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1 Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain

2Center for Computational Simulation, Universidad Politécnica de Madrid, Campus de
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Summary. This study investigates actuation on laminar and turbulent separation over a
wall-bounded bump geometry at low Reynolds numbers. The separated flow over the bump is
comparable to that observed on the suction side of low-pressure turbine blades. Actuation is
introduced at the summit of the bump by modeled Zero Net Mass Flux (ZNMF) jets. Direct
Numerical Simulations (DNS) are performed at various forcing frequencies and amplitudes to
assess the effectiveness of the actuation strategy. The low-frequency approach targets the vortex
cluster phenomenon, while the high-frequency approach is based on the Kelvin-Helmholtz fre-
quency. Sensitivity maps are created for both laminar and turbulent cases, revealing the optimal
frequency for reducing the length of the recirculation region.

1 INTRODUCTION

Low-pressure turbines (LPTs) are energy-harvesting components located near the aft end of
turbofan engines. Their placement exposes them to a significant reduction in the incoming flow’s
Reynolds number. In a midsize turbofan engine at cruising altitude, the Reynolds number can
drop as low as 100,000, based on the axial length of the blade [1], and may be even lower in
high-altitude UAV engines. At these low Reynolds numbers, the boundary layer on the suction
side of the LPT blades separates due to the inability to withstand the abrupt adverse pressure
gradient. This separation impacts engine performance, particularly during high-altitude flight
[1, 2, 3, 4]. Reducing the separation region through active control is therefore essential for
improving engine efficiency [5, 6].

Assessing separated boundary layer flows typically involves applying localized adverse pres-
sure gradients to test article sections. Two primary methods are commonly used for LPT blade
research. The first method creates an artificial pressure gradient on a flat surface in a channel by
using converging and diverging nozzles on the opposite side of the surface [4, 7, 8]. The second
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method employs bump-shaped geometries to simulate the suction side of LPT blades or airfoils
[9, 10, 11, 12, 13, 14, 15, 16]. In this study, the bump-shaped geometry is adopted based on the
experimental work of Saavedra and Paniagua [11], Nowak et al. [14], and the numerical study
by Marbona et al. [16].

Hourmouziadis [1] and Mayle [2] classify boundary layer separation into three distinct states.
The first state is laminar separation, where the flow separates while still laminar, forming a long
bubble with a substantial ’dead air’ region [2]. The second state involves separation within a
turbulent boundary layer, usually resulting in a shorter bubble and a larger entrainment region.
The third state is an intermittent form of separation. Figure 1 illustrates these three states
alongside the corresponding loss coefficients.

Figure 1: Loss Coefficient as a function of Reynolds in different type of separations [1].

Previous experimental studies on separated flows show that three instabilities appear in the
separated region. The twp dominant instabilities are the Kelvin-Helmholtz (K-H) and shedding
instabilities. The K-H and shedding instabilities are closely related, as both originate from shear
layer instability. Experimental data show that the K-H instability scales with the momentum
thickness [17, 18], while the shedding scales with the size of the vortices and the local velocity
at separation [18]. The last instability manifests as the low-frequency flapping of the separated
shear layer [19, 20]. Active flow control strategies using synthetic jets have proven promising for
effectively controlling boundary layer separation [7, 18, 21, 22, 23]. Moreover, separation over
the suction side of Low-Pressure Turbine (LPT) blades is more likely to occur during off-design
conditions. Hence, implementing passive control may alter the optimal design conditions. The
use of zero-net mass flux actuation is also considered more relevant than other methods since
turbine blades often incorporate cooling channels for structural requirements.

Experimental studies on controlling separation with synthetic jets indicate that low-frequency
actuation, associated with shear layer instability, is the most effective [7, 18, 23, 24]. Specifically,
Sigurdson [18] presents a sensitivity map of drag reduction as a function of actuation frequencies.
This map shows that the optimum frequency is 2 to 5 times the shedding frequency. Additionally,
the proposed scaling for the shedding frequency is given as a function of the size of shedding
vortices (h) and the separation velocity, with a Strouhal number Sth = fshed h/Us ≈ 0.07−0.08.
This empirical formulation for determining the shedding frequency has been problematic, as it
depends on geometry configurations and flow conditions. In more chaotic flows, the shedding
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instability can also be indistinguishable from other eddies in instantaneous data, making it
difficult to measure the size accurately.

