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Abstract. The current contribution suggests a semi-analytical structural model for an adhesive 
joint with a closed-form higher-order description of the adhesive layer and the potential 
occurrence of a debonding crack. This enables a highly efficient failure prediction by the 
concept of Finite Fracture Mechanics, employing a coupled failure criterion that consists of a 
stress and an energy subcriterion. The comparison with accompanying finite element 
calculations and experimental findings demonstrates the high predictive quality of this 
approach. 

 
 
1 INTRODUCTION 

In countless mechanical structures, the use of adhesive bonding is a very advantageous way 
to join load-carrying components, in particular when these components are relatively thin. A 
common application area is lightweight construction, where typically two or more relatively 
thin sheet-like adherends are joined through an intermediate adhesive layer. This joining 
technique has the advantage that no screws or rivets are necessary and that the load transfer is 
distributed over a larger overlapping area. The actual load transfer behaviour, however, is 
somewhat demanding. Due to the given overlap geometry and the generally dissimilar stiffness 
properties of the adherends and the adhesive, local stress concentrations occur at the edges of 
the joints, which may trigger the onset of debonding cracks and subsequent failure, thus 
determining the effective strength of the given adhesive joints. 

The particular advantages of adhesive joints are discussed in detail for instance in [1]. A 
good overview of available numerical evaluation procedures for adhesive joints can be found 
in [2]. Purely analytical approximate analyses of adhesive joints go back to the early works of 
Volkersen in 1938 [3] and Goland and Reissner in 1944 [4] for single-lap joints under tensile 
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loading, where the adherends were modeled as simple plates connected by a thin adhesive layer 
that only transfers shear stresses or shear and peeling stresses, respectively. A decisive 
generalization to arbitrary configurations and loadings was made by Bigwood and Crocombe 
in 1989 [5] by a sandwich-type model in which only the overlap region is considered and 
submitted to appropriate cross-sectional forces and moments. For thicker adhesive layers, 
Ojalvo and Eidinoff [6] in 1978 suggested a linear displacement approach for the adhesive 
layer. Other analytical approaches can be found in the review of da Silva et al. [7] from 2009. 

Although all the mentioned works in some way capture the stress concentrations at the edges 
of the adhesive layer, predicting actual overloading of an adhesive joint, the occurrence of 
debonding cracks and the subsequent failure are more advanced challenges. Since stress-based 
strength criteria do not apply well to stress concentrations and the common fracture mechanical 
concepts do not describe crack initiation, in 2002 Leguillon [8] introduced a coupled criterion 
in form of a combination of a strength and an energy criterion, postulating the instantaneous 
formation of a crack in the framework of Finite Fracture Mechanics as it has been suggested by 
Hashin in 1996 [9]. This kind of concept has proven its usefulness in various kinds of situations 
[10], [11] and will also be used in the following. The current contribution in particular focusses 
on the case of relatively thick adhesive layers where a higher-order displacement approach 
within the adhesive layer is appropriate for a realistic stress analysis and failure prediction [12]. 
 

2 HIGHER-ORDER MODELING APPROACH 
As initially suggested by Bigwood and Crocombe [5], this paper also considers a sandwich-

type model for the overlap region where loads are applied as cross-sectional forces and 
moments as indicated in Fig. 1. The adherends are indexed with (1) and (2) for the upper and 
lower adherend with the corresponding layer thicknesses h1 and h2. The adhesive layer in 
between is denoted by (a) with thickness t. Since there is no load in the depth direction the 
model merely is two-dimensional assuming a plane strain condition. 

 
Figure 1: General sandwich-type model with geometric dimensions and applied loading 

The key concept of the current modeling is to describe the displacements of the adherends 
by Mindlin kinematics (which means first-order shear deformation theory), the displacements 
of the adhesive layer, however, by a third-order deformation approach. This leads to the 
following representations for the horizontal and vertical displacements of the adherends (with 
i=1 for the upper adherend and i=2 for the lower adherend) 
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u(i)(x,zi)=u0
(i)(x)+ziψ(i)(x),   w(i)(x,zi)=w0

(i)(x) (1) 

where the local coordinates zi are centered in the respective midplanes. 
For the adhesive layer beyond this additional warping deformation functions φ(x) and  χ(x)  

are introduced so that 

u(a)(x,z) = 1
2
(𝑢𝑢� (1)+𝑢𝑢� (2) )+ 𝑧𝑧

𝑡𝑡
( 𝑢𝑢� (2) – 𝑢𝑢� (1)) + φu(1-4𝑧𝑧

2

𝑡𝑡2
) + χu(z-4𝑧𝑧

3

𝑡𝑡2
), (2) 

w(a)(x,z) = 1
2
(𝑤𝑤� (1)+𝑤𝑤� (2) )+ 𝑧𝑧

𝑡𝑡
( 𝑤𝑤� (2) – 𝑤𝑤� (1)) + φw(1-4𝑧𝑧

2

𝑡𝑡2
) + χw(z-4𝑧𝑧

3

𝑡𝑡2
). (3) 

 
Herein the quantities 𝑢𝑢� (i) and 𝑤𝑤� (i) denote the displacements of the adherends evaluated at 

their interfaces to the adhesive layer. 
From these displacement representations corresponding strains and through Hooke’s law 

also respective stresses can be derived which are not given here but can be found in more detail 
in [12]. 

