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Summary. This study presents a Multi-Fidelity surrogate model designed to improve the accu-
racy and efficiency of aerodynamic data prediction, particularly for the pressure coefficient (Cp)
distribution over airfoils. The methodology begins by increasing both the dimensionality and
fidelity of baseline data through the integration of Low-Fidelity data from inviscid panel method
and High-Fidelity data from a RANS-based CFD database for a set of NACA 4-digit airfoils.
Multi-Fidelity Gaussian Process Regression (MFGPR) is used to combine a high-dimensional,
Low-Fidelity Cp vector with a sparse, High-Fidelity Cp vector, where the sparsity simulates the
limited pressure tap measurements typically available in wind tunnel experiments. The next
phase is to develop a regression model that predicts the Cp distribution with the improved fi-
delity provided by the new Multi-Fidelity database, using the airfoil geometry as input. To
improve computational efficiency, Locally Linear Embedding (LLE) is used to map the Cp data
into a low-dimensional space that retains the essential physical features of the system, allowing
a neural network to be trained at a significantly reduced computational cost. This approach
highlights the potential of Multi-Fidelity databases to provide a more accurate and efficient
framework for aerodynamic prediction.

1 INTRODUCTION

In the field of aerodynamics, the calculation of flow parameters relies on multiple sources of in-
formation, each with distinct strengths and limitations: Computational Fluid Dynamics (CFD),
Wind Tunnel Tests (WTT), and Flight Test Data [1]. In industry, CFD is widely used, starting
with panel methods for preliminary analysis, followed by more accurate but computationally
intensive Reynolds Average Navier-Stokes (RANS) simulations. CFD provides comprehensive
pressure distributions over the entire surface under study. In contrast, WTT offer localized
measurements constrained by the number of sensors [2], but deliver high accuracy. Flight Test
Data offers the highest fidelity by reflecting real-world performance, but its high cost limits its
use to the final stages of design.
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In light of the inherent limitations of aerodynamic data sources in terms of precision, resolu-
tion, and cost, it is essential to integrate these sources through Multi-Fidelity approaches. The
most commonly used data-fusion techniques in aerodynamics include Gappy Proper Orthogo-
nal Decomposition (GPOD) [3, 13] and Multi-Fidelity Gaussian Process Regression (MFGPR)
[14, 9, 11]. This study employs MFGPR, a statistical method that combines data from multiple
levels of fidelity by modeling their relationships through Gaussian processes, thereby enhanc-
ing prediction accuracy and optimizing computational efficiency for more robust aerodynamic
analysis.

Furthermore, manifold learning has emerged as a promising tool for dimensionality reduction
and the extraction of relevant features in high-dimensional aerodynamic datasets. The most
frequently used non-linear techniques in aerodynamics are Locally Linear Embedding (LLE)
[15] and Isometric Feature Mapping (Isomap) [19]. For this study, we employ LLE due to its
effectiveness in preserving local structures within the data while reducing dimensionality. Recent
applications have demonstrated that integrating manifold learning can significantly enhance the
efficiency of aerodynamic regression models without compromising accuracy [4, 6].

The framework presented in this study introduces a novel Multi-Fidelity approach to predict
aerodynamic performance, comprising two principal stages: data generation and regression.
A key innovation of this work lies in its integration of sparse High-Fidelity and dense Low-
Fidelity aerodynamic data, forming a comprehensive dataset of pressure coefficient (Cp) vectors.
The regression stage begins with the application of LLE, which is employed to reduce the
dimensionality of the enhanced dataset while ensuring the retention of critical aerodynamic
features. Subsequently, the LLE-derived embedding is employed to train a Multilayer Perceptron
(MLP) to map NACA 4-digit airfoil parameters, while a k-nearest neighbors (k-NN) decoder
reconstructs the Cp distributions. Ultimately, this approach aims to create a surrogate model
capable of accurately predicting the Cp distribution for airfoils outside the training set. This
methodology not only ensures highly accurate aerodynamic predictions, but also provides a
robust and computationally efficient solution for complex aerodynamic analyses.

