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Abstract

Collective variables (CVs) are a fundamental tool to understand molecular flexi-

bility, to compute free energy landscapes, and to enhance sampling in molecular dy-

namics simulations. However, identifying suitable CVs is challenging, and increasingly

addressed with systematic data-driven manifold learning techniques. Here, we provide

a flexible framework to model molecular systems in terms of a collection of locally valid

and partially overlapping CVs: an atlas of CVs. The specific motivation for such a

framework is to enhance the applicability and robustness of CVs based on manifold

learning methods, which fail in the presence of periodicities in the underlying confor-

mational manifold. More generally, using an atlas of CVs rather than a single chart

may help us better describe different regions of conformational space. We develop

the statistical mechanics foundation for our multi-chart description and propose an

algorithmic implementation. The resulting atlas of data-based CVs are then used to

enhance sampling and compute free energy surfaces in two model systems, alanine

dipeptide and β-D-Glucopyranose, whose conformational manifolds have toroidal and

spherical topology.
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1 Introduction

Collective variables (CVs) provide a coarse-grained, low-dimensional description of molec-

ular conformations, and thus help us rationalize many molecular systems including atom

clusters1–3 , small molecules,4–6 polypeptides7 or proteins.8–10 If CVs are able to separate

the metastable states of the system, then they can be used to enhance sampling in molecular

simulations and to efficiently compute free energy surfaces.11 Furthermore, since CVs often

represent the slowly relaxing degrees of freedom of the system, they may be the basis of re-

duced models for conformational dynamics.12,13 A poor selection of the CVs, however, mixes

metastable states and results in hysteresis and lack of convergence of enhanced sampling

algorithms.14,15

Because the identification of suitable CVs for a given system is a major challenge, there

has been an effort over the last decade to develop strategies based on machine learning, more

specifically dimensionality reduction methods,16 to find systematically such low-dimensional

representations. The most widespread dimensionality reduction method is principal compo-

nent analysis (PCA), a linear method that selects optimal projection directions to maximize

variance. PCA is the basis of the essential dynamics approach to analyze collective motions

of biomolecules,8,17–20 and can be used to enhance sampling in molecular dynamics.21,22

Linear methods, such as PCA, however, fail to identify nonlinear correlations in datasets

of molecular conformation, e.g. as a result of bond rotations or steric interactions.23–25 To

better capture the nonlinear low-dimensional geometry of the accessible region in confor-

mational space, the more recently introduced techniques for nonlinear dimensionality re-

duction (NLDR)26–28 were rapidly applied to understand molecular trajectories, with the

underlying hypothesis that these evolve close to a nonlinear manifold often called intrin-

sic manifold.9,29–31 The idea behind an important subset of NLDR methods is to find a

low-dimensional representation or embedding of the set of conformations such that high-

dimensional distances are preserved as much as possible. The low-dimensional coordinates

of the embedding then become the CVs, provided that a differentiable map is available to rep-
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resent in low-dimensions general conformations (out-of-sample conformations), which are not

necessarily those used in the process of identifying the low-dimensional coordinates.32,33 The

high-dimensional distances can be Euclidean in classic multidimensional scaling,16 geodesic

distances along the intrinsic manifold,9,26 diffusion distances,34,35 or distances transformed

by a sigmoid function to emphasize intermediate length-scales.7 Beyond the nonlinear mani-

fold model, a NLDR method called sketch map was put forth that views the accessible region

of configuration space as a network of basins connected by a spiderweb of transition path-

ways.1,7 This view is not incompatible with the intrinsic manifold model because in principle

this network of basins and transition pathways can be embedded in a nonlinear manifold,

albeit leaving high-energy regions rarely visited.33

Besides using these methods to analyze well-sampled ensembles, a number of methods

have been developed to enhance sampling along nonlinear CVs identified by machine learn-

ing.6,32,33,36 In these approaches, the manifold learning algorithm needs to start with a set of

conformations representative of molecular flexibility to identify the underlying CVs, a train-

ing set in the language of statistical learning, which in itself may be significant challenge.

This problem, however, is less severe than that of obtaining thermodynamically meaningful

ensembles. Specialized methods of conformational exploration2 have been proposed. Fur-

thermore, we showed in previous work that this initial dataset can be transferred from a

simpler and easier to sample model, or can be iteratively constructed in combination with

enhanced simulation passes.33

Despite promising results, these dimensionality reduction approaches face a fundamental

obstacle when dealing with conformational landscapes of non-trivial topology, which are very

common, e.g. as a result of cyclic motions around a dihedral angle. Periodicities prevent

NLDR algorithms from untangling and displaying coherently in low dimensions the relevant

conformational space. Instead, dimensionality reduction methods applied to such systems

can mix conformations belonging to distant basins, collapse transition pathways, and severely

distort parts of the landscape. This can ruin the value of the resulting CVs. This issue was
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identified and discussed in Ref. 36, and has plagued a number of applications of NLDR

methods to molecular simulation.6,31,35,37,38 In Ref. 39, we further examined this issue, and

showed that it manifests itself irrespective of the NLDR algorithm; we considered a non-

metric NLDR method (Locally linear embedding27), and two distance-preserving methods

that use different notions of distance (Diffusion map34 and Isomap26). While acknowledging

the issue, the authors in Ref. 36 did not provide a specific remedy to these topological

obstructions in NLDR, but rather proposed an enhanced sampling algorithm not based

on the classical notion of CV to alleviate the consequences of a deficient mapping to low-

dimensions.