In this study, active flow control with synthetic jets in laminar and turbulent boundary layer
separations is considered at identical low Reynolds numbers and subsonic Mach numbers. Direct
Numerical Simulations (DNS) are performed using the high-order Discontinuous Galerkin spec-
tral element solver, HORSES3D [25]. Figure 2 shows the laminar and turbulent separations over
the bump geometry with steady inflow and no actuation. In the laminar boundary layer, the flow
separates just upstream of the bump summit. The separated shear layer sustains a self-excited
shedding of spanwise-dominant Kelvin-Helmholtz (K-H) vortices, followed by their breakdown
into smaller three-dimensional structures and an abrupt transition to turbulence. The entrain-
ment provided by turbulence leads to mean flow reattachment. In turbulent boundary settings,
the separated shear layer breaks into smaller eddies sooner, generating more chaotic vortices
without distinct K-H vortices. In both conditions, the shedding vortices are indistinguishable,
making the estimation of the optimum frequency challenging.

Figure 2: Instantaneous spanwise vorticity field around a wall-mounted bump under steady inflow
conditions. Top: laminar boundary layer [16]; Bottom: turbulent boundary layer.

2 NUMERICAL SETUPS

2.1 Governing Equations

The numerical simulations solve the compressible Navier-Stokes equations without any tur-
bulence wall modelling or known as Direct Numerical Simulation (DNS). The DNS simulations
were done with the in-house discontinuous Galerkin spectral element code HORSES3D [25]. The
flow variables are made dimensionless using LRef , TRef , pRef and the reference velocity Uref

for the steady inflow case, resulting in a unit-length Reynolds number Re =100 000 and Mach
number 0.2. The dimensionless compressible Navier-Stokes equations in conservative form take
the form
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∂q

∂t
+ ∇ · (fa − fv) = s, (1)

where q = [ρ, ρu, ρv, ρw, ρE]T are the conservative variables, E is the specific internal energy
and s is a source or volumetric forcing term. Advective (fa) and viscous (fv) fluxes are expressed
in primitive variables as equations (2) and (3), respectively.
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The equation of state for ideal gas takes the form

p = (γ − 1) ρ

[
E − u2 + v2 + w2

2

]
, (4)

and Sutherland’s law is used for the dynamic viscosity

µ =
1 + Tsuth/TRef

T + Tsuth/TRef
T

3
2 , (5)

where Tsuth = 110.4 K. The dimensionless thermal conductivity is expressed as

κ =
µ

(γ − 1)Pr M
, (6)

where Pr is the Prandtl number, assumed to be constant and equal to 0.72. The stress tensor,
using Stokes hypothesis, is defined as

τ = µ
(

(∇v)T + ∇v
)
− 2

3
µ (∇ · v) I (7)

The simulations are performed using 3rd-order polynomials with Gauss nodes. Time inte-
gration is performed with an explicit 3rd-order Runge-Kutta scheme. A standard discontinuous
Galerkin discretization of the inviscid fluxes is done using Roe’s method for the Riemann problem
and the Bassi-Rebay 1 scheme is used for the discretization of the viscous fluxes.
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2.2 Flow configuration

The study is performed with an extruded bump geometry (2.5D) inside a channel. This
geometry is based on Saavedra’s experiment [11]. This geometry is defined with a Bezier curve
with 11 control points to ensure C1 and C2 continuity. The bump maximum height (summit) and
the channel height are 0.036 m and 0.17 m, respectively, resulting in a throat width of 0.134 m and
a blockage ratio of 21.2 %. This setup is given in Figure 3. The detail of the boundary conditions
is given in Table 1 with the reference density is ρRef=1.184kg/m3. This domain is discretised
with high-order mesh into two meshes; 63,864 elements (laminar separation simulations) and
192,000 elements (turbulent separation simulations). Third order (3rd) polynomial is used in all
simulations and results in 4,087,296 and 12,288,000 Degrees of Freedom (DOF) for the laminar
and turbulent separation, respectively. A fringe is applied to prevent upstream contamination
of the solution caused by reflections from the outlet. Convergence study of the mesh has been
done considering h and p refinements, but is not discussed in this study [16]. The geometry
and flow conditions are identical with previous study on the impact of oscillating inflow, see
Marbona et al. [16].
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Figure 3: Computational domain and representative mesh for spectral element computations [16].