The remainder of this paper is organized as follows: Section 2 details the methodology, in-
cluding the construction of the Multi-Fidelity database, the use of manifold learning techniques,
and the application of the Deep Neural Network (DNN) regressor. Section 3 presents the results
of the aerodynamic predictions, evaluating the performance of the proposed framework. Finally,
the conclusions are drawn in Section 4.

2 METHODOLOGY

This section outlines the methodology, structured according to the pipeline depicted in Figure
1. The first stage of the pipeline is dedicated to generating the Multi-Fidelity database, with a
comprehensive description of the databases provided in 2.1. Subsequently, a concise overview of
the MFGPR model, used to enhance the database, is presented in 2.2. The second stage of the
pipeline focuses on the construction of a predictor based on manifold learning, 2.3. The Multi-
Fidelity database is integrated into the predictor through the application of the LLE method,
as detailed in 2.3.1. The backmapping procedure, which recovers high-dimensional data from
the latent space of the LLE, is detailed in 2.3.2. To complete the pipeline, in 2.4, we discuss the
neural network that performs regression between the geometric parameters of a NACA 4-digit
airfoil and the latent space variables.
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Figure 1: Schematic of the Multi-Fidelity pipeline, combining Low- and High-Fidelity data through
MFGPR to create a database. This database is then used in a manifold learning-based predictor for
airfoil performance estimation.

2.1 Database

This study examines the efficacy of a Multi-Fidelity regression methodology utilizing two
datasets with distinct levels of fidelity. The datasets comprise Cp vectors gathered from CFD
simulations of 1809 NACA 4-digit airfoils, all evaluated at a constant angle of attack of 10
degrees. The airfoils are characterized by three parameters: M , P , and XX. The parameter
M represents the maximum camber, expressed as a percentage of the chord length, with values
ranging from 2 to 9. Similary, parameter P denotes the maximum camber position, expressed
as a tenth of the chord, with values ranging from 4 to 8. The parameter XX indicates the
thickness of the airfoil, expressed as a percentage, with values ranging from 05 to 50. These
parameters collectively define the geometric characteristics of the airfoils and provide a robust
dataset for evaluating the Multi-Fidelity framework.

2.1.1 High-Fidelity

The High-Fidelity dataset is composed of RANS simulations of turbulent airflow, conducted
at a Reynolds number of 3× 106. The dataset is openly available on Zenodo [16, 17]. Technical
details of the dataset generation may be consulted in Schillaci et al [18].

Figure 2: Virtual pressure tap locations on a NACA 5724 airfoil.

3



J. Nieto-Centenero, A. Mart́ınez-Cava and E. Andrés

Each simulation provides 1,500 Cp values along the airfoil surface. In order to emulate WTT
conditions, where the number of pressure tap measurements is more restricted, a selection of 24
virtual pressure taps was implemented based on an extensive literature review, as illustrated in
2. The taps are arranged in a cosine distribution along the chord of the airfoil, thereby providing
a higher resolution in the regions near leading and trailing edges.

2.1.2 Low-Fidelity

The Low-Fidelity dataset is generated through inviscid simulations using the panel method
implemented in XFOIL [7]. These simulations were conducted for the same 1809 airfoil ge-
ometries as in the High-Fidelity dataset, producing a vector of 400 Cp values for each airfoil.
Although the inviscid panel method is generally successful in capturing the overall aerodynamic
trends, it does exhibit considerable deviations from the High-Fidelity results due to the absence
of viscous effects.

Despite the availability of relatively inexpensive viscous panel method simulations, the in-
viscid approach was deliberately chosen for this study. The rationale behind this choice is
to demonstrate that even when Low-Fidelity data shows significant discrepancies from High-
Fidelity results, it can still offer valuable insights if it accurately captures the fundamental
physical trends. This approach not only tests the robustness of the Multi-Fidelity regression
framework, but also underscores the significant role that Low-Fidelity models can play in en-
hancing overall predictive accuracy.