Here, our goal is to develop a general method capable of dealing with systems of arbitrary

topology to realize the potential of manifold learning methods for systematic identification

of CVs. The idea behind our method comes from the realization that analogous issues are

confronted in cartography. The globe is a two-dimensional manifold without boundary. Fur-

thermore, as a result of Gauss’s Egregium Theorem, it is not possible to map even a portion

of the surface of a sphere onto a plane without distorting it. These are fundamental topo-

logical and geometric hurdles to cartography, which are dealt with by mapping the globe

using a collection (atlas) of charts, each describing with appropriate detail a region of limited

extent. Each chart has boundary and is planar, just like the output of a NLDR algorithm.

By reducing the lateral extent of the region covered by a chart, the metric distortion can

be reduced arbitrarily. Here, we examine whether this idea to describe geographical land-

scapes can be transposed to conformational landscapes. Beyond facilitating the application

of manifold learning methods to construct CVs, this approach could have broader appli-

cability. After all, it is natural to expect that a complex molecule may be best described

by different CVs (different charts) in different regions of its conformational space, where

different steric constraints may determine molecular flexibility. With a framework to model

molecular systems with an atlas of CVs, each individual chart could be suitably identified

with manifold learning methods, and still describe a coherent conformational landscape. Fur-
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thermore, the partitioning of configuration space into different regions naturally introduces a

length-scale, in that dimensionality reduction methods can only provide correlations within

the extent of the corresponding partition. It has been argued that it is important to observe

an intermediate length-scale in the NLDR of complex molecular systems.7

However, to our knowledge free energy formalisms and enhanced sampling methods have

only been developed considering a single set of CVs. We devote Section 2 to revisiting the

classical free energy formalisms for a system described by an atlas of multiple partially over-

lapping CVs. This theory shows how to compute seamlessly thermodynamical observables

over a multiple-chart description, and also imposes constraints on the connection between

adjacent CVs for a meaningful statistical mechanics description. In Section 3, we describe

a specific computational method to implement the atlas of CVs, although the formalism

can be applied to other data-driven approaches to build CVs and to other enhanced sam-

pling strategies. Our method is based on the intrinsic manifold model. We identify the

nonlinear manifold around which conformations cluster with the Isomap NLDR algorithm.26

The multiple chart description is then built using systematic graph-partitioning algorithms

combined with the SandCV methodology presented earlier,33 which provides a differentiable

mapping for out-of-sample conformations onto the reduced space of CVs. In section 3, it is

described how to extend naturally an enhanced sampling algorithm from a single set of CVs

to an atlas of CVs, focusing on the adaptive biasing force method (ABF).40 As a first step

to test the applicability of the atlas of CVs framework to molecular modeling, in Section 4

we obtain atlases and perform enhanced sampling simulations to compute the free energy of

two model systems: alanine dipeptide and β-D-Glucopyranose. The first of these molecules

is a standard benchmark in the field of identification of CVs by statistical/manifold learn-

ing. Good CVs in terms of dihedral angles are known for these systems, which provide a

basis for comparison with data-driven CVs. Furthermore, the intrinsic manifold on which

the conformations evolve has non-trivial topology in both cases (that of a torus and of a

sphere), which if improperly dealt with, has led in the past to failures in manifold learning
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algorithms, see 39 and references therein.

2 Theory

Before introducing an atlas description of a molecular system, we review the standard for-

malism based on a single CV. Consider a N -atom system with separable Hamiltonian and

potential energy V(r). Mathematically, a CV is a differentiable mapping taking a conforma-

tion r in high-dimensional configurational space D = R3N and mapping it to ξ, a point in

low-dimensional space Rd, where d� 3N . We denote this mapping by ξ = C1(r). The free

energy along this CV, up to an additive constant, can be defined as

A1(ξ) = − 1

β
ln

∫
D1

e−βV(r)δ(C1(r)− ξ) dr, (1)

where δ(·) is the Dirac delta distribution,11,41 and 1/β = kT is the Boltzmann constant times

temperature. For any given value of the collective variable ξ, the level set L1(ξ) is the set of

all molecular conformations r that are mapped onto ξ, i.e. C1(r) = ξ. Applying the co-area

formula,42 the free energy can be written as an integral over the level set L1(ξ) as

A1(ξ) = − 1

β
ln

∫
L1(ξ)

e−βVvol(DC1)−1 dσξ, (2)

where DC1 is the Jacobian matrix of the CV, dσξ is the volume element of L1(ξ) and

vol(DC1) =
√
|DC1DCT1 |. | · | stands for the determinant. If the CV has been chosen

appropriately, then the probability distribution along the level sets L1(ξ) should be not too

different from a gaussian, i.e. the system should not exhibit transversal metastability.

Figure 1 illustrates some of these concepts, with the high-dimensional configurational

space represented by a box, and the level set of the scalar CV, ξ = C1(r), represented in

red. In black, we represent the intrinsic manifold for this system, which passes close to the

energy basin within this red level set. It is clear from the figure that, if the transverse energy
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Figure 1: Graphical illustration of high-dimensional configuration space D, described in the
left by collective variable C1, in the right by C2, and in the central overlapping region by
both. The surfaces illustrate the level sets. The level set in the middle can be described
either as C1(r) = ξ or as C2(r) = ϕ(ξ).

landscape was complex with multiple basins, exhibiting transverse metastability, then the

notion of intrinsic manifold would become less apparent. The intrinsic manifold is not strictly

required in the free energy formalism, but will become useful later. In this simple illustration,

configuration space in three-dimensional, there is a single collective variable (d = 1), hence

the intrinsic manifold is one-dimensional, and the level sets are two-dimensional (3N−d = 2).

