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ABSTRACT: Two algorithms for the stress update (i.e., time integration of the constitutive equation) in large-
strain solid mechanics are discussed, with particular emphasis on two issues: (1) The incremental objectivity;
and (2) the implementation aspects. It is shown that both algorithms are incrementally objective (i.e., they treat
rigid rotations properly) and that they can be employed to add large-strain capabilities to a small-strain finite-
element (FE) code in a simple way. A set of benchmark tests, consisting of simple large deformation paths, have
been used to test and compare the two algorithms, both for elastic and plastic analyses. These tests evidence
different time-integration accuracy for each algorithm. However, it is also shown that the algorithm that is less
accurate in general gives exact results for shear-free deformation paths.

1. INTRODUCTION

Many problems of interest in physics and engineering are
nonlinear (Bathe 1982; Crisfield 1991; Zienkiewicz and Taylor
1991). Two basic types of nonlinearity are encountered in solid
mechanics: (1) Material nonlinearity; and (2) geometric non-
linearity. Nonlinear material behavior is often described by a
rate-form constitutive equation, relating some measure of the
rate of deformation to a rate of stress (Malvern 1969). In a
large-strain context, the choice of a proper stress rate is a key
point, because the principle of objectivity (Marsden and
Hughes 1983; Hughes 1984) should be respected: the consti-
tutive equation must be independent of the observer. This is
only achieved when objective quantities are employed. The
material derivative of stress is not an objective tensor (Malvern
1969; Bathe 1982) and, therefore, an alternative, objective
stress rate is needed. The basic idea is that rigid rotations in-
duce no straining of the material, and this fact must be prop-
erly captured by the stress rate. Some common objective stress
rates are the Jaumann rate (Key and Krieg 1982; Hughes
1984), the Green-Naghdi rate (Hughes 1984; Healy and Dodds
1992) and the Truesdell rate (Pinsky et al. 1983). In these
stress rates, rigid rotations are represented respectively by the
spin tensor w, the rate-of-rotation tensor {2, and the defor-
mation gradient F (Malvern 1969).

The objectivity of the constitutive equations should also be
respected by the numerical algorithms employed for their time
integration. This requirement is referred to as incremental ob-
jectivity (Hughes and Winget 1980). The basic idea is that
incremental rigid rotations induce no incremental straining of
the material.

Several stress update algorithms (i.e., algorithms for the nu-
merical time integration of the constitutive equations) can be
found in the literature [see, for instance, Bathe et al. (1975),
Hallquist (1979), Hughes and Winget (1980), Nagtegaal and
de Jong (1981), Key and Krieg (1982), Pinsky et al. (1983),
Rubinstein and Atluri (1983), Hughes (1984), Pegon and Gué-
lin (1986), Cuitifio and Ortiz (1992), Healy and Dodds (1992),
and Rashid and Thorne (1996)]. In many cases, however, em-
ploying these algorithms to add large-strain capabilities to a
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small-strain finite-element (FE) code is a cumbersome task,
because they require the computation of new quantities or the
use of new concepts [such as multiplicative kinematics (Cui-
tifio and Ortiz 1992)], not employed for a small strain analysis.

If the Jaumann stress rate is used, for instance, incremental
rigid rotations over the time step At are represented by Q
(Hughes and Winget 1980)

1 - 1
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In Key and Krieg (1982), Q is computed according to (1) and
then half-angle trigonometric formulas are used to get the
square root of Q, which can be seen as the incremental rigid
rotations over half a time step. This allows the computation
of the stress increment in the midstep configuration (¢,.,5,).

If (1) is used directly, it requires matrix inversion. This ma-
trix inversion can be avoided by using the Cayley-Hamilton
theorem (Hughes 1984), or by integrating numerically the gen-
erating matrix differential equation for Q (Rubinstein and At-
luri 1983), dQ/dt = wQ.

For the Green-Naghdi rate, on the other hand, incremental
rigid rotations are represented by the rotation tensor R, arising
from the polar decomposition F = RU of the deformation gra-
dient (Malvern 1969). Typically R must be computed twice
per time step, at #,..2 and ¢,,;.

This can be done by using the Cayley-Hamilton theorem to
compute U explicitly and then get R as FU™ (Hughes 1984).
To avoid inverting U, U™" is directly computed in Healy and
Dodds (1992). To do this, the eigenvalues of U are obtained
by means of a Jacobi transformation.

From the previous discussion, it is clear that the algorithms
mentioned earlier require the computation of quantities that
are not readily available in a small-strain FE code.

