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Abstract. This work presents a self-stabilized triangular virtual element for linear Kirchhoff–
Love shells. The domain decomposition by flat triangles directly approximates the shell geom-
etry without resorting to a curvilinear coordinate system or an initial mapping approach. The
problem is discretized by the lowest-order conventional virtual element method for the mem-
brane, in which stabilization is needless, and by a stabilization-free virtual element procedure
for the plate. Numerical examples of static problems show the potential of the formulation as a
prelude for the evolution of self-stabilized Kirchhoff–Love shell virtual elements.

1 INTRODUCTION

Introduced by [1], the virtual element method (VEM) provides arbitrarily polytopal dis-
cretizations within the Bubnov–Galerkin framework generalizes the finite element method. Be-
yond the flexibility to complex computational domain discretizations, the method simplicity
relative to higher-order continuity enforcement and additional degrees of freedom is evident,
e.g. for the plate problem. On the other hand, in general, a stabilization term must be considered
to ensure the method stability or that the stiffness matrix has full rank. Its not unique construc-
tion justifies the stabilization-free VEM (SFVEM) development found, e.g. in [2, 3, 4, 5] for the
2D Poisson equation, linear plane elasticity and finite strain applications.

We propose a SFVEM for the present lowest-order conforming plate discretization as an
outset for its future evolution. The mathematical model is presented in Section 2 followed by
its conventional virtual element discretization in Section 3, found in [6]. The SFVEM is within
the latter Section and numerical examples are presented in Section 4.

Unless explicitly indicated, the notations and conventions are Latin and Greek, being regular
italic and fraktur lower case letters for scalars (e.g. p, π and p) and bold for vectors (e.g. p, π
and p). Bold upright upper case letters are for higher-order tensors (e.g. P and Π) and regular
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calligraphic or double-struck for sets (e.g. P and P). In particular, the null vector is 0. Except for
τ and ν, regular italic Latin and Greek lowercase indices range over the sets {1, 2, 3} and {1, 2},
respectively (Einstein summation). Depending on the context, subscripts α and 3 respectively
mean membrane- and plate-related quantities. Spatial derivatives are denoted by (•),i and only
right-handed rectangular coordinate systems are used.

2 THE MATHEMATICAL MODEL

The reference configuration is denoted by V = Ω × T ⊂ R3, where Ω ⊂ R2 is the mid-
surface and T = (− t

2
, t
2
) ⊂ R with t the thickness. Γ is the boundary of Ω. Considering a local

orthonormal system {er
i} on the mid-surface with er

α tangent and er
3 normal to it, the reference

mid-surface position, normal director and position of a material point are respectively

ζ = ξαe
r
α, ar = ξ3e

r
3 and ξ = ζ + ar. (1)

Let z be the position on the mid-surface at the current configuration, ∇ the gradient operator
w.r.t. ζ and Er

3 = skew(er
3) the skew-symmetric tensor of its axial vector er

3. The mid-surface
displacement and rotation yield

u = z − ζ and θ = −er
3 ×∇u3 = −Er

3∇u3, (2)

respectively. They lead to the current mid-surface position, director and position of a material
point as

z = ζ + u, a = Qar and x = z + a, (3)

respectively, where Q = I + Θ is the linear rotation tensor with I the identity matrix and
Θ = skew(θ).

The relation between the reference and current configurations of a fiber is given by the de-
formation gradient

F = x,i ⊗ er
i = (z,α + θ,α × ar)⊗ er

α + e3 ⊗ er
3 = Q + (ηα + κα × ar)⊗ er

α, (4)

where ei = Qer
i , and the stretch and curvature are respectively defined as

ηα = z,α − eα and κα = θ,α. (5)

The linear strain and Cauchy stress tensors for an isotropic linear elastic material yield

E =
1

2
(F + FT − 2I) and T = λ(I : E)I + 2µE = ti ⊗ er

i , (6)

respectively, with λ = Eν
(1−2ν)(1+ν)

and µ = E
2(1+ν)