For the molecular systems examined later, the intrinsic manifold is two-dimensional (d = 2),

whereas the level sets and configuration space are higher-dimensional and cannot be easily

visualized.

We are now going to use the collective variable C1 to describe the system only in a sub-

region D1 ⊂ D of the full configurational space, and use a different CV, η = C2(r), in another

region of configuration space D2 ⊂ D, which partially overlaps with D1 (D1 ∩ D2 6= ∅).

Examining Eq. (2), it is clear that the free energies along these two CVs can only be related

in the overlapping region if their respective level sets can be mapped to each other. For this

to be the case, there must exist a one-to-one transition mapping ϕ : D1 ⊂ Rd → D2 ⊂ Rd

such that

C2(r) = ϕ ◦ C1(r) (3)
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for r ∈ D1 ∩D2. If this is the case, then the hyper-surface given by C1(r) = ξ can also be

characterized using the second CV as C2(r) = ϕ(ξ).

We assume for now that such a transition mapping η = ϕ(ξ) exists and leave for later

an explicit construction. This mapping provides a connection between different CVs and a

means to build a meaningful global statistical mechanics description of the system. Indeed,

we can write Eq. (2) for the second CV as

A2(η) = − 1

β
ln

∫
L2(η)

e−βVvol(DC2)−1 dση. (4)

Using the chain rule on Eq. (3), we have the relation between Jacobian matrices DC2(η) =

Dϕ(ξ) DC1(ξ). Furthermore, we note that vol(DϕDC1) = |Dϕ| vol(DC1).43 Thus, recalling

that L2(η) = L1(ξ), we can perform a change of variables in Eq. (4) to obtain

A2(η) = − 1

β
ln

∫
L1(ξ)

e−βV [|Dϕ| vol(DC1)]−1 dσξ

= − 1

β
ln

∫
L1(ξ)

e−βVvol(DC1)−1dσξ +
1

β
ln |Dϕ(ξ)|

= A1(ξ) +
1

β
ln |Dϕ(ξ)|. (5)

where we have used the fact that Dϕ only depends on ξ and hence can be factored outside

of the integral.

Equation (5) relates the free energies along the two CVs in the overlapping region. This

expression highlights the fact that the free energy is subjective in that it depends on the

specific parametrization along a collective variable, although observables computed from

it are objective.41,44 The last term in Eq. (5) is reminiscent of a Fixman potential.42,45

Recalling that both A1 and A2 are computed up to an additive constant, Eq. (5) provides a

compatibility relation between these constants.

Now, let us compute thermodynamic observables, such as relative probabilities of states,

in a multiple CV framework. Consider two conformations characterized by regions A and B
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belonging to D1 and D2 respectively. Consider also an auxiliary state C ⊂ D1 ∩ D2. The

relative probabilities between states A and C, and between C and B can be computed as

p(A)

p(C)
=

∫
C1(A) e

−βA1(ξ)dξ∫
C1(C)

e−βA1(ξ)dξ
,

p(C)

p(B)
=

∫
C2(C)

e−βA2(η)dη∫
C2(B)

e−βA2(η)dη
.

Consequently, the relative probability between A ⊂ D1 and B ⊂ D2 takes the form

p(A)

p(B)
=

∫
C1(A) e

−βA1(ξ)dξ∫
C2(B)

e−βA2(η)dη

∫
C2(C)

e−βA2(η)dη∫
C1(C)

e−βA1(ξ)dξ︸ ︷︷ ︸
=1

. (6)

Invoking Eq. (5) and using the change of variable formula, it follows that the second term in

this equation is 1. Consequently p(A)/p(B) can be computed without reference to state C.

This shows that the statistical mechanics of the system can be seamlessly formulated across

multiple CVs. The arguments drawn here extend directly to an atlas of multiple partially

overlapping CVs.

Next, we examine the impact of having multiple CVs on accelerated free energy calcula-

tions. In many enhanced sampling methods, such as metadynamics46 or the adaptive biasing

force method (ABF),40 an approximation to the thermodynamic force at ξ = C(r) along the

CV, denoted by f(ξ) ≈ −DA(ξ) (or f i ≈ −∂A/∂ξi with i = 1, . . . , d), is mapped onto a

force on the atoms that biases the dynamics given by

F j(r) =
d∑
i=1

∂Ci
∂rj

(r)f i (C(r)) . (7)

with j = 1, . . . , 3N , or in matrix notation

F (r) = DCT (r) [f ◦ C(r)] . (8)

In the ideal situation, f is close to −DA(ξ), and the enhanced sampling trajectory undergoes

nearly free diffusion along the CVs irrespective of free energy barriers. Consider now a two-
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CV atlas and r ∈ D1 ∩ D2. Assuming that fα ≈ −DAα (α = 1, 2), a direct calculation

shows that as a result of Eq. (5) the biasing forces given by each CV differ by a geometric

term

F1 ≈ F2 −
1

β
DCT1 [D (ln |Dϕ|)] . (9)

From this equation it follows that when r is in the overlapping region during an enhanced

sampling MD simulation, the algorithm must make a choice for the biasing force F (r), which

cannot simultaneously represent the thermodynamic force along C1 and C2. As we illustrate

in the numerical examples, however, this fact does not seem of any practical importance

because the geometric correction in the equation above is very small.