Figure 3: Distribution of Cp along the chord length (x/c) for the NACA 5724 airfoil. The RANS
( ) data are obtained from RANS simulations, while the INVISCID ( ) data are derived from the
inviscid panel method. VIRTUAL TAPS ( ) mark the locations of virtual pressure taps.

Figure 3 illustrates the inputs for the MFGPR method for a particular airfoil. The orange
line shows Low-Fidelity data from the inviscid panel method, while the red points represent
High-Fidelity virtual pressure measurements from RANS simulations. The RANS data, shown
as the blue line, are considered the ground truth, and the Cp values from these simulations are
used to assess the accuracy of the Multi-Fidelity framework.
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2.2 Multi-Fidelity Gaussian Process Regression

2.2.1 Gaussian Process Regression

Gaussian Process Regression (GPR) is a non-parametric Bayesian approach used for regres-
sion tasks. It defines a distribution over functions, where any finite subset of function values
follows a joint Gaussian distribution. A Gaussian process is fully specified by its mean function
m(x) and covariance function k(x,x′). For simplicity, the mean function is often assumed to be
zero, leading to the notation f(x) ∼ GP(0, k(x,x′)).

Given training data y and input points X, the joint distribution of the observed values y and
the function values f∗ at new points X∗ is:[

y
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
,

where K denotes covariance matrices computed using a kernel function k(x,x′).
By deriving the conditional distribution, we arrive at the predictive equations for GPR as

f̄∗|X,y,X∗ ∼ N (f̄∗, cov(f∗)), where the predictive mean and covariance at new points X∗ are
given by:

f∗ = K(X∗,X)[K(X,X)]−1y, (1)

cov(f∗) = K(X∗,X∗)−K(X∗,X)[K(X,X)]−1K(X,X∗). (2)

Hyperparameters, including kernel parameters, are optimized by maximizing the log marginal
likelihood:

log p(y|X) = −1

2
yT[K(X,X)]−1y − 1

2
log |K(X,X)| − n

2
log(2π). (3)

For a detailed mathematical treatment and further insights into GPR, refer to Williams and
Rasmussen [20] and Gramacy [8].

2.2.2 Linear Autoregressive Gaussian Process

GPR can be extended to construct probabilistic models that allows the combination of vari-
able fidelity information sources. In the Linear Autoregressive Gaussian Process model [10],
with s fidelity levels, the data can be sequentially organized by fidelity level t, represented as
Dt = xt,yt for t = 1, . . . , s. The model that relates two consecutive fidelity levels is expressed
as:

ft(x) = ρtft−1(x) + δt(x) , (4)

where δt(x) is a Gaussian process independent of ft−1(x), . . . , f0(x) with mean µδt and covariance
function kδt , and ρt represents a scale factor between ft(x) and ft−1(x).

By adopting the recursive inference scheme proposed by Le Gratiet and Garnier [12], the
inference problem is decoupled into s standard GPR problems, yielding the Multi-Fidelity pos-
terior distribution with the predictive mean and variance at each level given by:

f̄∗t = ρtf̄∗t−1 + µδt +K (X∗,Xt) [K(Xt,Xt)]
−1 [yt − ρtf̄∗t−1 − µδt

]
, (5)
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cov(f∗t) = ρ2t cov(f∗t−1) +K (X∗,X∗)−K (X∗,Xt) [K(Xt,Xt)]
−1K (Xt,X∗) . (6)

The Matérn 3/2 kernel is used across all fidelities due to its effectiveness in modeling smooth
functions while accommodating non-linear behavior, which is essential for capturing the signif-
icant pressure drops in the Cp profile. The Matérn 3/2 kernel is defined as kMatérn 3/2(x,x

′) =

σ2
(
1 +

√
3r/ℓ

)
exp

(
−
√
3r/ℓ

)
, where r = ∥x−x′∥ is the Euclidean distance, ℓ is the length-scale

parameter and σ2 is the variance.
This study employs Automatic Relevance Determination (ARD) to adjust scaling for each

input variable, specifically the airfoil geometry components (x and y coordinates). ARD fine-
tunes kernel hyperparameters for each variable, enhancing the GPR model’s ability to capture
specific feature characteristics and improve accuracy and robustness.