(shear modulus) the Lamé constants, E the
Young modulus, ν the Poisson ratio and the true stresses ti acting at the planes with normal er

i .
The plane stress condition is imposed by E33 s.t. T33(E33) = 0. The internal force and moment
per unit length may then be given by the cross-sectional resultants

nα =

∫
T

tα dξ3 and mα =

∫
T

ar × tα dξ3, (7)
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respectively. By the external body force per unit volume f b and surface traction per unit area
f s, the external force and moment per unit area respectively yield

n̄ =

∫
T

f b dξ3 + f s and m̄ =

∫
T

ar × f b dξ3 + ar × f s. (8)

Defining the generalized vectors

σα :=
[
nα mα

]T
, εα :=

[
ηα κα

]T
, q :=

[
n̄ m̄

]T and g :=
[
u θ

]T
, (9)

the internal virtual work yields

a(u,v) =

∫
Ω

σα(u) · εα(v) dζ

=−
∫
Ω

(∇ · N(u) · v −∇ · ∇ · M(u3)v3) dζ

+

∫
Γ

(N(u) : v ⊗ ν + M(u3) : ∇v3 ⊗ ν −∇ · M(u3) · νv3) dτ,

(10)

where the divergence theorem, ∇· the divergence operator w.r.t. ζ, v := δu a virtual displace-
ment, N = nα ⊗ er

α, M = Er
3mα ⊗ er

α and ν the unit outer normal were used. The external
virtual work results

(q, g(v)) =

∫
Ω

q · g(v) dζ. (11)

For instance, let Γ be clamped, Hs(Ω) be a Sobolev space and

V0 := [H1
0(Ω)]

2 ×H2
0(Ω) = {v ∈ [H1(Ω)]2 ×H2(Ω) : v|Γ = 0, v3,ν |Γ = 0}. (12)

The theorem of virtual work or weak form of the continuous problem yields{
u ∈ V0

a(u,v) = (q, g(v)), ∀v ∈ V0

. (13)

3 THE DISCRETE MODEL

Ω is now the computational domain decomposed into non-overlapping flat triangles E em-
bedded in R3 from a domain decomposition T h s.t. Ω = ∪E∈T hE. Henceforth, superscripts E,
e and v are for element-, edge- and vertex-wise defined quantities, respectively, and superscript
h are for approximated quantities.

The canonical basis of R3 is denoted by {er
i} and the local-to-global transformation matrix

defined as R = er,g
i ⊗ er

i , where superscript g is for a quantity referred to the global system.
We also consider a local orthonormal system {τ g

i ,ν
g
i ,−er,g

3 } at an element edge ei, where the
tangent τ g

i is oriented counterclockwise and νg
i is the outer normal. The corresponding local-to-

global transformation matrix will be Re
i = τ g

i ⊗er
1+νg

i ⊗er
2−er,g

3 ⊗er
3. These transformation

3
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Figure 1: Element components (left) and d.o.f.s of displacement “•” and deflection gradient “⃝” (right)

matrices allow to respectively express the displacement, rotation and deflection gradient referred
to the correspondent local systems as

v = RTvg, θ(ei) = (Re
i)

Tθg and ∇v3(ei) = θ2(ei)τ i − θ1(ei)νi. (14)

Consider the polynomial approximation orders

kα = 1, k3 = 2, r = 3, s = k3 − 1, l = kα − 2 and b = k3 − 4, (15)

where we have kα for the membrane displacement, r for the deflection and s for its normal
derivative at the edges. l is for the membrane displacement Laplacian and b for the deflection
bi-Laplacian. With a < 0 and the convention Pa(E) = {0} we have that vα is harmonic and v3
is bi-harmonic inside E.

Let VE := [H1(E)]2 ×H2(E). The local ansatz space is

Vh,E := {v ∈ VE : vα|e ∈ P1(e), v3|e ∈ P3(e), v3,ν |e ∈ P1(e),∆vα = ∆2v3 = 0, ∀e ⊂ ΓE}
(16)

with ∆ the Laplace operator w.r.t. ζ. The d.o.f. operator χj
i : Vh,E

i → R and the canonical
basis functions φj

i ∈ Vh,E
i are defined such that the Kronecker delta property holds accordingly.

