  𝑁 ×  𝑁 symmetric, positive definite matrix with elements  𝑅  =  𝒓൫𝜽, 𝐱, 𝐱൯; 𝜽 
represents the vector of correlation parameters. 

Consequently, upon determination of the regression model and correlation function, the 
Kriging interpolator is constructed by selecting appropriate regression parameters 𝛽  and 
correlation parameters 𝜽.  
 

3 APPLICATION ON A CASE STUDY AND DISCUSSION 

3.1 The bridge 

The Viaduct over the Corno river is a three-spans pre-stressed concrete girder bridge located 
in the center of Italy, in the Umbria region. Each span is 35 m long and is composed by four 
simply supported I-shaped girders connected by transversal diaphragms on the two heads and 
in the middle. Overtaking an orographic discontinuity at the base of which the Corno River 
flows, the two central piers have heights of 16.5 and 19.2 m. The bridge is part of a two-way 
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road passing through the Italian Appennine mountains, in the area between the rural villages of 
Norcia and Spoleto. A permanent monitoring system consisting of 21 MEMS accelerometers 
(±2 g, 24-bit ADC, noise density 22.5 μg/√Hz) strategically placed on the structure is installed 
on the bridge. Specifically, 6 uniaxial accelerometers were placed on each span in the vertical 
direction on the inner face of the edge beams at 1/4, 1/2, and 3/4 of the length, respectively. 
Biaxial accelerometers were also arranged at the head of the two piers in the longitudinal and 
transverse directions, and a triaxial accelerometer was placed on top of the abutment on the 
right side of the bridge (Fig. 1). The monitoring system comprises a wired connection to the 
onboard computer, continuously storing 12 acceleration files per day, 60 minutes long, recorded 
at a sampling acquisition frequency of 125 Hz. 

 

 

Figure 1: Viaduct over the Corno river. a) Cross-section. b) Picture of the entire bridge. c) Picture of the girders. 
d) Instrumentation set-up. e) Longitudinal drawing of the bridge. 

3.2 Modal identification 

To find the resonant frequencies and mode shapes of the bridge, a one-hour acceleration time 
history recorded on November 9th, 2023, at 10:30 a.m. was analyzed. To automate the modal 
identification procedure, the covariance-driven Stochastic Subspace Identification [11] was 
used. Specifically, main parameters considered in the algorithm included a time-lag of 3.2 
seconds and the stabilization diagram was determined considering model orders ranging from 
40 to 200. Some soft criteria for spurious modes removal were applied between each pair of 
poles 𝑖 and 𝑗 identified at model orders 𝑚 and 𝑚−1, including (𝑓

 − 𝑓
ିଵ)/max (𝑓

, 𝑓
ିଵ) ≤1%, 
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𝑀𝐴𝐶(𝜙
, 𝜙

ିଵ) ≤0.98, and (𝜉
 − 𝜉

ିଵ)/max (𝜉
, 𝜉

ିଵ) ≤5%. Additionally, modes with 
damping 𝜉 ≥10% and those with Modal Phase Collinearity 𝑀𝑃𝐶 ≤60% and Mean Phase 
Deviation 𝑀𝑃𝐷 ≥50% were excluded. After stable poles selection, a Hierarchical clustering 
algorithm was used to finally identify the physical mode shapes of the structure. The first 4 
resonant mode shapes (that will be used in Section 3.3 to calibrate the FEM) are reported in 
Fig. 2 and the corresponding frequencies are reported in the second column of Table 2. The 
identified mode shapes, showing the 1st order bending and torsional modes of the deck, 
highlight a strong coupling between the 2nd and 3rd spans, while the 1st one presents a more 
independent behavior. Mode 1 and Mode 2 are the 1st order bending modes of spans 2 and 3. 
Mode 3 represents the 1st order torsional mode of spans 2 and 3, with some bending modal 
contribution of the 1st span. Finally, Mode 4 is the 1st order bending mode of Span 1. 

 

Figure 2: Experimentally identified mode shapes of the Viaduct over the Corno river. 

3.3 FEM calibration 

A FEM model was built using SAP2000® software. The goal of the FEM was not to achieve 
a high fidelity digital twin of the real structure but to replicate the structure's behaviour as 
accurately as possible while maintaining high computational efficiency. Therefore, both the 
piers and beams were modelled using beam elements, while the concrete slab was modelled 
using shell elements. To maintain a constat curvature on the section of the deck, each node on 
the slab was linked to the beam with infinitely rigid perpendicular link elements. To introduce 
a partial coupling between spans, four rotational springs were used to connect the beams of 
contiguous spans in correspondence to the joints. Indeed, despite the visible joints in the slab 
and the girders being simply supported on the piers, the experimental modal shapes show clear 
coupling not solely due to the piers' oscillation.  