This paper discusses two incrementally objective algo-
rithms, based on Truesdell stress rate, that allow transforma-
tion of an existing small-strain FE code into a large-strain code
in a simple way (Rodriguez-Ferran and Huerta 1994). Only
the particular case in which the elastic part of the deformation
is modeled by a hypoelastic law—a common choice in non-
linear computational mechanics —will be addressed here. The
first algorithm (Bathe et al. 1975) uses the full Lagrange strain
tensor, including quadratic terms to account for large strains.
The second algorithm, presented in Pinsky et al. (1983), em-
ploys the same strain tensor as in a small-strain analysis, but
computed in the midstep configuration.

Various implementation aspects for the two algorithms are
discussed. It is shown, in particular, that very few additional
features must be added to a code with small-strain and non-
linear material behavior to enable its use for large-strain anal-
ysis.

The two algorithms are tested and compared with the help



of a set of benchmark tests, consisting of simple deformation
paths. Moreover, it is also shown that for some particular de-
formation paths, the first algorithm, which is less accurate in
general, captures the exact solution, while the second algo-
rithm does not.

This paper is organized as follows. Some preliminaries, in-
cluding the basic equations of large-strain solid mechanics and
the concept of objectivity, are briefly reviewed in Section 2.
The two stress update algorithms are presented in Section 3.
After some introductory remarks, the notion of incremental
objectivity is reviewed in Section 3.1. The two algorithms are
then shown in Section 3.2, and their implementation in a
small-strain FE code is discussed in Section 3.3. Section 4
deals with the numerical examples. Finally, some concluding
remarks are made in Section 5.

2. PRELIMINARIES
2.1. Basic Equations

The first ingredient of continuum mechanics is the equation
of motion, x = x(X, 7), which yields the position x of material
particles, denoted by their material coordinates X, at time ¢
(Malvern 1969). If the initial spatial coordinates are employed
as material coordinates, the material displacements can be de-
fined as u(?) = x(f) — X. Once the displacements are defined,
the starting point for strain representation is the deformation
gradient F
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Various strain tensors may be defined by means of F. The
Lagrange strain tensor, for instance, is

E=-FF-1) ®3)

N =

where T means transpose; and I = identity. Another tensor
representing strain is the spatial gradient of velocity 1. This
tensor yields relevant tensors if decomposed into symmetric
part (rate-of-deformation tensor d) and skew-symmetric part
(spin tensor w)
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In some problems, displacements and/or strains are large. Then
the relation between displacements and strains is not linear
and, moreover, the governing equations must be solved over
the current configuration (2, at time ¢, not over the initial con-
figuration (),. Since the motion that transforms (), into £}, is
precisely the fundamental unknown, a geometrically nonlinear
problem is obtained.

The balance laws of continuum mechanics state the conser-
vation of mass, momentum, and energy (Malvern 1969). For
a wide range of problems in solid mechanics, three simplifying
assumptions are common: (1) Mechanical and thermal effects
are uncoupled; (2) the density is constant; and (3) inertia forces
are negligible in comparison to the other forces acting on the
body (quasi-static process). The mechanical problem is then
governed by the momentum balance alone, which becomes a
static equilibrium equation

— +b=0 ®)

where o = Cauchy stress tensor; and b = body force. Eq. (5)
models many problems of practical interest—including, for
instance, various forming processes (‘‘Simulation’’ 1995).

2.2. Stress Tensors

The most common representation of stress is the Cauchy
stress tensor o, defined in the current configuration (), and
already presented in (5). This tensor has a clear physical mean-
ing, because it involves only forces and surfaces in the current
configuration.

In a large-strain context, other representations of stress are
possible and indeed useful. The key idea (Pinsky et al. 1983)
is that €}, and (), are different configurations, so tensors de-
fined in each configuration cannot be combined by operations,
such as subtraction and addition. Let °c and ‘o be the Cauchy
stress tensors at the initial time 7, and current time ¢, respec-
tively; the increment of stress may not be defined as ‘e — ‘o,
because the two tensors are referred to different configurations.
As stress increments will be needed to update stresses, a
proper definition is required.

An alternative representation of stress is the second Piola-
Kirchhoff tensor S, defined as the pull-back of o

S =JF'oF " ©)

where J = det(F) = Jacobian of the motion, which reflects the
variation of unit volume associated to the deformation, and the
inverse of the deformation gradient F~' is employed to trans-
form o from £, to ). Eq. (6) is called the pull-back Piola
transformation. It must be remarked that S represents the state
of stress at time ¢, but referred to configuration {),, and should
not be confused with °e, the stress at initial time #,.