Hyperparameters are determined by maximizing the log-likelihood (Equation 3). Due to
the non-convex nature of the log-likelihood, optimization is initialized with multiple values and
restarted five times to ensure robust results. It is important to note that this optimization process
is prone to overfitting. To mitigate this, constraints are imposed on the kernel hyperparameters.

2.3 Manifold Learning via LLE

Locally Linear Embedding [15] is a non-linear dimensionality reduction technique designed to
preserve the local geometric structure of high-dimensional data. In the context presented in this
work, LLE is employed to embed Cp of the Multi-Fidelity dataset into a low-dimensional space.
This serves two primary objectives: first, to visualize the correlation between the parameters of
the NACA 4-digit airfoil and the latent space variables; and second, to use these new variables
for training a cost-effective surrogate model.

2.3.1 Locally Linear Embedding

LLE is applied to a datasetX ∈ RP×N , where each data point xi ∈ RP represents the pressure
coefficients of a NACA 4-digit airfoil, and N is the total number of airfoils in the training dataset.
The algorithm first identifies the k nearest neighbors for each xi, assuming that the data points
and their nearest neighbors lie on a locally linear manifold. LLE then computes the weights
that best reconstruct each data point as a linear combination of its neighbors, minimizing the
reconstruction error under the constraint that the weights sum to one. The low-dimensional
embedding is obtained by finding the coordinates that minimize the same reconstruction error,
ensuring that the local relationships captured by the weights are preserved. This involves solving
an eigenvalue problem, where the embedding corresponds to the eigenvectors associated with
the smallest non-zero eigenvalues.

The LLE algorithm is conditioned by two fundamental parameters: embedding dimension-
ality, d, and the number of neighbors, k. In this work, the latent space is predefined to have
three dimensions (γ1, γ2, γ3). This selection is based on the assumption that, under fixed flow
conditions, the Cp on the airfoil surface is determined exclusively by its geometry. For NACA
4-digit airfoils, this geometry is characterized by three variables (M,P,XX), which makes a
three-dimensional latent space suitable for capturing the relevant physical phenomena. Figure
4 demonstrates that these LLE components are highly correlated with the geometric attributes
of the airfoil. The symbols in the figure represent the distribution of the data for varying the
maximum camber (M), showing a pronounced negative correlation with γ1. The color gradient
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indicates that the position of maximum camber (P ) decreases as γ3 increases. Furthermore, the
size of the symbols reflects the thickness (XX), which increases along the γ2 axis within each
group of airfoils sharing the same M .

To ensure robustness against noise, the selection of the number of nearest neighbors k is
critical. This study uses the Residual Variance (RV) algorithm [19] to determine the optimal k,
which quantifies the amount of information that remains unexplained after reducing the data to
a lower-dimensional embedding. The goal is to minimize the RV while maintaining the integrity
and smoothness of the manifold.

Figure 4: LLE embedding. Representation of the pressure coefficient Cp (R1500) in the low-dimensional
(R3) embedding computed with LLE for the Multi-Fidelity database. The directions for the growing M
( ), P ( ) and XX ( ) are highlighted. The color scale represents P , the symbol style represents
M and the symbol size represents the XX.

2.3.2 Backmapping

LLE method lacks an inherent decoding mechanism, preventing the direct reconstruction of
high-dimensional data from its latent space representation. To address this, a backmapping
process [15] is required to project points from the low-dimensional embedding space back to the
high-dimensional space.