The girders of each span are bounded by fixed supports on one side and movable supports 
in the longitudinal direction on the opposite side. Specifically, the fixed supports of Spans 1, 2 
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Figure 3: Calibrated Finite Element Model of the Viaduct over the Corno river. 

and 3 were deployed on the first abutment, second pier and second abutment, respectively. After 
some manual tuning, all the supports were fixed in transversal direction while their rotational 
stiffnesses were included in the calibration. The soil-structure interaction was not considered in 
the modelling phase, so fixed constraints were assigned at the base of each pier. While this 
choice is not optimal from the physical point of view, it is capable to optimizing the 
computational burden of the analysis bypassing the uncertainties of soil-pile modelling. Finally, 
the following 29 model parameters were calibrated: 

- The stiffnesses and masses per unit volume of the girders (𝐸ୋଵ, 𝐸ୋଶ, 𝐸ୋଷ, 𝜌ୋଵ, 𝜌ୋଶ, 𝜌ୋଷ), 
slabs (𝐸ୗଵ, 𝐸ୗଵ, 𝐸ୗଵ, 𝜌ୗଵ, 𝜌ୗଵ, 𝜌ୗଵ) and transversal diaphragms (𝐸ଵ, 𝐸ଵ, 𝐸ଵ, 𝜌ଵ, 𝜌ଵ, 
𝜌ଵ) of the three spans;  
- The rotational stiffnesses of the springs at the joints between Spans 1 and 2 (𝑟,ଵଶ), and 
between Spans 2 and 3 (𝑟,ଶଷ); 
- The rotational stiffnesses of the fixed supports of the three spans (𝑟,ଵ, 𝑟,ଶ, 𝑟,ଷ); 
- The longitudinal (𝑘ଵ, 𝑘,ଶ, 𝑘,ଷ) and rotational (𝑟,ଵ, 𝑟,ଶ, 𝑟,ଷ) stiffnesses of the movable 
supports of the three spans. 
 
The FEM calibration was carried out in several steps, each time considering different model 

parameters to limit the problem's indeterminacy due to the high number of calibration parame-  
 

Table 1: Calibrated model parameters. 

𝐸ୗଵ 38356 N/mm2  𝐸ୋଵ 37757 N/mm2 𝐸ଵ 37761 N/mm2 
𝐸ୗଶ 34438 N/mm2 𝐸ୋଶ 34809 N/mm2 𝐸ଶ 38650 N/mm2 
𝐸ୗଷ 38285 N/mm2 𝐸ୋଷ 33894 N/mm2 𝐸ଷ 31325 N/mm2 
𝜌ୗଵ 2.47E-09 N/mm3 𝜌ୋଵ 2.32E-09 N/mm3 𝜌ଵ 2.74E-09 N/mm3 
𝜌ୗଶ 2.81E-09 N/mm3 𝜌ୋଶ 2.67E-09 N/mm3 𝜌ଶ 2.67E-09 
𝜌ௌଷ 2.57E-09 N/mm3 𝜌ୋଷ 2.73E-09 N/mm3 𝜌ଷ 2.62E-09 N/mm3 
𝑘ଵ 3859 N/mm 𝑘,ଶ 3994 N/mm 𝑘,ଷ 5064 N/mm 
𝑟ଵ 2.5E+10 N/rad 𝑟ଶ 2.41E+11 N/rad 𝑟ଷ 4.36E+11 N/rad 
𝑟,ଵ 2.78E+13 N/rad 𝑟,ଶ 7.10E+13 N/rad 𝑟,ଷ 4.44E+13 N/rad 
𝑟,ଵଶ 1.42E+12 N/rad 𝑟,ଵଶ 2.79E+11 N/rad   
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Table 2: Model updating results. 

MODEL UPDATING RESULTS 
Mode # 𝒇𝑬𝒙𝒑 [Hz] 𝒇𝑭𝑬𝑴 [Hz] 𝚫𝒇/𝒇𝑬𝒙𝒑 [%] MAC [-] 

1 4.432 4.325 -2.406 0.890 
2 4.482 4.605 2.757 0.858 
3 5.102 5.112 0.195 0.851 
4 5.341 5.160 3.391 0.947 

 
 
ters with respect to available experimental modes. A genetic optimization algorithm was 
adopted to minimize the following cost function J: 

𝐽 ቀ𝒇𝒆𝒙𝒑, 𝒇𝑭𝑬𝑴, 𝑴𝑨𝑪൫𝚽𝒆𝒙𝒑, 𝚽𝑭𝑬𝑴൯ቁ = 𝛼 
𝑓 ୶୮

 − 𝑓ிாெ


𝑓௫


ସ

ୀଵ

+ 𝛽  𝑀𝐴𝐶(𝜙ୣ୶୮
  , 𝜙ிாெ

 )