In this context, superscripts τ and ν denote tangent- and normal-derivative-related quantities,
respectively. Let us define the local d.o.f. set as (see Fig. 1)

DE := {χi(v), χi,τ
3 (v3), χ

i,ν
3 (v3)}, (17)

where
χi(v) = v(ni), χi,τ

3 (v3) = v3,τ (ni) and χi,ν
3 (v3) = v3,ν(ni). (18)

The interpolations are of Lagrange-, Hermite-, and Lagrange-type for the membrane displace-
ments, deflection and its normal derivative, respectively.

4
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The dimension of (16) is

dim(Vh,E) ≡ N d.o.f. = N v(2kα + r + s− 1) = 15, (19)

where N (•) means “number of (•)”. As observed in [6], future investigations on the account of
local drilling rotation d.o.f.s need to be performed to avoid the stiffness matrix singularity of
coplanar elements.

Let PE := [P1(E)]
2 × P2(E) ⊂ Vh,E and the ansatz function be decomposed as

v = ΠEv + (I − ΠE)v, ∀v ∈ Vh,E, (20)

where I is the identity map and ΠE ≡ Π : Vh,E → PE a local projector operator. As shown in
[7], the latter may be defined s.t., ∀v ∈ Vh,E and ∀p ∈ PE,

ãE(p,Πv − v) = 0∫
E
(∇Π3v3 −∇v3) dζ = 0∫

ΓE(Πv − v) dτ = 0

(21)

with ãE(v,v) :=
∫
E
εα(v) · εα(v) dζ . Let the projection be expressed by

Πv = Πm =

π1 1 π1 2 π1 3 0 0 0
π2 1 π2 2 π2 3 0 0 0
π3 1 π3 2 π3 3 π3 4 π3 5 π3 6

 [
1 ξ1 ξ2 ξ21 ξ1ξ2 ξ22

]T
. (22)

A test function may be p = Sm with S as Π but with arbitrary coefficients. The 1st condition
of (21) yields∫

E

εα(p) · εα(Πv) dζ =

∫
E

εα(p) · εα(v) dζ

=

∫
ΓE

(Ñ(p) : v ⊗ ν + M̃(p3) : ∇v3 ⊗ ν −∇ · M̃(p3) · νv3) dτ,
(23)

where Ñ = ηα ⊗ er
α and M̃ = Er

3κα ⊗ er
α. The left-hand side of (23) may be exactly computed

over the boundary by the divergence theorem, since it only has polynomials. The right-hand
side may be directly computed in terms of all local d.o.f.s since the ansatz functions are known
over the edges. As only εα(p) and εα(Πv) are included in (23), let Nk := dim(Pk(E)),

πa
i :=

[
πiNker

i +1 . . . πiNki

]T
and sai :=

[
siNker

i +1 . . . siNki

]T
(24)

with Nker
α := dim(ker(aEα)) = dim(P0(E)) = 1 and Nker

3 := dim(ker(aE3 )) = dim(P1(E)) = 3.
The consistent part of Π follows from, with no summation convention,

Gi :=
∂2ãE(p,Πv)

∂sai ∂π
a
i

, bi :=
∂ãE(p,v)

∂sai
, Giπ

a
i = bi and πa

i = G−1
i bi. (25)
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The remainder part of Π may then be obtained from the remaining conditions of the equality of
deflection gradients and subsequent equality of displacements∫

E

∇Π3v3 dζ =

∫
E

∇v3 dζ =

∫
ΓE

v3ν dτ and
∫
ΓE

Πv dτ =

∫
ΓE

v dτ, (26)

respectively. Both are computable over the edges as is the 1st condition.
By (19), dim(PE) < dim(Vh,E) due to the plate ansatz. Let Vh,E be expressed by

Vh,E = PE ⊕PE,⊥, (27)

the direct sum, where PE,⊥ ⊂ Vh,E is the orthogonal complement of PE. Let v ∈ Vh,E. As
mentioned in (20), v = Πv + (I − Π)v = Πv + v⊥ with Πv ∈ PE and v⊥ ∈ PE,⊥. A
stabilization potential energy containing v⊥ needs to be computed, being a natural choice to
consider the d.o.f. remainders. We follow the procedure as in [7] and consider the continuous
counterpart of the classical stabilization (see e.g. [8]):