In total, the equations above represent the behavior of the adhesive joint by 10 unknown 
deformation functions and their derivatives with respect to the horizontal coordinate x for which 
the notation (.)’ is used. These deformation functions can be given in a summarized vector 
notation by 

Φ = [ u0
(1),u0

(1)’,w0
(1),w0

(1)’,ψ(1),ψ(1)’,u0
(2),u0

(2)’,w0
(2),w0

(2)’,ψ(2),ψ(2)’,φu,φu’,χu,χu’,φw,φw’,χw,χw’] . (4) 

In order to determine the solution of the deformation functions in Φ  and to adapt it to the 
given geometry and the underlying load case, use is made of the principle of minimum total 
potential energy  

Π = Πint + Πext , (5) 

i.e. the sum of the stored strain energy and the external potential related to the given external 
loading. Accordingly, the variation of the total potential must vanish so that 

δΠ = 0 (6) 

applies. If the variation process is actually performed, it eventually leads to a set of 10 linear 
differential equations of second order, or equivalently, to a set of 20 differential equations of 
first order which by use of respective matrices A and B can formally be described as 

AΦ ‘ + BΦ = 0 . (7) 

This system of equations can be solved by a standard exponential solution approach leading 
to an eigenvalue problem to be solved. Finally, from the obtained deformation functions all 
deformations of the adhesive joint are available at any point and through standard kinematics 
and Hooke’s law also the according stress distributions. The described approach has been 
implemented in MATLAB and yields all required result quantities in about 1 second. 

For validation a numerical comparative modeling has been performed by means of the finite 
element program ABAQUS for the single-lap configuration shown in Fig. 2. In doing so the 
overlap length has been chosen as l=25mm, the adhesive thickness as t=0.5mm and the 
adherends’ thicknesses as h1=h2=2mm. The finite element model consists of a very fine mesh 
of eight-node biquadratic plane strain continuum elements with approximately 1300000 
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degrees of freedom and an average computation time of 130 seconds. For more details, see [12]. 
Fig. 3 shows the resulting predictions for the shear stress distribution along the centerline of the 
adhesive and along the upper and lower interfaces with a good agreement. For the obtained peel 
stresses the corresponding results are given in Fig. 4 again showing a pretty good agreement. 

 
Figure 2: Considered single-lap joint under tensile loading 

 
Figure 3: Shear stress distributions calculated along the centerline and the upper and lower interfaces 

 
Figure 4: Peel stress distributions along the centerline and the upper and lower interfaces 
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2 ASSESSMENT OF EFFECTIVE STRENGTH 
When the adhesive joint is overloaded or when the applied load reaches the effective strength 

of the joint, typically a debonding crack is generated starting at the edges between the adhesive 
layer and the adherends where the high stress concentrations occur. Following Leguillon [8] 
such a crack of finite length ∆a and surface area ∆A=d∆a (where d is the depth of the considered 
joint) will form instantaneously when, according to a coupled criterion, a stress and an energy 
criterion, are satisfied simultaneously. For the energy criterion the so-called incremental energy 
release rate �̅�𝐺 is needed which is defined as 

�̅�𝐺 = - ΔΠ
Δ𝐴𝐴

 = 1
Δ𝐴𝐴

 ∫ 𝐺𝐺(𝐴𝐴)𝑑𝑑𝐴𝐴𝛥𝛥𝐴𝐴
0 . (8) 

 
To enable crack initiation, this incremental energy release rate must exceed the fracture 

toughness of the adhesive layer or of the interface to the adherends which means  
�̅�𝐺 ≥ Gc . (9) 

The energy release rate can be calculated through the so-called virtual crack closure integral 
which is composed of a mode I and a mode II part: 

�̅�𝐺 = �̅�𝐺I + �̅�𝐺II        with 
(10) 

�̅�𝐺I = 1
2Δa ∫ 𝜎𝜎𝑧𝑧𝑧𝑧(𝑤𝑤(𝑢𝑢𝑢𝑢)− 𝑤𝑤(𝑙𝑙𝑙𝑙𝑙𝑙))𝑑𝑑𝑑𝑑𝛥𝛥𝛥𝛥

0 , 
(11) 

