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Summary. This research explores the application of the adjoint method for optimizing geom-
etry in turbulent flows. Turbulent flows present significant challenges in computational fluid
dynamics (CFD), often requiring computationally expensive simulations for accurate predic-
tions. The adjoint method offers an efficient approach by providing sensitivity information
crucial for optimization. This study investigates the integration of the adjoint method with
turbulent flow simulations, specifically employing the Spalart-Allmaras model in a Venturi-type
pipe, to optimize geometry for specific performance objectives.

1 Introduction

Geometry optimization is a cornerstone of modern fluid mechanics, with applications that
significantly enhance aerodynamic performance in vehicles and boost efficiency in industrial
processes. The main methods used in geometry optimization include parameterization, the
adjoint method, artificial intelligence techniques, and genetic algorithms.

Artificial intelligence techniques [1], such as machine learning and neural networks, are used
to model complex systems and predict optimal solutions. These methods handle large data
sets and uncover patterns that traditional optimization methods might miss. Parameterization
involves defining a set of parameters that describe the geometry or system to be optimized [2].
Using a systematic variation of these parameters, optimal configurations can be identified that
meet the desired performance criteria. Genetic algorithms, [3], inspired by natural selection,
evolve a population of candidate solutions through selection, crossover, and mutation opera-
tions to identify the best-performing individuals. Both parameterization and genetic algorithms
are computationally intensive, with a tendency to converge slowly or become trapped in local
minima, often leading to suboptimal solutions. The adjoint method is used to efficiently compute
the gradient of a performance measure with respect to design variables, guiding the optimization
process, particularly useful in fluid dynamics and other continuous systems. In this work, we
have opted for the adjoint method, as it allows us to derive physical insights from the governing
equations of the problem’s dynamics.
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The first time in history that adjoint equations were used for design was in 1970 by [4], but
it was not until 1988, [5, 6], that the first applications were made in the field of computational
fluid dynamics (CFD). From this point on, CFD codes for optimization began to be developed,
[7, 8]. For a comprehensive review of these early algorithms, refer to [9], and for an introductory
look at the field, see [10].

Adjoint methods have transformed optimization in fluid mechanics by enabling efficient sen-
sitivity analysis. They compute the gradient of an objective function with respect to numerous
design variables within a single simulation, using equations derived directly from the govern-
ing flow dynamics [11]. This significantly reduces computational costs compared to traditional
methods that require multiple direct simulations. Adjoint methods offer accurate gradient in-
formation essential for guiding the optimization process toward the optimal solution.

Understanding the distinctions between continuous and discrete adjoint methods is crucial for
selecting the appropriate technique for a given optimization problem. The continuous adjoint
method involves deriving adjoint equations in a continuous form before discretizing them for
numerical solutions, ensuring consistency with the continuous governing equations, [11, 12]. On
the other hand, the discrete adjoint method first discretizes the governing flow equations, and
then derives adjoint equations from the discrete system, ensuring consistency with the numerical
scheme used for the direct problem, [13, 14].

Due to the fact that many aerodynamic problems are studied under turbulent conditions,
it is essential to develop methodologies specifically tailored for these regimes. Examples of
studies using the continuous adjoint method for turbulent flows can be found in [15, 16, 17]
for Spalart-Allmaras model or [18] for k − ω model. These optimization methods often require
pre-calculation of gradients, which can be computationally intensive and time-consuming.

In turbulent models, certain terms depend on the distance from a point to the boundary,
complicating equations and increasing computational complexity. The proposed methodology
aims to simplify these terms and focus on essential sensitivities, making the optimization process
more manageable and efficient. Additionally, the proposed continuous adjoint method is designed
to be generalizable to unsteady cases, ensuring its applicability to a wider range of practical
problems, opening a new line of study for more complex phenomena.

The development of a new continuous adjoint method for geometry optimization is driven by
the need to overcome the limitations of existing approaches and address the distinct challenges
of turbulent and unstable flows. This novel methodology is poised to significantly increase
efficiency, accuracy, and versatility in optimization techniques.

This study is based on a previous work [19] where we derived the sensitivity for unsteady
laminar flows. Our specific aim is to develop a robust formulation applicable to turbulent flows
and validate this formulation with the optimization of the pressure drop in a Venturi device.

2 Theoretical Framework

Optimization problems can be classified as either unconstrained or constrained. On the one
hand, the goal of an unconstrained optimization problem is to find the state of the system, q,
that minimizes or maximizes a scalar of the system, the cost function, J . We assume that J
belongs C1 class, with a particular value of q that cancels the gradient, dJ /dq . In most cases,
this cancelation is impossible, and we can only act on a set of control parameters, g. On the
other hand, the goal of constrained optimization is to minimize or maximize the cost function,
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J , by acting on g, where q and g are subject to F(q,g) = 0.
In addition, we have to make a distinction between stationary and nonstationary problems,

since the parameter to optimize does not have to depend on time, we have to integrate with
respect to it and add another constraint that imposes the initial conditions.