For an arbitrary low-dimensional point y, the k nearest neighbors in the embedding space,
denoted as Y = [y1, . . . ,yk], correspond isometrically to the nearest neighbors X = [x1, . . . ,xk]
in the high-dimensional space. To reconstruct the high-dimensional point x we use a first-order
Taylor expansion starting from the nearest neighbors to be mapped back to the original space:
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x ≈ x1 + (y − y1)∇f(y1)
⊤,

where∇f(y1) represents the gradient tensor. This tensor is estimated by projecting the local dif-
ferences observed in the high-dimensional space onto the local differences in the low-dimensional
space using an orthogonal projection matrix.

The performance of this method is affected by the number of k neighbors. To maintain
consistency, we select the same number of neighbors for the backmapping process as used in the
LLE, ensuring that the local structure of the high-dimensional data is accurately captured.

2.4 Deep Neural Network Regressor

The ultimate goal of our model is to develop a surrogate model that accurately predicts
the Cp distribution for airfoils not included in the training set. To accomplish this, a DNN is
trained to take the three geometric variables of the NACA 4-digit airfoil as input and predict
their corresponding components in the LLE embedding.

The chosen architecture is an MLP consisting of multiple layers of linear neurons with ReLU
activation function. This regressor model is selected for its proven efficacy in capturing complex
non-linear relationships, as evidenced by its extensive use in similar studies [4, 5]. The input
layer of the DNN comprises 3 neurons, each corresponding to a design feature of the NACA
4-digit airfoil (M , P , XX). The output layer is designed to predict the components of the
latent space obtained from LLE, thus having 3 neurons to match the embedding dimensions (γ1,
γ2, γ3). The network architecture includes 3 hidden layers that follow an increasing and then
decreasing pattern, specifically configured as [3, 32, 256, 32, 3]. The Adam optimizer is used
for training, with the mean squared error (MSE) loss function employed for optimization. To
mitigate overfitting, early stopping is applied. The model converges in less than 500 epochs,
achieving an approximate MSE of 8× 10−7.

3 RESULTS

This section evaluates the effectiveness of the Multi-Fidelity framework in forecasting the
aerodynamic performance of NACA 4-digit airfoils. The framework was trained using 80% of
the datasets, with the remaining 20% designated for testing. This approach permits a thorough
assessment of the framework’s capacity to generalize across diverse airfoil geometries, thereby
ensuring the model’s predictive performance is both robust and reliable.

The performance analysis is comprised of two principal aspects. Firstly, the global errors are
quantified for each stage of the pipeline using the testing dataset. Table 1 presents the root
mean square error (RMSE) and R2 values for each regression method, ultimately providing an
overall error comparison between the RANS simulation (ground truth) and the framework’s Cp

predictions. Secondly, a local error analysis is conducted, examining the predictions of Cp for
four distinct airfoils, as illustrated in Figure 5. This detailed analysis identifies regions with
significant deviations and investigates potential causes for these errors, providing insight into
the predictive accuracy of the framework.
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3.1 Global Analysis

The performance metrics presented in Table 1 illustrate the efficacy of each component within
the Multi-Fidelity framework. The R2 values are consistently close to 1 across all stages, indicat-
ing that each model component captures nearly all the variability in the test data, underscoring
the robustness of the overall framework in predicting the Cp distribution.

Table 1: Performance metrics for the stages of the Multi-Fidelity framework. These include RMSE and
R2 score, which have been computed using the testing dataset. The MFGPR column shows the metrics
between the generated Multi-Fidelity database and the RANS data, the MLP + Backmapping column
shows the metrics between the regressor output and the Multi-Fidelity database, and the Full Model
column shows the metrics between the pipeline output and the RANS data.