3 Method

We have shown that it is possible to build a coherent statistical mechanics description of a

molecule in terms of an atlas of CVs, provided that transition mappings exist as in Eq. (3).

However, two questions remain: (1) how to construct practically such an atlas of CVs, and

(2) how to bias a MD simulation along such an atlas. Here, we present an implementation

of the atlas of CVs framework based on a specific method that we presented earlier to

build smooth and nonlinear data-driven collective variables (SandCV),33 which we combine

with enhanced sampling using the adaptive biasing force (ABF) method.40 However, the

framework is general enough to accommodate many other variants, as we discuss later.

3.1 Building an atlas of collective variables

The SandCV method resorts to the intrinsic manifold model for molecular systems. In this

model, it is assumed that the dynamics of the molecule take place close to a manifold (in

general nonlinear) of dimension d embedded in the 3N−dimensional conformational space.

Although it may seem a rather strong assumption, this notion has been shown to be useful in

a number of systems.9,29,30,33,47 This systematic and robust method is graphically summarized
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Figure 2: Graphical summary of the smooth and nonlinear data-driven collective variables
(SandCV) method, presented in detail in Ref. 33. (a) Given a training set of molecular
configurations (represented as points in high-dimensional space D), we use a NLDR method
(here Isomap) to find a low dimensional embedding of these points. (b) Then, we parametrize
the underlying intrinsic manifold with a mapping r =M(ξ), in an exercise of curve-fitting in
higher dimensions. (c) Finally, to define a proper CV, i.e. a differentiable mapping ξ = C(r)
from D onto the low-dimensional CV space, we first map a generic configuration r onto the
intrinsic manifold using the closest-point projection P , and then find the low-dimensional
pre-image of this point applyingM−1. Because of the closest point projection, the level sets
L(ξ) of this CV are hyperplanes normal to the intrinsic manifold.

in Figure 2. We note that a NLDR method provides a way to embed in low-dimensions the

configurations within a training set of configurations, but does not provide immediately a

smooth mapping of a generic out-of-sample configuration r onto low-dimensional space, that

is a proper CV as needed in most enhanced sampling methods. To construct this mapping,

we first parametrize the intrinsic manifold as r = M(ξ) (see Appendix A or Ref. 33 for

details), using standard least-squares fitting and smooth basis functions. Then, starting

from a conformation in high-dimensions r (in general off the manifold), we first compute its

closest-point projection P(r) onto the intrinsic manifold and then find the pre-image through
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the mappingM, i.e. ξ = C(r) =M−1 ◦P(r). This collective variable is differentiable under

mild conditions and in practice, its evaluation requires solving a straightforward nonlinear

minimization problem with d unknowns. Furthermore, its derivative DC can be computed

explicitly.33
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Figure 3: Illustration of the proposed method to implement the atlas of CVs. (a) Using
systematic graph partitioning methods, the training set is partitioned into simpler sub-sets,
here color-coded in red and yellow, and embedded in low-dimensions separately. (b) Then,
the SandCV method can be applied separately to each adjacent partition. Importantly,
because the CVs in the overlapping region share the level sets, which geometrically are
hyperplanes perpendicular to the intrinsic manifold, see Figure 2(c), the transition mapping
ϕ can be explicitly defined in terms of the two overlapping parametrizations of the intrinsic
manifold.

To implement the atlas of CVs, we start by splitting the training set into a few disjoint

partitions, as illustrated in Figure 3(a). This partitioning is efficiently performed in high

dimensions, by first building a connectivity graph of the training set based on the K-nearest

neighbors to each conformation, and then using systematic graph partitioning algorithms,48

combined with a slight enlargement of the partitions to provide overlap, see Appendix A.

This partitioning is performed recursively until each patch is flat enough and devoid of

topological obstructions to be tractable by nonlinear dimensionality methods.49 Then, each

of the training sub-sets is embedded separately in low-dimensions with the NLDR method

of choice, here Isomap.
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This procedure is illustrated in more detail in Figure 4 focusing on alanine dipeptide, a

standard benchmark with a good known CV in terms of two dihedral angles, Figure 4(a).

The training set is visualized in Figure 4(b) using aligned molecular configurations, and in (c)

on the surface of a torus thanks to the dihedral representation. An in-depth discussion about

the topology and geometry of the toroidal intrinsic manifold underlying this molecule has

been presented elsewhere.39 The training sub-sets resulting from the partitioning algorithm

are depicted in (e) as aligned molecular configurations, and in (d) on the torus representa-

tion. The figure clearly shows how partitioning allows us to decompose a manifold without

boundary and with the topology of the torus into four partitions with boundary and the

topology of an open set in Rd, ideally suited for NLDR. The low-dimensional embeddings of

the four partitions are shown in (f).