2.1 Steady case

To calculate the sensitivity (the gradient) of the cost function, we introduce the Lagrangian
functional as:

L(q,g, λ) = J − λ · F(q,g), (1)

where λ is the adjoint variable. A variation of the Lagrangian follows the expression:

δL =
∂L
∂q

δq+
∂L
∂g

δg +
∂L
∂λ

δλ. (2)

The extreme condition is enforced on, since the Langrangian reaches an extremum if δL = 0 for
all variations, therefore the following conditions on the derivatives are imposed:

∂L
∂q

= 0,
∂L
∂g

= 0,
∂L
∂λ

= 0. (3)

Developing these derivatives from Equation (1), we obtain the following expressions:

∇qL :=
∂L
∂q

=
∂F

∂q

T

λ− ∂J
∂q

= 0, (4)

∇gL :=
∂L
∂g

=
∂F

∂g
λ− ∂J

∂g
= 0, (5)

∇λL :=
∂L
∂λ

= −F = 0. (6)

Equation (4) is so called the adjoint equation, Equation (5) is the optimization equation over
g, and the Equation (6) recovers the state equation of the model.

2.2 Unsteady case

Unlike the steady case, in the unsteady case the state equation depends on time,

F(q(t),g, t) =
dq

dt
−N(q,g, t) = 0, (7)

with a initial condition F0(q,g, t0) = q(t0) − q0 = 0, where N includes the terms that do not
involve a time derivative.

The Lagrangian can be defined as:

L = J −
∫ T

t0

(λ · F)dt− µ · F0. (8)

where λ, µ are the adjoint variables and T corresponds to the temporal window.
The optimization system is derived by setting to zero the variation of the Lagrangian with

respect to all variables, like the steady case, recovering the optimization system.
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3 Methodology

3.1 Description of the problem

To validate the methodology, we consider a two-dimensional venturi device, as depicted
inFigure 1.
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Figure 1: Sketch of the venturi device.

A Venturi device, or Venturi tube, utilizes Bernoulli’s principle to measure fluid flow. It has
three main sections: a converging inlet, a narrow throat, and a diverging outlet. As fluid flows
through the device, its velocity increases and pressure decreases in the throat. This principle
is used for applications such as flow measurement, aeration, mixing, and fuel delivery systems.
The Venturi device is valued for its accuracy and simplicity in various industrial and scientific
uses.

The Venturi device has specific dimensions that are crucial for its operation. In the analysis
presented here the ratio of the diameter of the throat (d) to the diameter of the inlet (D) is
β = d/D = 0.8. Furthermore, the convergence angle (θ1) of the Venturi is 21º. This angle defines
the tapering of the inlet section as it narrows down to the throat, influencing the acceleration of
the fluid entering the throat. The divergence angle (θ2) set to 7º, which describes the gradual
expansion of the device after the throat.

3.2 Mesh Generation and Structure

The structured mesh was generated using Gmsh and carefully designed to balance computa-
tional cost and the need for precision in key areas of interest. In Figure 2, the velocity profile
is depicted in three critical sections of the device: before contraction, in the throat of contrac-
tion, and after expansion. These profiles are presented for different numbers of mesh-generating
points, illustrating how the resolution of the mesh affects the accuracy and detail of the simu-
lated flow. The figure also illustrates the convergence of the solution and an intermediate mesh
has been selected for the simulations.
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Figure 2: Velocity profiles at three sections of the device—before the contraction, at the throat,
and after the expansion—for different values of the mesh generation parameter n. The parameter
n indicates the number of points used to generate the mesh.
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Figure 3: Computational mesh with 186290 elements.

3.3 Mathematical model

The fluid density, ρ, and the kinematic viscosity, ν, are assumed constant; therefore, the
non-dimensional parameter for this problem is the Reynolds number, Re = u∞D

ν , where u∞ is
the free-stream velocity. The evolution of the fluid is ensured by the Navier-Stokes and Spalart-
Allmaras equation for imcompressble flow:

∂u

∂t
+ (u · ∇)u = −∇p+∇ · ((ν + νt)∇u) + f , (9)

∇ · u = 0, (10)

SA =
∂ν̃

∂t
+ u · ∇ν̃ − Cb1S̃ν̃ +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + Cb2|∇ν̃|2

]
− Cw1fw

(
ν̃

d

)2

= 0, (11)

where u represents the velocity vector, while p denotes the pressure. The kinematic viscosity
of the fluid is given by ν, and ν̃ is the eddy viscosity. The turbulent viscosity is defined as
νt = ν̃fv1. The modified magnitude of the vorticity is S̃ = Ω+ ν̃