UE,⊥
int :=

1

2

Et3

12(1− ν2)

Ne∑
i=1

∫
ei

(|E|−1v⊥3 (ei)v
⊥
3 (ei) +∇v⊥3 (ei) · ∇v⊥3 (ei)) dτ. (28)

The internal potential energy can finally be written as

Uh,E
int = UE

int(Πv
h) + UE,⊥

int (vh3 ), (29)

where UE
int(Πv

h) = 1
2
aE(Πvh,Πvh) must be, in contrast to UE,⊥

int , exactly computed.
In the following the need of (28) will be eliminated by the SFVEM for the present appli-

cation. One of its procedure main steps is to define the curvature L2-projector to a polynomial
space of a certain convenient order l3. For (kα, k3) = (1, 2), the ansatz (16) contains the space
of constant curvatures: we have Hermite cubic deflections over the edges thus quadratic normal
rotations and linear correspondent curvatures. Additionally, the linear tangent rotations lead to
their constant curvatures. For N e = 3, it follows that dim(P2(E)) < dim(Vh,E

3 ) < dim(P3(E)).
Thus, at first sight one may say that l3 must be at least 1 in this case to yield a linear curvature
approximation, representing cubic deflections. We empirically show that this is indeed the case.
In other words, we choose

l3 = l3(k3, N
e) = k3 − 1 +N e − 3. (30)

Let v ∈ Vh,E. We define the L2-projector of the curvature field as Π0,α
1 κα(•) : H2(E) →

P0,E
1 := [P1(E)]

2 × {0} s.t.

(λα,Π
0,α
1 κα(v3)− κα(v3))

E = 0, ∀λα ∈ P0,E
1 . (31)

Let the projection be expressed by

Π0,α
1 κα = Π0,α

1 m =

π0,α
1 1 π0,α

1 2 π0,α
1 3

π0,α
2 1 π0,α

2 2 π0,α
2 3

0 0 0

 [
1 ξ1 ξ2

]T
. (32)
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A test function may be λα = S0,α
1 m with S0,α

1 as Π0,α
1 but with arbitrary coefficients. The

condition (31) yields∫
E

λα · Π0,α
1 κα(v3) dζ =

∫
E

λα · κα(v3) dζ

=

∫
E

∇ · ∇ ·Λv3 dζ +

∫
ΓE

(Λ : ∇v3 ⊗ ν −∇ ·Λ · νv3) dτ

=

∫
ΓE

(Λ : ∇v3 ⊗ ν −∇ ·Λ · νv3) dτ,

(33)

where Λ = Er
3λα ⊗ er

α. Fortunately, for l3 = 1, λα ∈ P0,E
1 and

∫
E
∇ · ∇ · Λv3 dζ = 0,

simplifying the procedure since the deflection is unknown inside E. As usual, we set

π0,α
β :=

[
π0,α
β 1 π0,α

β 2 π0,α
β 3

]T
and s0,αβ :=

[
s0,αβ 1 s0,αβ 2 s0,αβ 3

]T
, (34)

to get the curvature L2-projector from, with no summation convention,

G0,α
β :=

∂2(λα,Π
0,α
1 κα)

E

∂s0,αβ ∂π0,α
β

, b0,αβ :=
∂(λα,κα)

E

∂s0,αβ

, G0,α
β π0,α

β = b0,αβ and

π0,α
β = (G0,α

β )−1b0,αβ .

(35)

Four systems of linear equations corresponding to the two components of each curvature vector
then emerge.