Table 1: Boundary Conditions

[BC1] Inlet Total pressure pt and total temperature Tt = 291.2 K
[BC2] Outlet Static pressure: p = 101 325 Pa
[BC3] Wall No-slip, adiabatic
[BC4] Sides Periodicity
[BC5] Synthetic Jets Oscillating Poiseuille boundary condition

Reference flow conditions are defined in which the inlet total pressure is constant and equal
to pt = 105319 Pa and the inlet total temperature is Tt = 291.2 K; this case is referred to as
the laminar boundary with no actuation case. Under these conditions, the mean velocity at
the inlet section is URef = 68.158 m/s, and the static temperature at inflow (which is taken as
reference temperature) is TRef= 288.9 K. The resulting flow has (unit length) Reynolds number
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Re = ρRefURefLRef/µRef ≈ 100, 000 and Mach number M = URef/cRef = 0.2, where ρRef ,
µRef , and cRef are respectively the density, dynamic viscosity and speed of sound based on
the reference temperature and pressure (TRef and pRef=101325 Pa) and LRef is an arbitrary
reference length which is chosen as LRef = 1 m. In these flow conditions, the laminar boundary
layer separates around the bump summit. It creates a separated shear layer and experiences an
abrupt transition process along with a self-excited shedding of spanwise-dominant KH vortices.
The length of the streamwise distance of the separated region is L(s,steady) = 0.2782 m. The
Reynolds number is based on the length of the separated region Re ≈ 27, 000. Furthermore,
the Reynolds number based on the momentum thickness of the boundary layer at separation is
Re(θ,s) = 27. Turbulent boundary layer conditions are imposed using turbulent zero pressure
gradient (ZPG) Poiseuille flow data as inflow. This data is obtained from an auxiliary simulation
with identical cross-sectional dimensions to a turbulent plane Poiseuille flow under identical flow
conditions.

2.3 Synthetic jet actuation

A synthetic jet is applied at a location from x=0.1025 m to x=0.1075 m and extended in the
spanwise direction to induce a 2D disturbance. This location is just upstream of the separation
point, as illustrated in Figure 4. Dirichlet boundary conditions are imposed using an oscillating
Poiseuille solution, which ensures a zero-net mass flux and maintains a continuous streamwise
velocity profile. The synthetic jet is ejected vertically and is described in detail by Eqs. (8), (9),
and (10)[26].

v(x, t) =
Ajet

iρωjet

{
1 −

cosh
[√

ωjet/2ν (1 + i)x
]

cosh
[√

ωjet/2ν (1 + i)hjet
]} (8)

u(x, t) = w(x, t) = 0 (9)

p(x, t) = p̄(x)no jet (10)

where Ajet is the amplitude of the synthetic jet velocity relative to the reference velocity
Ajet = Ujet/URef , ωjet is the frequency of actuation ωjet = 2πf∗jet, f

∗
jet = fjet LRef/URef is the

dimensionless frequency of the actuation, t∗ = tURef/LRef is a dimensionless time and t∗0 is a
reference instant.

Figure 4: Location of synthetic jet boundary condition – oscillating Poiseuille .
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2.4 Mode decomposition

A data-driven decomposition method has been developed to distinguish organized large-scale
dynamics from chaotic ones. The method originates from the Hilbert transform and decomposes
signals into their components based on frequency bandwidth. Equation (11) expresses this
generalized idea using wavelet transform filtering.