�̅�𝐺II = 1
2Δa ∫ 𝜏𝜏𝑥𝑥𝑧𝑧(𝑢𝑢(𝑢𝑢𝑢𝑢) − 𝑢𝑢(𝑙𝑙𝑙𝑙𝑙𝑙))𝑑𝑑𝑑𝑑𝛥𝛥𝛥𝛥

0 . 
(12) 

 
For the stress-based strength criterion of the coupled criterion here the following quadratic 

stress criterion is taken:  
(𝜎𝜎𝑧𝑧𝑧𝑧/𝜎𝜎𝑐𝑐)2 + (𝜏𝜏𝑥𝑥𝑧𝑧/𝜏𝜏𝑐𝑐)2 ≥ 1 .  (13) 

Thus in total three material parameters are used in the assessment, namely the tensile strength 
σc, the shear strength τc and the fracture toughness Gc. Depending on the case of application 
and the involved materials of course other stress and energy criteria can also be used if they are 
considered as more appropriate. 

In order to determine the effective strength or failure critical force Fc for the adhesive single-
lap joint in the case of an applied tensile force F the lowest force fulfilling the coupled criterion 
has to be determined. This can be formulated as the following optimization problem: 

Fc = min{F  subject to  f(σ)≥1  along  Δa  and �̅�𝐺≥Gc}. (14) 

Herein in addition to the critical load magnitude also the finite length ∆a of the crack is 
unknown but is obtained at the end of the optimization process. 

For the quantitative determination of the incremental energy release rate the respective crack 
opening is needed and therefore the finite crack of length ∆a has to be included into the 
structural model of section 2. This can be done by a subdivision of the adhesive joint into a 
cracked and an uncracked part as it is sketched in Fig. 5. In doing so in the cracked part an 
additional deformation function has to be included representing the crack opening. Beyond this 
at the horizontal position of the crack tip respective continuity conditions of the deformation 
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functions and the related dynamic cross-sectional quantities have to be taken into account. With 
this modification and extension in essence the structural analysis works in the same manner as 
described in section 2. 

  
Figure 5: Subdivision of the adhesive joint into cracked and uncracked parts 

With a correspondingly extended MATLAB implementation the incremental strain energy 
release rate can be calculated as a function of the crack length ∆a as it is displayed for an 
example in Fig. 6, also showing the two portions of mode I and mode II. For comparison the 
same has been done by detailed finite element analyses, as can be seen with a pretty good 
agreement. This is remarkable insofar, as the structural behavior around the crack tip is very 
complex and can only be taken into account in an approximate manner by the described closed-
form analytical approach. 

 
Figure 6: Energy release rate of the analytical and numerical model for steel adherends connected with adhesive 

layer of AV138 under a tensile load of 8kN 

As can also be seen from Fig. 6 the mode II portion of the energy release rate and the total 
energy release rate show a clearly non-monotonic behavior. As a consequence, the optimization 
procedure for the effective strength is a bit more demanding, since it may happen that the 
coupled criterion is met for relatively short crack lengths on the left side of the local maximum 
in Fig. 6 or for considerably longer cracks more on the right side where the strain energy release 
rate exceeds the amount of the local maximum. With a sufficiently general optimization 
algorithm (also implemented in MATLAB) in each case the effective strength and the 
corresponding crack length can be identified. For an example situation with available actual 
test results Fig. 7 shows results for the effective strength as a function of the adhesive thickness 



T. S. Methfessel, C. El Yaakoubi-Mesbah, and W. Becker 

 7 

in comparison to a comparative finite element implementation and in comparison to 
experimental findings with very satisfying agreement. In addition, the calculated crack lengths 
are given. It can be seen that smaller adhesive thicknesses result in larger crack sizes and vice 
versa. This is due to the non-monotonic behavior of the energy release rate. 

 
Figure 7: Mechanical failure loads and crack lengths for different adhesive thicknesses t according to analytical 

model (AM) in comparison with finite element analyses (FEA) and experimental findings (EXP) of [13] 

 

3 CONCLUSIONS 
In the framework of finite fracture mechanics, a semi-analytical failure prediction has been 

performed using the coupled stress and energy criterion of Leguillon. The analytical structural 
model is based on an advanced third-order approach for the adhesive layer and allows to take 
into account larger thicknesses of the adhesive layer. By a respective optimization procedure, 
the effective strength of the adhesive joint can be determined. With an own MATLAB 
implementation a very satisfying agreement with accompanying finite element calculations and 
with experimental findings has been obtained. The main advantages of the presented analysis 
procedure are its efficiency and the possibility to perform parameter studies in a very short time. 
Due to the sandwich-type model concept this kind of analysis can be easily done for different 
joint configurations and varying load cases with relatively low computational effort.  
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