MFGPR MLP + Backmapping Full Model

RMSE 0.0315 0.0222 0.0375
R2 0.999 0.999 0.998

Upon examination of the RMSE values across different stages, it becomes evident that the
MFGPR introduces the highest error, which is only 16% lower than the error of the entire
pipeline. This outcome is expected given the complexity of the MFGPR task, which involves
increasing the dimensionality from the 24 virtual pressure taps to the 1500 Cp values from the
RANS simulations, while attempting to maintain fidelity. In contrast, the MLP+Backmapping
stage, which performs regression from the NACA 4-digit airfoil parameters to the LLE embed-
ding variables, exhibits a lower error. This is due to the relatively simpler nature of this task,
where the MLP leverages the strong correlations between the airfoil parameters and the LLE
variables, resulting in precise and efficient predictions. Finally, given that the magnitude of the
Cp values is of the order of unity, an RMSE of 0.0375 for the full model indicates a high level
of accuracy. Therefore, this indicates that the model is well suited for its intended application,
providing a reliable and effective solution for aerodynamic performance analysis.

3.2 Local Analysis

Figure 5 highlights local errors for selected cases of study, to illustrate the performance of
the methodology. As suggested by the global error metrics, the predictions of the complete
framework are in proximity to the MFGPR solution. The main local error introduced by the
MLP+backmapping stage is a slight bias in the Cp distribution, mainly due to the backmapping
process. The primary source of error, as detailed in Table 1, is the Multi-Fidelity data generation.
Three main local errors are observed with the MFGPR. Firstly, there are small oscillations
starting at x/c = 0.7, which are typical of Gaussian process regression. In addition, the suction
peak pressure for the NACA 4824 and NACA 5415 is underestimated, suggesting the need for
more pressure taps in this region to better capture the pressure distribution. Finally, for NACA
4824, there is a noticeable trend shift in Cp around x/c = 0.8. This occurs because the linear
nature of the Multi-Fidelity model means that any step or discontinuity present in the Low-
Fidelity data will be directly reflected in the regression output, as the model does not account
for non-linear relationships between the Low-Fidelity and High-Fidelity data. Overall, despite
some discrepancies, the model is robust and provides a reliable and effective tool for aerodynamic
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prediction.
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Figure 5: Distribution of Cp along the chord length (x/c) for four test airfoils. The RANS ( )
data represent values obtained from RANS simulations. The INVISCID ( ) data are derived from
the inviscid panel method. VIRTUAL TAPS ( ) denote the locations of virtual pressure taps. The
MFGPR ( ) line corresponds to regression made using the MFGPR method. Finally, the FULL
MODEL ( ) line represents values obtained from the complete pipeline.

4 CONCLUSIONS

This study presents a Multi-Fidelity framework to predict the pressure coefficient distribution
over NACA 4-digit airfoils. The framework consists of two main stages: data generation and
regression.

During the data generation stage, the framework integrates data from simulations of varying
fidelities. These include a dense, Low-Fidelity dataset from inviscid panel method simulations
and a sparse, High-Fidelity dataset from RANS simulations, from which a limited number of
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virtual pressure taps strategically placed on the airfoil surface have been taken to emulate
real-world sensor measurements. This Multi-Fidelity data is combined using a Multi-Fidelity
Gaussian Process Regression model, which effectively leverages the strengths of both datasets
to create a comprehensive and reliable Multi-Fidelity dataset.

In the regression stage, the enhanced Multi-Fidelity dataset is processed through Locally
Linear Embedding for dimensionality reduction. LLE compresses the dataset from 1500 to 3
dimensions, simplifying the data and improving model interpretability by revealing parameter
correlations and potential outliers. This dimensionality reduction facilitates a more efficient
training of the Multilayer Perceptron model, decreasing computational complexity. The resulting
model achieves a R2 value of 0.998, which shows excellent agreement with the actual data.
Localized errors are within the expected ranges for contemporary aerodynamic regression models.

This study highlights the potential of combining Low- and High-Fidelity data to provide
a robust and efficient framework for complex regressions, suggesting a promising direction for
future research in data-driven methods for aerodynamics.
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