X̃(l, t′, θ) =

∫ ∞

−∞
X̂(k)ψ̂∗

l,t′,θ(k)dk (11)

The wavelet transform filtering decomposes the spatiotemporal data by frequency binning of
the temporal component to obtain the temporal coefficient. The spatial mode is the residual
function, which, when multiplied by the temporal coefficient, forms the spatiotemporal mode.
The decomposition has been implemented in the study and can distinguish the most dominant
modes in the instantaneous flow field. Figures 5 and 6 depict the Kelvin-Helmholtz and the
bubble shedding identified through the decomposition, respectively. Each instability is charac-
terized by its spatial structure of the streamwise velocity component, R(u), and normal, R(v),
velocity component. The normalized frequency of the shedding in the laminar separation case,
f∗shed, is 2.8. In the turbulent boundary layer setup, this frequency is 2.5.

Figure 5: Two dominant instabilities: KH (left) and shedding (right) instability with its corresponding
frequency for laminar boundary layer separation over the bump without actuation.

Figure 6: Low frequency flapping with its corresponding frequency for laminar boundary layer separation
over the bump without actuation.
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Table 2: Summary of the cases simulated, including the amplitude and frequency of jet actuation, and
its frequency ratio to the shedding frequency f∗shed. The location of mean separation and reattachment
are given along with the length of recirculation region Ls and the relative reduction to the unforced case
∆Ls.

Case Boundary Ajet f∗jet f∗jet/f
∗
shed xs xr Ls ∆Ls

layer (m) (m) (m) (m)

No actuation laminar - - - 0.11 0.3866 0.2782 -
turbulent - - - 0.1149 0.4065 0.2917 -

Actuation laminar 0.04 2 0.71 0.1156 0.3626 0.2470 -0.0312
0.04 15 5.4 0.1180 0.2633 0.1453 -0.0680

Actuation laminar 0.2 2 0.7 0.1184 0.3384 0.2199 -0.0583
0.2 8 2.9 0.1174 0.2912 0.1738 -0.1044
0.2 12 4.3 0.1178 0.2701 0.1523 -0.1259
0.2 15 5.4 0.1180 0.2633 0.1453 -0.1329
0.2 16 5.7 0.1173 0.2598 0.1424 -0.1358
0.2 20 7.1 0.1092 0.2946 0.1854 -0.0928

Actuation turbulent 0.2 2 0.8 0.1193 0.3554 0.2361 -0.0555
0.2 15 6 0.1190 0.290 0.1718 -0.1198

3 RESULTS

Table 2 presents the DNS simulations performed with different setups. The twelve simula-
tions include two cases without actuation for each boundary layer condition and ten cases with
synthetic jet actuation. In the laminar boundary layer condition, two actuation amplitudes, 0.04
and 0.2, are implemented. These magnitudes are consistent with those in Kiya’s experimental
study [24]. The dimensionless frequency of actuation ranges from 2 to 15, approximately 0.7
to 7 times the frequency of shedding. Note that the low frequency of 2 corresponds to the
large vortex cluster as in [16], while the high frequencies aim at the Kelvin-Helmholtz. For
each case, the corresponding separation and reattachment locations are provided. The length
of the separation region is then calculated by subtracting these two values. The separation and
reattachment regions are determined from the zero value of skin friction in the mean flow field,
temporal and spanwise average. In the actuation cases, the reduction in the separation region is
given relative to the no-actuation case of the corresponding boundary layer condition. In Table
3, the reduction percentage is also provided relative to the no-actuation case and the maximum
reduction of each setup.

Without the synthetic jets, the difference between the separation regions of the laminar and
turbulent boundary layers is identifiable. The turbulent boundary layer separates and reattaches
further downstream than the laminar one, producing a slightly longer recirculation region overall.
The time-averaged streamwise velocity flow field provides better insight into the recirculation
region, as presented in Figure 7. The locations of separation and reattachment can be estimated
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Table 3: Percentage of reduction in the recirculation relative to the unforced case.