Eq. (6) may be reversed, and then o may be seen as the
push-forward of S

o= % FSF” @)

where F transforms S from (), to ,. Eq. (7) is the so-called
push-forward Piola transformation. With the help of (6) and
(7), the stress increment may be represented either as

1
‘Ac='0 —=F%F" or Ao =JF"''¢F T - ‘%

referred to as {2, or (), respectively. The Piola transformations
are employed to refer the two tensors to a common configu-
ration, where the subtraction can be properly performed.

2.3. Constitutive Equations and Objectivity

In nonlinear solid mechanics, the material behavior is often
described by a rate-form constitutive equation, relating the
stress rate to velocity and/or its derivatives and the stress state
(and eventually, some internal variables). The particular case
of hypoelastic materials, where the stress rate depends linearly
on the rate-of-deformation tensor d (Malvern 1969) will be
considered here to present the two stress update algorithms.
The two algorithms, however, can be extended to elastoplastic
problems, by profiting from the decomposition of the rate-of-
deformation d into elastic and plastic parts (Khan and Huang
1995). The hypoelastic constitutive law is

6=Cd ®)

where & = material rate of stress; and C = elastic moduli
tensor (Malvern 1969).

In fact, (8) is only valid for small strains. As shown next,
the material rate of stress & may not be employed to represent
stress variation in a large-strain problem, because it is not an
objective tensor.

The principle of objectivity is a fundamental requirement
regarding the constitutive equation in large-strain solid me-
chanics (Marsden and Hughes 1983; Hughes 1984): if the con-
stitutive equations really describe the physical behavior of the



continuum, they must be independent of the observer. This
requirement is fulfilled if objective quantities appear in the
constitutive equations. A quantity is said to be objective if it
transforms in a proper tensorial manner under a superposed
rigid-body motion. Let the rigid motion be represented by an
orthogonal rotation tensor Q, (Q™' = Q”) and a translation a,
The time-dependent relation between old and new coordinates
is then x™"(¢) = Q(#)x + a(z). It is postulated that the Cauchy
stress ¢ is objective. As it is a second-order tensor, it trans-
forms according to o™*(f) = Q) (£)Q(?)". By derivating this
expression with respect to time, it can be checked that the
material derivative of an objective tensor is not objective. This
invalidates the use of & as the stress rate in a rate-form con-
stitutive equation. An alternative, objective stress rate o* is
therefore needed.

As for the rate-of-deformation tensor d, it can be shown
that it is an objective tensor, so it may be employed to rep-
resent strains in a constitutive equation. Indeed, the hypoelastic
constitutive equation is rewritten, in a large strain framework
as

o*=Cd )

The stress rate o* is not uniquely determined by the objectiv-
ity principle. Some classical options reviewed in Pinsky et al.
(1983) are the Jaumann, the Green-Naghdi, and the Truesdell
rates

of=06 —lo — ol” + tr(d)o (10)

where tr(d) = trace of tensor d. It can be easily checked that
the terms in the right-hand side of (10) in addition to the ma-
terial rate & ensure that ¢} is indeed objective. The Truesdell
rate has been defined in (10) in terms of the Eulerian tensors
@, 1, and d, referred to as the current configuration. An alter-
native expression, which provides insight into its physical
meaning and is useful from an algorithmic viewpoint is (Pin-
sky et al. 1983)

o =§FSF’ an

In (11), the Truesdell rate can be interpreted as the push-for-
ward Piola transformation of the material derivative of the
second Piola-Kirchhoff stress sensor S. Thus, instead of using
the time derivative of the Cauchy stress tensor that yields the
nonobjective material rate, the Truesdell rate is preferred be-
cause it is by construction an objective rate. In (11) it can be
seen that the Truesdell rate proceeds in three steps: (1) o is
pulled back into S; (2) the material derivative of S is per-
formed; and (3) the resulting rate is pushed forward into the
current configuration. Where the rationale is that the material
derivative of a material tensor (i.e., a tensor referred to as the
initial configuration) yields an objective tensor.