Let v ∈ Vh,E. Finally, the self-stabilized internal potential energy takes the form:

Uh,E
int =

1

2

∫
E

(nα(Πv) · ηα(Πv) +mα(Π
0,α
1 κα) · Π0,α

1 κα) dζ. (36)

For the external potential energy we specialize (11) with m̄ = 0 to consider (see e.g. [8, 9])

Uh,E
ext = −⟨n̄h,g,vh,g⟩E = −|E|n̄h,g.(N v)−1

Nv∑
i=1

vh,g(vi). (37)

The residual and stiffness matrix referred to the global system yield

rh,E =
∂Uh,E

∂d
and Kh,E =

∂rh,E

∂d
, (38)

where Uh,E = Uh,E
int + Uh,E

ext is the total potential energy and d :=
[
gh,g(ni)

]T the d.o.f. vector.
Respective assemblages result

rh =
∑
E∈T h

rh,E and Kh =
∑
E∈T h

Kh,E, (39)

and the minimum of potential energy discrete form is{
uh ∈ Vh

rh = 0
. (40)
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Figure 2: Simply supported plate: E2 reference and current configurations

4 RESULTS

The elements and numerical results were respectively implemented and computed with the
Wolfram Mathematica software system and the AceSystem, see e.g. [10]. Three elements will
be denoted by Ei: E1 is based on the conventional VEM, i.e. on (29); E2 is based on the SFVEM,
i.e. on (36); E3 is based on the consistent conventional VEM, i.e. only on the first term of (29)
right-hand side. All values are referred to the global system, the domain coordinates are given
by {xi}, Ni denotes the total number of d.o.f.s for a particular element Ei, and the superscripts
h and g are eliminated. The current configurations are in true scale, and the Euclidean norm and
the relative error ε are considered.

For all examples consider −1
2
≤ x1, x2 ≤ 1

2
, t = 10−4, body load f b

3 = −8 × 103, E =
2× 1011 and ν = 0.3.

4.1 Simply supported plate

Consider x3 = 0 and a simply supported Γ (see Fig. 2). The analytical Kirchhoff solution is
used (see e.g. [11]).

The displacement and rotation colormaps for a particular mesh refinement are depicted in
Figs. 3, 4 and 5. Good agreement between E1 and E2 is seen and the absence of stabilization is
visualized by the discontinuity of the E3 rotations.

The solutions curves are displayed in Fig. 6. Displacement results of E2 are interestingly bet-
ter and the rotation ones are almost identical compared to results of E1, presenting also asymp-
totic convergence. This shows in this example that the curvature order (30) of the self-stabilized
plate is sufficient. Accordingly with the presented colormaps, the numerical instability is ev-
ident for the rotations of E3. The same does not occur for the E3 displacement, showing that
the projection space may be sufficient to obtain satisfactory and numerically stable deflection
results for a triangular element.

8
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Figure 3: Simply supported plate: displacement and rotation colormaps for E1

Figure 4: Simply supported plate: displacement and rotation colormaps for E2

4.2 Partially clamped hyperbolic paraboloid shell

Consider x3 = x2
1 − x2

2, t = 10−2, 10−3, 10−4, and Γ partially clamped on x1 = −1
2

and free
on the remaining boundary (see Fig. 7). Reference solutions are the extrapolation values found
in Tables 17 and 18 of [12].

Fig. 8 shows the results from E2 getting better as the structure gets thinner, compared to E1.
In contrast, for the thicker cases, the E2 convergence is slower and with higher relative errors.
Nevertheless, the errors obtained by E2 on a fine mesh result similar for all the thickness cases.
The SFVEM model seems more sensitive to the thickness in shell problems, which does not
occur in the previous plane problem. This scenario will be further investigated in future works.

5 CONCLUSIONS

This work presents a self-stabilized triangular virtual element for linear Kirchhoff–Love
shells. The importance of the stabilization is visualized by a simple example and a self-stabilized

9
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Figure 5: Simply supported plate: displacement and rotation colormaps for E3

triangular shell element was successfully tested. Satisfactory accuracy is reached in the numeri-
cal results when compared to its conventional version which has a stabilization potential energy.
Nonetheless, further investigations on its behavior regarding the thickness influence in shell ap-
plications should be performed. Possible future works include element geometry, approximation
order and nonlinear behavior generalizations, and the minimum curvature polynomial order (30)
validation also for nonconforming virtual Kirchhoff plate elements.
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Figure 7: Partially clamped hyperbolic paraboloid shell: E2 reference and current configurations

Figure 8: Partially clamped hyperbolic paraboloid shell: convergence curves for t = 10−2 (top), t = 10−3 (center)
and t = 10−4 (bottom)
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