Case Boundary Ajet f∗jet f∗jet/f
∗
shed ∆Ls/(Ls)no jet ∆Ls/(∆Ls)max

layer (%) (%)

Actuation laminar 0.04 2 0.71 -11.2 -45.9
0.04 15 5.4 -24.5 -100

Actuation laminar 0.2 2 0.7 -20.9 -42.9
0.2 8 2.9 -37.5 -76.9
0.2 12 4.3 -45.2 -92.7
0.2 15 5.4 -47.8 -97.9
0.2 16 5.7 -48.8 -100
0.2 20 7.1 -33.3 -68.3

Actuation turbulent 0.2 2 0.8 -19.0 -46.3
0.2 15 6 -41.1 -100

from the zero-value streamwise velocity on the surface. In the laminar settings, a significant
portion of the ’dead air’ region exists after separation, indicating a pressure plateau on the
surface and a long bubble. For the turbulent conditions, there is no ’dead air’ region, and the
separated region is pushed towards the surface.

Figure 7: Time average streamwise velocity. Left: laminar boundary layer; Right: turbulent boundary
layer.

In the cases with actuation, the introduction of disturbance just upstream of the separation
location pushes the separation region slightly more downstream in a nonlinear manner. It
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also affects the reattachment location non-linearly, reducing the recirculation region for the
tested amplitude and frequency range. The disturbance reduces the ’dead air’ region in the
mean flow field, promoting an earlier entrainment process. The maximum reduction occurs
around a dimensionless actuation frequency of 15-16. These values correspond to 5.4 and 5.7
for the laminar separation with an amplitude of 0.2, accounting for a 48 − 49% reduction in
the separation region, respectively. For the same amplitude but with turbulent conditions,
the maximum reduction measured is 42% relative to the no-actuation cases with turbulent
conditions.

Sensitivity maps are created to better locate the optimum frequency of actuation. Figure
8 shows the map relative to the no-actuation cases. In the laminar boundary layer, the effect
of amplitude on the reduction appears to have a logarithmic relationship, which aligns with
Kiya’s experimental study[24]. Moreover, the maximum reduction measured closely mirrors the
outcomes of that study. Figure 9 presents the map relative to the maximum reduction observed
for each amplitude and boundary layer condition. The results condense into a similar trend for
all setups and show good agreement with Sigurdson’s study [18]. The optimum frequency for
maximum reduction in the recirculation region is 5 to 6 times the frequency of shedding.

Figure 8: Sensitivity map of optimum actuation frequency and the corresponding reduction in separation
length at different jet amplitude and boundary layer condition.

Figures 10 and 11 depict the instantaneous spanwise vorticity fields in the actuation cases
with amplitude 0.2 and frequencies of 2 and 15, respectively. Laminar and turbulent separation
cases are compared at identical jet phases. In the laminar separation case at a frequency of
2, periodic generation of a large vortex cluster comprising smaller vortices occurs, pulling the
fluid together in the recirculation region, akin to those induced by inflow fluctuations [16]. In
contrast, the turbulent setup shows a diffuse artifact of the vortex cluster with smaller eddies.
At an actuation frequency of 15, different observations emerge. For the laminar separation
case, a dominant spanwise vortex forms from the synthetic jet’s interaction with the separated
shear layer, traveling downstream near the bump’s surface and amalgamating with other vor-
tices. For the turbulent separation case, such vortices are less visible, suggesting either earlier
amalgamation or alternative mechanisms at work.

Figure 12 presents the spatial structure of vertical velocity in the most energetic mode for the
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Figure 9: Sensitivity map of optimum actuation frequency and the corresponding reduction in separation
length relative to the maximum reduction at different jet amplitude and boundary layer condition.

Figure 10: Instantaneous spanwise vorticity with Ajet=0.2 and f∗jet=2. Left: laminar boundary layer;
Right: turbulent boundary layer. The jet actuation phase from top to bottom: 0◦, 90◦, 180◦, and 270◦.
The arrows indicate the state of the jet velocity.

actuation cases. Two scenarios are depicted, both with an amplitude of 0.2, but with frequencies
of 2 and 15. Under laminar boundary layer conditions, the dominant mode at low actuation
frequencies exhibits a frequency higher than the actuation frequency, which is indicative of the
vortex cluster mechanism. The occurrence of a frequency higher than the actuation frequency
suggests that this mechanism does not manifest uniformly across all phases, consistent with
the findings of Marbona et al. [16]. At high actuation frequencies in laminar conditions, the
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Himpu Marbona, Daniel Rodŕıguez, Alejandro Mart́ınez-Cava, and Eusebio Valero