3. TWO STRESS UPDATE ALGORITHMS FOR
LARGE STRAINS

If the FE method (Hughes 1987; Zienkiewicz and Taylor
1991) is employed, the partial differential equation (5) is trans-
formed into the nonlinear systems of equations.

r(u) = f,(u) — f.,(u) =0 (12)

where f,, = internal force vector; f.. = external load vector;
and r = residual forces. Eq. (12) is typically solved incremen-
tally with a displacement-based implicit method (Bathe 1982;
Crisfield 1991). The fundamental unknowns are then the in-
cremental displacements Au = "*'x — "x from one (known)
equilibrium configuration (), at time ¢, to a new (unknown)
equilibrium configuration {),,, at time ¢,,, = ¢, + At. These

incremental displacements are first predicted and then itera-
tively corrected. Within each iteration, the constitutive equa-
tion must be integrated over the time increment to update the
stresses and check the equilibrium.

3.1. Incremental Objectivity

In the context of the incremental buildup of the solution, it
is useful to define the incremental versions of the tensors pre-
sented in (2) and (3). Let "F and "*'F be the deformation
gradients relating (1, and (),.,, respectively, to the reference
configuration ), (see Fig. 1). The incremental deformation
gradient "A is

nA = n+lF nF-l (13)

which refers configuration (2,., to configuration £2,. The cor-
responding incremental Lagrange strain tensor is then

"AE = -;- CAT"A - 1) (14)

Incremental objectivity is a requirement on the algorithm for
the numerical time integration of the constitutive equation,
which is often presented as the discrete counterpart of the prin-
ciple of objectivity (Hughes and Winget 1980). Let the incre-
mental deformation gradient "A relating configurations {2, and
),,, be an orthogonal tensor "R. The numerical algorithm is
said to be incrementally objective if it predicts a stress state
at t,,, that is simply a rotation of the stress state at ¢,

g ="R "o "R” (15)

In other words, an incrementally objective algorithm assumes
that the body motion between ¢, and ¢,,, is a rigid rotation and
rotates stresses in accordance with that assumption, with no
spurious stress variations [(15)]. It must be remarked, however,
that the incremental deformation gradient "A being an orthog-
onal tensor "R does not necessarily imply that the true (un-
known) body motion between ¢, and ¢,., is a rigid rotation.
For this reason, incremental objectivity is just a reasonable
property of the numerical algorithm (i.e., a rigid rotation is
assumed when possible) rather than a physical requirement
like the principle of objectivity (Rodriguez-Ferran and Huerta
1994; Rodriguez et al. 1997).
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3.2. Two Stress Update Algorithms for Large Stains

3.2.1. First Stress Update Algorithm

It is possible to employ the incremental Lagrange strain ten-
sor defined in (14) as the strain measure in the increment At
(Bathe et al. 1975). The stress increment is then

"Ac = C"AE

where the superscript #» in Ao indicates that this tensorial
quantity is, as "AE, referred to configuration (),.

In a large-strain context it is no longer valid to compute the
new stresses "*'o by simply adding the stress increment "Ac
to the old stresses "o, because these latter two tensors are in
the configuration {},, and "*'o is sought in the configuration
Q,.;. It is necessary to transform the tensors adequately by
means of the push-forward Piola transformation [(7)]. The nu-
merical algorithm for the stress update is then

M»lu:nJ—l nAno,nAT_'_nJ—lnAnAo,nAT (16)

where the Jacobian "J = det("A); and the incremental defor-
mation gradient, [(13)] is employed to push-forward both "o
and "A¢ into the new configuration €1, ,.

This algorithm is incrementally objective: if "A is an or-
thogonal tensor, (14) yields a null strain tensor "AE, and (16)
reduces to (15), thus predicting a rigid rotation of stresses,
with no spurious stress variations. Note that the use of the full
incremental Lagrange tensor, including quadratic terms, is es-
sential for the incremental objectivity of the algorithm.

3.2.2. Second Stress Update Algorithm

An alternative, more accurate numerical algorithm will be
shown next. Following Pinsky et al. (1983), the hypoelastic
constitutive equation is written in terms of the Truesdell ob-
jective stress rate [(10)],

of=Cd an

A basic ingredient of this algorithm is that d is evaluated in
the midstep configuration {2,,,,, defined through linear inter-

FOR EVERY ITERATION k WITHIN EVERY TIME-STEP [tn,tn41];
o Compute the incremental displacements Au* from Eq. (12)
v & o Compute the deformation gradient ®A, Eq. (24), and its determinant ™J
& e Update the configuration from Q5 to ©,, +}

e Compute the incremental strains Aek:
0O as the symmetrized gradient of displacements