ସ

ୀଵ

 (3) 

where: 𝒇𝒆𝒙𝒑, 𝒇𝑭𝑬𝑴 and 𝑴𝑨𝑪൫𝚽𝒆𝒙𝒑, 𝚽𝑭𝑬𝑴൯ contain the experimentally identified frequencies, 
the resonant frequencies iteratively derived from the FEM and the MAC value between the 
experimentally identified mode shapes and the ones iteratively derived from the FEM, 
respectively; α and β are weight coefficients equal to 0.2 and 0.5, respectively. The final 
calibrated model parameters are collected in Table 1. The calibration results are shown in Table 
2, and the calibrated modes in Figure 3. In Table 1, it is useful to note how the construction of 
a FEM model with a low computational burden (5 seconds) can lead to disequilibria regarding 
the optimal parameters and thus to very different values for similar elements. Indeed, given the 
simplicity of the model, it may happen that the optimal values of these parameters are not able 
to be completely consistent with each other, as would be the case with a solid model. 

 
 

3.4 Surrogate model 

Starting from the model calibrated in the previous step, a surrogate model was constructed 
for damage localization and quantification purposes. The main issue here is the large number 
of damage-sensitive parameters required for the accurate localization, as this would result in 
excessive indeterminacy of the problem, leading to aliasing, loosing of univocity of the 
predictions and misclassifications. Therefore, the model was constructed with the simplest 
possible parameterization to assess whether, even with few parameters, it could be sensitive to 
different damage scenarios than the parameterization itself. The surrogate model thus includes 
only three sensitive parameters: the flexural stiffnesses of the girders in the three spans (𝐸ୋଵ, 
𝐸ୋଶ, 𝐸ୋଷ). 

To facilitate model interpretation, the three damage parameters were not directly varied but 
rather through multiplicative coefficients of the calibrated values. Specifically, two three-
dimensional sample spaces were generated where the multiplicative coefficients vary between 
0.9 and 1.05. The training design space contained 210 samples, and the validation design space 
contained 28 samples, generated by mean of a Latin hypercube algorithm. The calibrated FEM 
was then used to produce the training population of the surrogate model. Finally, the Kriging 



E. Tomassini, E. García-Macías, I. Venanzi and F. Ubertini 
 

 

 9

interpolator was used to construct the 3D surfaces of the meta-model. For this study, Gaussian 
correlation functions and zeroth-order regression functions have been chosen. 
Figure 3 shows a comparison between the predictions of the surrogate model and the FEM 
model response on the validation design space. It is noteworthy that the surrogate model 
perfectly matches all four calibrated frequencies, consistently showing an R2 value of 0.99. 
Regarding the mode shapes, there is an optimal correspondence in the case of Mode 1 and Mode 
2, while larger inaccuracies (probably due to some mode shifting, given the closely spaced 
frequencies) appear for Modes 3 and 4. 
 

 

Figure 4: Comparison between the predictions of the surrogate model and results of the FEM on the validation 
design space. 

 

4 CONCLUSIONS 

This work aims to present the various steps involved in constructing a surrogate model to 
locate and quantify damage in the specific case of multi-span girder bridges and to identify its 
critical aspects. After an overview of the theoretical background underlying surrogate-based 
model updating, a Kriging surrogate model based on the calibrated FEM of the Viaduct over 
the Corno river was generated. This work highlights some difficulties that may arise during the 
construction of a surrogate model, summarized as follows: 

 
- Calibrating an efficient FEM is not straightforward because the small number of degrees 

of freedom may not allow the FEM model to easily reproduce experimental frequencies 
and mode shapes. Therefore, it may be necessary to use markedly different physical 
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parameters even for similar elements to match the modes extracted from the model with 
those identified experimentally. 
 

- When the modal frequencies used in the calibration phase are very closely spaced, the 
variation of the input parameters in the design space can lead to overlapping and mode 
shifting, resulting in problems with the accuracy of the surrogate model. Thus, it is 
necessary to use mode matching tools that can recognize the mode shapes and associate 
them with the corresponding frequency. 
 

- The choice of parameters to be used as damage-sensitive features in the surrogate model 
is critically important because the model's ability to correctly localize and quantify 
damage depends on it. Therefore, it is necessary to reduce the level of indeterminacy of 
the problem as much as possible, considering the limited number of output parameters 
derived from the frequencies and mode shapes used in the calibration. 
 

- Once the training of the surrogate model is performed, damage assessment can be done 
quickly and with an extremely low computational burden compared to that generated by 
continuous model updating. 
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