Now, the SandCV method can be applied separately to each of the partially overlaping

partitions to define an atlas of CVs, {Cα}α=1...L. Importantly, the proposed method provides

ab initio compatible collective variables in the sense of having common level sets in overlap

regions, along with the transition mappings. Indeed, suppose that the intrinsic manifold is

described by two partially overlapping parametrizationsM1 andM2, each of which generat-

ing a collective variable. Because of the closest-point construction of SandCV, the level sets

L1 and L2 are hyper-planes perpendicular to the intrinsic manifold in its vicinity, see Fig-

ure 3(b). Therefore, C1 and C2 share their level sets in the overlap region and the transition

mapping is simply ϕ =M−1
2 ◦M1.

Given a generic molecular configuration r, one last ingredient is required to locate the

active CVs, i.e. the set of CVs that can be used to represent the configuration in low di-

mensions. Because of the partial overlap, in general there can be more than one active CV.

For this, we resort to a partition of unity subordinate to the geometric partition discussed

above and defined in high-dimensional space. See Appendix A for a detailed description of

the algorithm, which poses nearly no computational overhead. This partition of unity is

simply a collection of non-negative functions ψα(r) that are 1 in the interior of each region
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Figure 4: Illustration of the partitioning of a training set of alanine dipeptide (a) into training
sub-sets, which are subsequently embedded in low-dimensions using NLDR. Starting from a
training set of molecular configurations (b), which can be represented in three dimensional
space using the dihedral angles (Φ and Ψ) as a torus (c), we systematically partition the
configurations into four slightly overlapping patches (d,e). Then, by applying NLDR, we
embed the conformations in each patch, devoid of topological obstructions, in low-dimensions
(f).

Dα, smoothly decay to zero in the overlap region, and
∑

α ψα(r) = 1. Thus if ψα(r) > 0, we

know that Cα is an active CV and if ψα(r) = 1, then it is the only active CV.

The ideas presented above provide a data-driven algorithmic framework to automatically

construct an atlas of CVs for systems with general intrinsic manifold topology, without

prior knowledge about the system other than a training set of conformations representative

of molecular flexibility. We apply next this capability to free energy calculations using

enhanced sampling along the atlas of CVs.
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3.2 Enhanced sampling with an atlas of collective variables

The atlas of collective variables can be combined with a variety of enhanced sampling meth-

ods in various ways. For instance, different biased simulations could run independently in

each of the partitions as in a stratification approach, and the trajectories could be combined

to compute free energies adapting WHAM to the multi-CV framework recalling Eq. (5).

In contrast, here, we develop a method in which a single biased MD simulation seamlessly

transits across the different CVs. We consider a specific enhanced sampling method called

adaptive biasing force (ABF) method,40 although others such as metadynamics could be

adapted as well.

Molecular Dynamics Code

active
master

active
slave inactive

Calculate 
CV value

Calculate 
CV value

Evaluate
ABF force

Update 
Histogram

Update 
Histogram

Categorize Charts
1 2 3

r

F 1

f1

Figure 5: Flowchart of an enhanced sampling simulation along an atlas of collective variables.

During a biased MD trajectory, we identify for any configuration r the active charts,

i.e. those whose partition of unity function ψα is greater than a small threshold. In general,

because of overlap, each configuration has several active charts. Since bias forces from

different active charts are different in general, c.f. Eq. (9), we select a master chart, say C1, to

dictate the bias. This chart is selected at each time-step following the criterion maxα ψα(r).

All other active charts are tagged as slave. The biasing force is then computed as

F1(r) = DCT1 (r)f1(ξ)
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where f1(ξ) is the biasing thermodynamic force conjugate to ξ in the master chart and given

by the ABF method. Next, we let all other active charts know about the exerted biasing

force, and project this force along the corresponding CVs. Denoting C2 a slave chart, we

have

f2(η) = Dϕ−T (η)f1(ξ). (10)

The biasing force f1(ξ) and its representation in slave charts f2(η) are binned to generate a

histogram of the mean thermodynamic force. Upon convergence of the algorithm, the free

energy is reconstructed in each chart from the histograms as the potential of mean force. A

visual summary of the procedure is shown in Figure 5. Thus, in this method there is a single

trajectory but one independent free energy surface per chart. Yet, as shown in Section 2, this

multiple chart description is not an obstacle to computing thermodynamical observables.

4 Results

We demonstrate next the concept of atlas of SandCVs, by implementing it in a standard

MD code to perform enhanced sampling simulations and free-energy calculations. MD sim-

ulations were performed in version 2.8 of NAMD50 with Langevin thermostat at 300 K. The

atlas of SandCVs and the ABF algorithm for enhanced sampling are implemented in C++

and communicate with NAMD through a TCL interface.

4.1 Alanine dipeptide

We focus first on alanine dipeptide (N–acetyl–N’–methyl–L–alanylamide) in vacuum. We

generate a training set using multiple short high-temperature MD runs33 with the CHARM22

force field.51 The actual partitioning and low-dimensional embedding used to build an atlas

of CVs, as described in the previous section, is shown in Figure 4. In Figure 6(a), we show

the free energy surfaces (FES) along each of the four CVs systematically identified by the

algorithm. The enhanced sampling MD trajectory seamlessly transitioned between charts
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Figure 6: Analysis with an atlas of CVs of alanine dipeptide. (a) Free energy surfaces
computed for each of the four CVs resulting from the systematic partitioning in Figure 4,
and obtained by a single trajectory seamlessly transiting between CVs. (b) Coherent jux-
taposition of these free energy profiles, possible here because of the special flat geometry of
conformational space of this molecule and the isometric character of Isomap. (c) Sampling
of two states, C7eq and C7ax, of the molecule. (d) Projection of these states in dihedral space,
where we also computed the free energy surface using ABF along the two dihedral angles
shown in Figure 4(a).

and resulted in converged FES. The length of the trajectory required for convergence was

comparable to that needed with a conventional ABF simulation based on backbone dihedrals.