¥ accounting for quadratic terms, Eq. (14):
adt o L[ [oawh)] | [aaut) T+ a(aur)]” [a(auk)
2 o("z) (=) 8("z) o("=x)
A as the symmetrized gradient of displacements in + Eq. (22):

i1 [6(Au")] [6(Au") r
Ae® = - +
2 a(n+}z) 6("+iz)
o Compute the elastic trial incremental stresses Aa‘fﬂd:

Aofrm =C: Aef
A o Compute the deformation gradient ""';A, Eq. (25), and its determinant nth g

o Compute the elastic trial stresses at ¢,41:
k
Dot = "0 +80%;,
v pushing forward "¢ and Aafrisl to Qp41, Eq. (16):
cfria.l - nJ—l np N IIAT + nJ—l nAg Aatkriu.l nAT

A pushing forward "¢ and Aafﬁd to Qn41, Eq. (21):

atl'.cria.l =ng-lnyng nAT+n+}J—1 n+}A A’fria.l n+§AT

¥ A o Update the configuration to Qp41

e Compute the final stresses of at tn+1 by performing the plastic correction

o Compute the internal forces -fi’;t by integrating the stresses ot

o Check convergence. If it is not attained,
O go back to first step
¥ A recover configuration 2y and go back to first step

FIG. 2. Materially Nonlinear Analysis: o, Small Strains; v, Large Strains, First Algorithm; 2, Large Strains, Second Algorithm



polation between (), and (2,.,. The midstep spatial coordinates
are

n+172,

x==-("x +"'x)="x + %Au (18)
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the associated deformation gradient is

YA

FIG. 3. Extension and Compression Test—Problem State-
ment
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n+lf2F = % (nF + n-HF) (19)

and the incremental deformation gradient relating the midstep
and final configurations is

n+1f2A = n-HF n+1I2F—1 (20)

The different deformation gradient tensors are summarized
in Fig. 1. Using a midpoint rule algorithm to integrate (17),
the stress update becomes

n+lo, - nJ-I nA "o nAT + n+l/2]—l "+laA(AtC:d)l,.+l/z n-HIZAT (21)

with the Jacobian "*'2/J defined as det("*'?A). As in (16), ten-
sors referred to as the initial and midstep configurations are
pushed forward into the final one by means of the appropriate
incremental deformation gradients "A and "*'?A.

Recalling the definition of d [(4)], the approximation to
"*12q needed in (21) will be
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FIG. 4. Extension and Compression Test; Stress versus Time Curves Computed with Two Algorithms and Smali-Strain Analysis.
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The stress increment is then
T
12 _ . . d(Au) d(Au)
Ao = (AtC.d)l,H.m = C.2 6("“'2)() + a("+l’2x)
(23)

It must be noted that in (22) the strain increment "**?Ag is
represented by the symmetrized gradient of the incremental
displacements, as in a small-strain analysis. No additional
quadratic terms are needed in (23), because large strains are
properly modeled by employing the midstep configuration to
compute the gradient of displacements. As discussed in Pinsky
et al. (1983), this algorithm is also incrementally objective.
Moreover, the numerical tests of Section 4 show that its nu-
merical performance (in terms of accuracy) is superior to that
of the first algorithm. An accuracy analysis of the two algo-
rithms, showing that the first one is first-order accurate in time
and the second one is second-order accurate, can be found in
Rodriguez-Ferran et al. (1997).

The two stress update algorithms can also be employed in
elastoplasticity. The basic idea is to model the elastic part of
the deformation with a hypoelastic law, and use any of the two
algorithms to compute the elastic trial stress (Pinsky et al.
1983; Hughes 1984). After that, a plastic corrector—a radial
return algorithm, for instance—is required to account for ma-
terial nonlinearity (Hughes 1984).

3.3. Implementation Aspects

It is shown in this section that any of the two stress update
algorithms can be employed to add large-strain capabilities to
a small-strain FE code in a simple way. The basic idea is that
the incremental deformation gradients required in (16) and
(21) can be computed in a straightforward manner by using
quantities that are available in a small-strain code. Consider,
for instance, the incremental deformation gradient "A relating
Q, to Q,., [(13)]. Recalling the definition of F in (2) and the
expression of incremental displacements, it can be easily
checked that "A can be put as

_a(x) 3(Au)
T a("x) =1+ a("x)

n

(24)

If an updated Lagrangian formulation is used (Bathe 1982),
the configuration ), is taken as a reference to compute the
incremental displacements. In such a context, "A can be com-
puted from (24) with the aid of standard nodal shape functions,
by expressing Au in terms of the nodal values of incremental
displacements. Since the derivatives of shape functions are
available in a standard FE code (Hughes 1987; Zienkiewicz
and Taylor 1991), no new quantities must be computed to ob-
tain "A.