κ2d2
fv2, where Ω =

√
2ΩijΩij is

the magnitude of the vorticity, and Ωij =
1
2

(
∂ui
∂xj

− ∂uj

∂xi

)
is the vorticity tensor. The variable d

represents the distance to the nearest wall. Model constants include Cb1, Cb2, Cw1, Cw2, Cw3, σ, κ,
and Cv1, [20]. Additionally, f signifies an external force acting on the fluid. The damping
functions fv1, fv2, and fw are defined as follows:

fv1 =
χ3

χ3 + C3
v1

, χ =
ν̃

ν
, (12)

fv2 = 1− χ

1 + χfv1
, (13)

fw = g

[
1 + C6

w3

g6 + C6
w3

] 1
6

, (14)
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where

g = r + Cw2(r
6 − r), r =

ν̃

S̃κ2d2
. (15)

The boundary conditions are u = u0 at the inflow, u = 0 on walls, and pn − 1
Re∇u =

0 at the outflow , where n the normal vector on the surface. Finally, combining Equation (8)
with Equation (9),Equation (10) and Equation (11), the Lagrangian to calculate the sensitivity
of the flow to geometry modifications is defined as:

L =C − 1

T

∫ T

0

∫
Ω
u† · (∂u

∂t
+ (u · ∇)u+∇p−∇ · ((ν + νt)∇u)− f)dΩdt

− 1

T

∫ T

0

∫
Ω
p†∇ · udΩdt− 1

T

∫ T

0

∫
Ω
ν†SAdΩdt, (16)

where

C = − 1

T

∫ T

0

∫
Γ1

(p+
1

2
u2)u · ndΓdt− 1

T

∫ T

0

∫
Γ2

(p+
1

2
u2)u · ndΓ, (17)

is the mean of the difference of total presure, SA is the transport equation of the turbulent
model, Γ1 is the inlet and Γ2 is the outlet.

3.4 Sensitivity of a cost function by shape changes

The objective is to obtain an analytical formula that gives us the sensitivity to changes in
geometry from which we can obtain an interpretation of the physics of the problem.

Once we have managed to calculate the sensitivity to changes in the boundary condition,
we can use it to calculate the sensitivity to changes in geometry, need the following theorem
[21, 22]:
Let Γ0 the initial boundary, (u, p) the solution of Navier-Stokes equations, and Γ′ a perturbation
on the boundary. The perturbation flow, (u′, p′) induced by the variation of the boundary
satisfies the linearized Navier- Stokes’s equations with the following boundary condition on the
cylinder:

u′ = −∂u

∂n
(v · n), (18)

where v is defined by Γ0−Γ′. That is, at first order, we have an identification of a perturbation
in the geometry with one in the initial conditions.

If we apply this result to the sensitivity to boundary conditions, we can obtain the following
expression for sensitivity to changes in geometry,

∇ΓC = ⟨σ(−p†,u†)n,−∂u

∂n
⟩n+

1

a
⟨(ν + ν)

∂ν†

∂n
,
∂ν

∂n
⟩n. (19)

This equation is derived assuming that the boundary condition is now g = 0, since we focus
only on changes to the geometry of the immersed body.

Looking at the above equation, we see that the sensitivity to changes in geometry is the
projection of the sensitivity to perturbation at the boundary condition on the walls onto the
normal derivative of the velocity on the surface ∇ΓC = ⟨∇gC,−∂u

∂n⟩n.
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4 Preliminary Results

In the first part of the study, a laminar flow, Re = 500, within the device was chosen
to validate the sensitivity equations obtained. Using Equation (19), we obtained a law that
indicates the optimal way to deform the surface geometry.

In Figure 4, the sensitivity in the venturi contraction section is shown, where the need to
increase the convergence angle to eliminate it.

Figure 4: Sensitivity at the contraction secction.

If a perturbation in the geometry is introduced following this expression, Γ = Γ0 − α∇ΓC,
where α is a control parameter. To first order, a Taylor expansion for the cost function in terms
of α is obtained:

C ∼ C0 − α⟨∇ΓC,∇ΓC⟩, (20)

or equivalently
C − C0 ∼ −α⟨∇ΓC,∇ΓC⟩, (21)

The behaviour of Equation (21) is illustrated in Figure 5, when α takes on low values, the
numerical data closely aligns with the theoretical predictions derived from the Taylor series
expansion. The difference between the theoretical value and the numerical data is only 1.2%,
indicating that for small perturbations, the Taylor series provides an accurate approximation of
the cost function behavior, validating the theoretical model with numerical results.
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Figure 5: Pressure drop behavior in response to changes in geometry.

5 Conclusions

The established bijection between perturbations in shape and boundary conditions on the
shape has led to a significant physical expression of sensitivity, directly linking geometric changes
to boundary condition perturbations. These findings not only validate the theoretical underpin-
nings of our approach but also underscore its potential for broader applications. The preliminary
results strongly support the effectiveness of the proposed methodology, suggesting its promise
for advancing the analysis of unsteady turbulent flows. Future work will focus on refining this
approach and extending its application to more complex flow scenarios, further demonstrating
its versatility and impact in the field.
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