A direct comparison of the FES obtained with the atlas of CVs and with dihedral angles

[Figure 6(d)] is not strictly meaningful because they differ by Fixman-like terms. However,

we can compare later thermodynamical observables obtained from these two different FES.

Our approach is obviously more expensive than a conventional ABF simulation based

on backbone dihedral angles. On the one hand, and leaving aside the multi-patch aspect

of the method, evaluating data-based CVs, like SandCV, is more costly than evaluating

an explicit CV. In SandCV, the main computation costs comes from the high-dimensional

closest-point projection of a configuration onto the intrinsic manifold (and the derivatives of
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this operation). However, we previously showed that even this cost becomes insignificant in

simulations involving larger systems, e.g. in explicit water.33 On the other hand, there is a

computational overhead linked to the multi-patch nature of the method, as compared to a

conventional single-chart CV. We found that this specific overhead due to the atlas descrip-

tion is negligible. This can be understood from the fact that the main extra computation is

in the evaluation of Eq. (10), a low-dimensional matrix multiplication, and of the partition of

unity functions, Eq. (12), which involves calculating Euclidean distances to a few landmark

configurations. Thus, the computational overhead of an enhanced simulation along an atlas

of data-based CVs will not be significant for a large enough system.

Next, we discuss the role of the Fixman correction [Eq. (5)] in this example. Since the

statistical error in the evaluation of the free energy is in the order of kT , Eq. (5) shows that

the Fixman contribution is significant if |Dϕ| > e, which for d = 2 would require for instance

stretching adjacent CV spaces by a factor of 1.6 along each coordinate. Interestingly, because

of the nature of Isomap and the fact that the underlying intrinsic manifold is essentially flat

(a flat torus),39 the four embeddings for this molecule are nearly isometric. This means

that distances between low-dimensional points in Figure 4(f) are similar to distances of the

corresponding conformations in high-dimensions [Figure 4(e)] and therefore close to the low-

dimensional distances in an adjacent chart. As a result, |Dϕ| ≈ 1 and in this example

the Fixman correction is negligible. Thus, we can graphically “glue” the different patches

to visualize a globally coherent FES, as illustrated in Figure 6(b). This observation favors

building the atlas of CVs using the Isomap method for the NLDR, as compared to methods

preserving other notions of high-dimensional distance.

We note however that such joint representation is not possible in general, nor is it neces-

sary to compute thermodynamic observables. To show this, we consider two states A and B,

computationally described by two ensembles obtained by restrained MD simulations around

conformations C7eq and C7ax of the molecule [Figure 6(c)]. For reference, these two states

are graphically represented in dihedral space, where we also compute the FES [Figure 6(d)].
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When represented in the atlas of CVs [Figure 6(a)], we note that C7eq spreads over each of the

four charts. Using Eq. (6) sampled at 1 million configurations for each state, we find using

the atlas of CVs that the probability of C7eq relative to C7ax is Patlas = 56.406. To sample

integrals spanning multiple charts, we counted each sample only at its master chart. The

excellent agreement with the same quantity computed using a separate free-energy surface

defined over dihedral space, Pdihed = 56.415, illustrates the accuracy of framework proposed

here across multiple CVs, and its potential to study more complex systems with nontrivial

topology for which suitable CVs are not readily available.

4.2 Six-membered rings

We apply the proposed methodology to a different benchmark molecule, β-D-Glucopyranose,4,5

known to have the topology of the sphere.52 For this six-membered ring, the Cremer-Pople

puckering coordinates53 reduce to spherical coordinates (Q, θ, φ), and adequately describe

its molecular flexibility with small fluctuations about the “radius” Q. See Appendix B for

details. To obtain a good training set, we performed a 10 ns metadynamics simulation with

φ and θ as collective variables with Gaussian height of 0.1 and sigma of 0.1, starting from

chair conformation (4C1), and using Glycam force field54 at 300 K using Langevin thermo-

stat. We set time step to 0.2 fs and we sampled at each 500 steps (100 fs), obtaining 105

configurations for training set.

The systematic partitioning of this training set led here to six different charts, as shown

in Figure 7(a) in (θ, φ) and (Q, θ, φ) spaces. Note that two partitions would be enough to

remove the topological obstruction. However, the algorithm further subdivided the training

set until the quality criteria given in Appendix A was met. Unlike the previous example, now

the underlying two-dimensional conformational manifold is not flat, but rather intrinsically

curved. With only two partitions, the low-dimensional embeddings in the plane significantly

distort the actual distances between conformations, which in turn introduces significant

Fixman terms as in Eq. (5). Instead, applying enhanced sampling along this atlas of six
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CVs, we find that the transition mappings have very little effect on the free-energy. The

resulting FES are shown in Figure 7(b), where the dashed lines delimit the overlap region.