As for "*"?A, combining (18)—(20) renders

l 3(Au)
2 ] (n + mx)

6("”)() _
a(n+|/2x) -

s0 "*2A can also be directly computed with the aid of the
shape functions, once the configuration of the mesh has been
updated from , to Q,.ip.

As aresult, the only two additional features that are required
to handle large strains are (1) the updating of mesh configu-
ration; and (2) the computation of incremental gradient gra-
dients [(24) and (25)]. This can be seen in Fig. 2, which com-
pares the schematic algorithms for materially nonlinear
analysis with small strains (O) to the large strain versions (v
first algorithm; a second algorithm).

n+l12A -

@5

ERROR IN SIGMAXX/E

10E1 .
v First (Slope: 1.15)]
10E0 )
10E-1 ¢ |
10E-2 [ ]
10E-3 [ )
10E-4 [ » Second (Slope: 1.93 j

[ INCREMENTS |
10E-5 ! -

1 2 4 6 1 2 4 6 1
(a) 10E0 10E1 10E2

ERROR IN SIGMAYY/E
10E0 , — , .

s ° First (Slope: 0.87)]
10E-1 |
10E-2 ]

s Second (Slope: 1.99)]
10E-3 | ]
10E-4 | i

r 1

- INCREMENTS ]
10E-5 . R .

1 2 4 6 1 2 4 6 1
(b) 10E0 10E1 10E2

FIG. 5. Extension and Compression Test, Elastic Analysis. Er-
ror in Final Value of Stress (t = 1) versus Number of Time Steps:

(@) o (b) o)y

1
]
|
|
|

t=0 1
|
|
|
|
|
|
d

FIG. 6. Dilatation Test—Problem Statement

4. NUMERICAL TESTS

The two stress update algorithms presented in Section 3.2
have been compared with the help of various simple, large-
strain, deformation paths: simple shear, uniaxial extension, ex-
tension and compression, dilatation, extension, and rotation.
For brevity, only the last three will be shown in detail here.
Both elastic and elastoplastic cases are considered. Elastic be-
havior will be represented by Young’s modulus E and a null
Poisson’s coefficient v = 0. For the plastic cases, the consti-



Elastic

SIGMAXX/E = SIGMAYY/E

TIME
0.6 0.8 1.0 1.2

0.0
(a)

0.0 0.2 0.4

v First

A Second

Plastic

SIGMAXX/E = SIGMAYY/E

—

’ TIME
0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0
(b)

O Small strain

FIG. 7. Dilatation Test; Normal Stress versus Time Curves Computed with Two Algorithms and Small-Strain Analysis: (a) Elastic

Analysis; (b) Plastic Analysis
ERROR IN SIGMA/E

10E0 , T ' ,
v First (Slope:l.ll):

10E-1 ]
10E-2 1
Second (Slope: 1.97):

10E-3 )
i

10E-4 |
INCREMENTS 3

10E-5 . o , >N, ]

1 2 4 6 1 2 4 6 1
10E0 10El 10E2

FIG. 8. Dilatation Test, Elastic Analysis. Error in Final Value of
Normal Stress (t = 1) versus Numer of Time Steps

tutive law is assumed to be bilinear, with a plastic modulus of
E, = E/100 and a yield stress of o, = E/2.

The first algorithm is first-order accurate in time, while
the second one is second-order accurate [see the proof in
Rodriguez-Ferran et al. (1997).]. As a consequence, the gen-
eral behavior is that results depend heavily on the number of
time increments if the first algorithm is employed, and only
slightly with the second one. However, the first algorithm
shows a superior performance for some stress components in
various tests, as shown in Section 4.3 and explained in detail
in Rodrfguez-Ferran and Huerta (unpublished work, 1998).
For comparison purposes, a small-strain analysis is also per-
formed.