Figure 11: Instantaneous spanwise vorticity with Ajet=0.2 and f∗jet=15. Left: laminar boundary layer;
Right: turbulent boundary layer. The jet actuation phase from top to bottom: 0◦, 90◦, 180◦, and 270◦.
The arrows indicate the state of the jet velocity.

dominant mode involves vortices generated by the interaction with the separated shear layer,
promoting the Kelvin-Helmholtz vortices. In turbulent boundary conditions, the dominant
mode is observed at a dimensionless frequency between 1.7 and 1.9, indicating that it is likely
not influenced by the synthetic jet frequency.

Figure 12: The spatial structure of vertical velocity in the most energetic mode for actuation cases. Top:
Ajet=0.2 and f∗jet=2; Bottom: Ajet=0.2 and f∗jet=15. Left: laminar boundary layer; Right: turbulent
boundary layer.
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Figure 13 depicts the mean flow field of turbulence kinetic energy (TKE). According to
Sigurdson [18] and Dandois et al. [23], there is a correlation between the reduction of the
separated flow region and an increase in TKE, which enhances the entrainment process. From
the figure, this relationship appears evident at low actuation frequencies. However, from the
optimal actuation frequency, the proximity of high TKE areas to the surface and separation
location seem more critical than their overall size.

Figure 13: Time average turbulence kinetic energy (TKE). Left: laminar boundary layer; Right: tur-
bulent boundary layer.

4 CONCLUSIONS

Active control of separated flow is studied at both low and high frequencies, with the goal
of promoting Kelvin-Helmholtz instabilities at high frequencies and large vortex clusters at low
frequencies, as described in [16]. Cases with laminar and turbulent incoming boundary layers
are considered. The findings reveal that the most efficient strategy involves energizing the KH
vortices, as even a weak forcing amplitude is sufficient to shorten the recirculation region. In
contrast, low-frequency actuation in the laminar boundary layer can promote the formation of
large vortex clusters but requires stronger forcing and is less effective overall.

Sensitivity maps are constructed at different forcing frequencies to determine the optimal
actuation frequency. These maps show good agreement with the findings from Sigurdson’s study
on both laminar and turbulent boundary layer separations. The optimal actuation frequency is
estimated to be between 5 to 6 times the shedding frequency (fshed). Although this physical
phenomenon persists in chaotic turbulent flows, it can be difficult to distinguish from other
features in the instantaneous flow field. A data-driven decomposition method is used to analyze
the chaotic flow and identify its dominant modes, allowing for the precise determination of the
optimal frequency. This approach helps to establish the optimal forcing frequency for various
geometric configurations and flow conditions.
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Himpu Marbona, Daniel Rodŕıguez, Alejandro Mart́ınez-Cava, and Eusebio Valero

[24] M. Kiya, M. Shimizu, and O. Mochizuki, ”Sinusoidal forcing of a turbulent
separation bubble,” Journal of Fluid Mechanics, vol. 342, pp. 119–139, 1997.
https://10.1017/10.1017/S0022112097005521

[25] E. Ferrer, G. Rubio, G. Ntoukas, W. Laskowski, O. Mariño, S. Colombo, A.
Mateo-Gab́ın, H. Marbona, F. Manrique de Lara, D. Huergo, J. Manzanero, A.
Rueda-Ramı́rez, D. Kopriva, and E. Valero, ”HORSES3D: A high-order discon-
tinuous Galerkin solver for flow simulations and multi-physics applications,” Com-
puter Physics Communications, 108700, https://doi.org/10.1016/j.cpc.2023.108700, 2023.
https://doi.org/10.1016/j.cpc.2023.108700

[26] H.-L. Ma and C.-H. Kuo, ”Theoretical analysis of an oscillatory plane Poiseuille flow—A
link to the design of vortex flow meter,” Physics of Fluids, vol. 29, 053602, 2017.
https://doi.org/10.1063/1.4984006

16


	INTRODUCTION
	NUMERICAL SETUPS
	Governing Equations
	Flow configuration
	Synthetic jet actuation
	Mode decomposition

	RESULTS
	CONCLUSIONS