Three selected conformations are placed on the FES to illustrate the connections between

CVs. Because of the intrinsic curvature of the underlying manifold, it is not possible for

this molecule to stitch these six FES along six local CVs without gaps or overlaps. However,

as illustrated in the previous example, the atlas of CVs provides a self-standing statistical

mechanics description of the system, and it is not necessary to glue these six FES to compute

thermodynamics observables.
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Figure 7: Atlas of collective variables for β-D-Glucopyranose, a six-membered ring car-
bohydrate. The systematic partitioning algorithm for this molecule results in six patches
to overcome topological obstructions and alleviate geometric distortion (a), leading to six
free-energy profiles (b).
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5 Conclusion

We have shown that molecular conformations and free energy landscapes can be described by

an atlas of collective variables, in the same way that geographical landscapes are described

by atlas of charts. Furthermore, we have provided a practical algorithm based on SandCVs33

to systematically implement this concept. This method builds a data-driven atlas of CVs

identified from machine learning, which can be used to enhance sampling in MD simulations.

The proposed framework generalizes the way we model molecular systems, by providing a

globally meaningful thermodynamic description from locally appropriate CVs. The proposed

framework could be attractive in systems that require different resolution in different regions

of conformational space. More generally, the atlas of CVs provides a flexible framework

for molecular modeling, which may help to better adapt the description of conformational

landscapes to local features.

We have shown that this method overcomes some of the main limitations of CVs obtained

from machine learning, such as their inability to deal with conformational manifolds of

general topology such as those containing periodicities, very common in molecular systems,

or the unavoidable geometric distortion introduced when trying to embed globally a curved

manifold into a planar CV space. Thus, this method may also expand the applicability of

data-driven CVs to systems with arbitrarily complex conformational manifold. We note,

however, that an atlas of CVs could be constructed without resorting to machine learning,

provided that the conditions identified in Section 2 are satisfied.

The application of the proposed method to simple yet nontrivial model systems suggests

that the method could be applied to more complex molecules for which globally valid col-

lective variables are not available. Such further studies will provide a clearer picture of the

potential of the proposed methods. An important question not addressed here is whether

a smooth atlas of CVs obtained from machine learning will provide a correct description of

kinetic properties, i.e. whether it can be used to identify reaction coordinates. This can be

tested using committor histograms.55 Interestingly, even for a simple reaction such as the
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isomerization of alanine dipeptide, the two dihedral angles (Φ,Ψ) cannot describe correctly

the transition and at least three are required.56,57 However, while the two-dimensional de-

scription given by our method bears similarities with the two-dihedral description, it takes

into account all atomic positions, and thus implicitly all dihedral angles in the molecule.

Whether this non-locality inherent to SandCV is useful to correctly capture kinetics will be

assessed in future studies.
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A Algorithm to geometrically partition the conforma-

tional manifold

The atlas of collective variables approach relies on a systematic partitioning of the confor-

mational manifold into pieces or patches that are tractable with dimensionality reduction

techniques (open sets).

Consider a smooth d-manifold M embedded in RD and sampled by a set of points

R = {r1, r2, . . . , rN} ⊂ RD, the conformations in the training set. The goal is to represent

numericallyM from the data in R through a collection of overlapping parametrizations and

make computations on it.49 Below are the steps involved in this algorithm:

1. Partition the set of points R into L groups on the basis of proximity using METIS

domain decomposition with a k-nearest neighbor graph.48 METIS tries to partition a

graph in equal size subdomains with minimal shared boundary lengths. These L groups

of points can be represented with index sets Iα, α = 1, . . . , L satisfying ∪Lα=1Iα =
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{1, 2, . . . , N} and Iα ∩ Iκ = ∅ when α 6= κ.

2. For each partition we create an enlarged index set Jα by combining the indices in Iα
and the indices from their nearest neighbors defined by a cutoff distance dcut:

Jα = {a ∈ {1, . . . , N} such that |ra − rb| < dcut for some b ∈ Iα}.

Here and elsewhere, | · | denotes the Euclidean norm. The enlarged index set obeys

∪Lα=1Jα = {1, 2, . . . , N}, but now Jα ∩ Jκ 6= ∅. The intersection of these index sets

defines the overlapping between different patches.

3. A dimensionality reduction technique is applied to each one of the enlarged sets

{ra}a∈Jα ⊂ RD to find their low-dimensional embedding {ξa}a∈Jα ⊂ Rd. In our

calculations we use Isomap, a NLDR method designed to find a nearly isometric low-

dimensional representation by approximately preserving the geodesic distance on the

manifold.

4. The quality of the resulting embedding is measured through a reconstruction error

computed as

ea =

∣∣ra −∑b∈Ka wab rb
∣∣

|ra|
∀a = 1, . . . , N,

where Ka is the index set with the first k-nearest neighbors of the a-th configuration

in the low-dimensional space, and wab are the weights that best linearly reconstruct ξa

from its k-nearest neighbors,27 obtained by

min
wab

∣∣∣∣∣ξa −∑
b∈Ka

wab ξb

∣∣∣∣∣ subject to
∑
b∈Ka

wab = 1.

5. We monitor in each patch the reconstruction error. We require that max{ea}a∈Jα <

Tole for a patch to be acceptable, where Tole is a numerical tolerance typically be-

low 0.1. If the reconstruction error exceeds the tolerance, the patch is recursively
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Figure 8: Average (green circles) and maximum (red squares) relative reconstruction error in
the partitioning of alanine dipeptide as a function of the number of patches in the partition.
It is clear from this plot that the maximum norm best discriminates the number of required
patches given by the algorithm, four in this case.

subdivided until the reconstruction requirement is met. In Figure 8, we show the re-

construction error for different number of patches of a training set of alanine dipeptide.