4.1. Extension and Compression

A unit square undergoes extension in the x-direction and
compression in the y-direction, with no change in volume. Fig.
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FIG. 9. Extension and Rotation Test—Problem Statement
3 shows the initial (# = 0) and final (¢ = 1) configurations. The
initial stress field is zero. The equations of motion are
x)=XA+1;, yO)=Y(1+1 (26)

If the Truesdell objective rate is employed [(17)] yields the
system of ordinary differential equations

E
1+v

(1 + 5o, —20,, 0,=0; (1+ 00, +20,=—

Ty
which can be complemented with null initial conditions and
solved to provide the analytical solution

2

t E 1
o (t) = E (t + E)’ axy(’) =0; 0}7(‘) = 5 [(l + t)z - 1]

@n

Both algorithms have been employed, with different values
of the time step (1, 2, 3, 5, 10, 20, and 50 increments), to
integrate the constitutive equation for the given deformation
path, [(26)] fromt=0tot=1.

Fig. 4 presents the results for the elastic case (1, 5, and 50
increments). The two stress update algorithms are capable of
predicting a null o,,, but differences appear for o,, and o,,
[Figs. 4(a and b)]. It can be seen that the first algorithm grossly
overestimates stresses when not enough increments are em-
ployed and demands a small time step to get close to the an-
alytical solution. The second algorithm, on the other hand,
yields more accurate solutions, even if only one time step is



Elastic Plastic

SIGMAXX/E 15 SIGMAXX/E

3.5} J
3.0
2.5
2.0
1.5
1.0
0.5
0.0

-0.51 4
TIME
~1.0

(@ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 .0.0 0.2 0.4 0.6 0.8 1.0 1.2

SIGMAXY/E 0.3 SIGMAXY/E

T T T T

0.4
0.3}
0.2
0.1[
0.0
-0.11 / .
-0.2| |
-0.3 1] |
~0.4 1 |
-0.5 . . . - . : Lo S .
®) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 © 0.0 0.2 0.4 0.6 0.8 1.0 1.2
SIGMAYY/E o SIGMAYY/E

T

TIME TIME
~0.2 . . . " -2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 ) 0.0 0.2 0.4 0.6 0.8 1.0 1.2

v First A Second O Small strain

FIG. 10. Extension and Rotation Test. Stress versus Time Curves Computed with Two Algorithms and Small-Strain Analysis. Elastic
Analysis: (a) 0.,; (b) 04; (¢) 0,,. Plastic Analysis: (d) ou; (8) 0; (b) oy,



used. The output of a small strain analysis (1 increment), is
also presented in Fig. 4; the obtained stresses differ signifi-
cantly from the large-strain analyses, because the small-strain
analysis only captures the linear terms of the analytical solu-
tion [(27)].

Since the analytical solution is known, the error in the final
stress (t = 1) can be computed and plotted versus the number
of time increments (Fig. 5). In a log-log scale, a straight line
with a slope equal to the order of the algorithm is expected,
i.e., 1 for the first algorithm and 2 for the second [(21)}. For
the two relevant components of stress, the observed slopes are
close to the expected values: 1.15 (first algorithm) and 1.93
(second algorithm) for o,, [Fig. 5(a)] and 0.87 (first algorithm)
and 1.99 (second algorithm) for o, [Fig. 5(b)].

This test has also been carried out in the elastoplastic case
(1, 10, and 50 increments) [Fig. 4(c and d)]. As in the elastic
problem, the first algorithm grossly overestimates the final
stress if only one increment is employed, while the second one
predicts much more accurate values. With a higher number of
time steps, both algorithms converge to the same response.
A small strain analysis, this time with 50 increments to account
for material nonlinearity, is again not satisfactory. The need
for a large-strain analysis is again demonstrated.

4.2. Dilatation

A unit square undergoes biaxial extension (Fig. 6). The
equations of motion are x(¢) = X(1 + #); y(©) = Y(1 + 1), and
the analytical solution of (17) is 0.(¢) = 0,,(1) = EIn(1 + 8);
0,(1) = 0. Both algorithms yield qualitatively correct results,
in the sense that o, is zero and o,, = o,, for any number of
time steps and in both elastic and plastic modes. There are
sharp differences, however, concerning convergence behavior.
For the elastic case, for instance, the second algorithm pro-
vides a better prediction with one time increment than the first
one with five [Fig. 7(a)]. It can be seen in Fig. 8 that, again,
the algorithms behave as expected. The computed slopes are
in this case 1.11 for the first algorithm and 1.97 for the second
one. A similar comparison is valid in the plastic test, where
one increment with the second algorithm gets closer to the
reference solution than ten steps of the first algorithm [Fig.

7(b)].

4.3. Extension and Rotation

In this last deformation path, a unit square undergoes a uni-
axial extension and a superposed rigid rotation (Fig. 9). The
equations of motion are

x() = X(1 + Heos2me) — Y sin(2me), y(£) = X(1 + p)sin(2wo)
+ Y cos(2my)

and the analytical solution of (17) is

0,.() = Et cos’(2mt); 0, (1) = Et sin®(2ms);
0y,(t) = Et sin(2wt)cos(2wr)

The output of the elastic analysis can be seen in Fig. 10. If
only one increment is employed, the rotation part of the mo-
tion is not captured and the predicted stress is identical to that
of a uniaxial extension test (Rodriguez-Ferran et al. 1997).
With a higher number of steps, the comparative performance
of the two algorithms is different from that of the previous
tests. For the stress components o, and 0,,, the first algorithm
is the one that predicts correct null values for any number of
time increments. In fact, this result illustrates a more general
behavior. A unified treatment of shear-free deformation paths
can be found in Rodriguez-Ferran and Huerta (unpublished
work, 1998). In this reference it was shown that the first al-
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TABLE 1. Observed Order of Convergence for Various Tests
OBSERVED ORDER OF CONVERGENCE

Cx Oy Oy
v A \% A v A
(1) (2) (3) (4) (5) (6) (7)

Extension and compression 1.15 1.93 | Exact | Exact | 0.87 1.99
Dilatation 1.11 1.97 | Exact | Exact | 1.11 1.97
Simple shear 1.09 | Exact | 1.16 | Exact | 1.00 | Exact
Uniaxial extension 1.13 1.95 | Exact | Exact | Exact | Exact
Extension and rotation 1.07 | 2.30 | Exact | 2.57 | Exact | 4.72

Note: V, first algorithm; A, second algorithm,

gorithm correctly predicted null shear stresses for any number
of time steps, while the second one did not.

As for the stress component 0,,, the first algorithm performs
better if a reduced number of time steps (five) is employed,
and a larger number is required for the second algorithm to
produce more accurate results. This behavior is illustrated by
Fig. 11(a), where the error curves for o,, of the two algorithms
intersect each other. Again, the observed order of both schemes
(1.07 for the first one and 2.30 for the second one) is in ac-
cordance with the expected values. Figs. 11(b and c) show the
convergence behavior of the second algorithm for the other
two stress components. It can be seen that the convergence to
the exact analytical value is very fast, especially for o,, [Fig.
11(c)].

The outcome of the plastic analysis is also depicted in Fig.
10. Once again, a small-strain analysis with nonlinear material
behavior turns out to be completely unsatisfactory, providing
a solution that is qualitatively different from that of a large-
strain analysis.

Qualitatively similar results are obtained for the two defor-
mation paths not shown here (simple shear and uniaxial ex-
tension) (Rodriguez-Ferran et al. 1997). For any of the three
stress components, the two algorithms either yield the analyt-
ical solution for any number of time steps or exhibit an order
of convergence which is close to the theoretical values of 1
and 2. The results are summarized in Table 1.

5. CONCLUDING REMARKS

Two numerical stress update algorithms for large strains
have been discussed. The first one (Bathe et al. 1975) uses the
full incremental Lagrange strain tensor, including quadratic
terms, as the strain measure. The second one (Pinsky et al.
1983) works in the midstep configuration, where the symme-
trized gradient of the displacement increment can be employed
as the strain measure, as in a small-strain analysis.

Any of the two algorithms may be employed to enhance a
small-strain FE code into a large-stain code in a simple way.
In particular, it has been shown that if the code already handles
material nonlinearity, adding large strains only involves two
additional features: (1) Updating of the mesh configuration;
and (2) computation of incremental deformation gradients,
which are readily available from standard shape functions.

These two algorithms have been compared with the aid of
a set of simple deformation paths, both in elasticity and elas-
toplasticity. The results show that the second algorithm is gen-
erally more accurate than the first one, the main reason being
the use of the midstep configuration as a reference. In fact, it
can be shown that the first algorithm is first-order accurate,
and the second one is second-order accurate (Rodriguez-Ferran
et al. 1997). Accuracy, however, is not the only relevant point:
for shear-free deformation paths, there is no error in the shear
component of the stress tensor computed with the first algo-
rithm (Rodriguez-Ferran and Huerta, unpublished work,
1998). In the numerical tests, the two algorithms behave in

very good agreement with their expected behavior. Analytical
solutions are provided for the elastic analyses, which can be
employed to verify the implementation of these (or any other)
stress update algorithms.
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