6. After the partitioning process is finished and the low-dimensional embedding for each

partition is available, we build a smooth parametrization for each partition using

smooth basis functions pa(ξ) associated to nodes from a uniform grid of landmarks,

Mα : Ωα ⊂ Rd −→ RD

ξ 7−→
∑
a∈Jα

pa(ξ)ya.
(11)

The high-dimensional control points ya ∈ RD are chosen such that the reconstruction

error is minimized in a least-squares sense. Full details are presented in 33. Thus,

we end up with a collection of partially overlapping parametrizations of the intrin-

sic manifold, Figure 9. We consider here the local maximum-entropy (LME) basis

functions.58–60

A partition of unity subordinates to the geometric partition of the conformational mani-
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Figure 9: Partitioning a training set of alanine dipeptide. The partitioning procedure recur-
sively proceeds until all the patches in the partition are tractable with nonlinear dimension-
ality reduction (NLDR) methods, which leads to four patches in this example. Although the
patches have overlap, using a partition of unity we can unambiguously assign a single master
patch to any conformation (a). These patches are also depicted over a torus of dihedral an-
gles to highlight the topology of the intrinsic manifold (b). The low-dimensional embedding
of each of the four patches of the partition, calculated separately with NLDR methods, is
shown in (c). The darker colors mark the low-dimensional representation of conformations
into their master patch.

fold is a set of non-negative functions ψα(r) that add up to 1 everywhere, and whose support

is contained in the respective patch. Given a set of non-negative reals {βa}a=1,2,...,N , we con-

sider the Shepard partition of unity with Gaussian weight associated to patch α as

ψα(r) =

∑
a∈Iα exp(−βa|r − ra|2)∑N
b=1 exp(−βb|r − rb|2)

. (12)

These non-negative functions form a partition of unity in RD. For very large βa, these func-

tions tend to the characteristic functions of the Voronoi cells in high-dimension associated

to the group of points given by Iα. They can thus be viewed as a smooth regularization of

these characteristic functions.49 The four partition of unity functions in the torus represen-

tation of alanine dipeptide is illustrated in Figure 10. These partition of unity functions also
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divide high-dimensional configuration space into non-overlapping regions, i.e. they provide a

definition of the master patch associated to r maximizing ψα(r) with respect to α. A chart

or CV is associated to each patch by the closest-point projection as discussed in the main

text.

1
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4

0 0.5 1

Figure 10: Partition of unity for alanine dipeptide. Partition of unity functions are repre-
sented on the torus defined by dihedral angles. It is worth emphasizing that these functions
are evaluated in high-dimensional configuration space and the torus representation is for
visualization purposes only.

B On puckering coordinate of six-membered rings

The conformation of any N -membered ring can be described univocally by Cremer-Pople

puckering coordinates.53 For six-membered rings (N = 6), like β-D-Glucopyranose, there are

three puckering degrees of freedom, which admit a representation in spherical coordinates as

Q =

√√√√ 6∑
j=1

zj,

θ = cos−1


√

1
6

∑6
j=1 zj(−1)j−1√∑6

j=1 zj

 ,
φ = tan−1

{∑6
j=1 zj sin

[
2π
3

(j − 1)
]∑6

j=1 zj cos
[
2π
3

(j − 1)
]} ,
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where zj is defined from the position of atoms, xi,

zj = Rj · n̂,

Rj =
6∑
i=1

xi(δij − 1/N), n̂ =
R′ ×R′′

|R′ ×R′′| ,

R′ =
6∑
j=1

Rj sin(π(j − 1)/3), R′′ =
6∑
j=1

Rj cos(π(j − 1)/3).

In Cartesian coordinates, these puckering coordinates can be expressed as

qx = Q sin θ sinφ,

qy = Q sin θ cosφ, (13)

qz = Q cos θ.

The relationship between these two representations of puckering coordinates is shown in

Figure 11(a). Since β-D-Glucopyranose evolves close to a spherical intrinsic manifold, only

two independent parameters are needed to define a CV. In enhanced sampling simulations

and free energy calculations, two different CVs are commonly used, based on either polar

coordinates C1 = (θ, φ),61 Figure 11(b), or Cartesian coordinates C2 = (qx, qy),
52 Figure 11(c).

The later can be only defined in one hemisphere to avoid data collapse as a result of a

topological obstruction.39

Comparing the free energy along these CVs is not trivial. If we assume that there is

no variation in the Q-direction and the system stays exactly on the intrinsic manifold (the

sphere), we can define a bijective mapping between CVs from Eq. (13) and evaluate the

Fixman correction between the corresponding free energy surfaces. In Figure 11(d), we show

that this correction, along θ and for any value of φ, is significant particularly at the pole

and equator. In reality, although the variation along Q is small compared to θ and φ,52

it is not negligible. Because the level sets of C1 and C2 are fundamentally different, the

portion of configuration space that is integrated is also different, see Figure 11(e) and thus
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quantitatively comparing the free energies is meaningless (although observables computed

from them are well-defined). The Cartesian projection of a trajectory when Q is allowed to

fluctuate is illustrated in Figure 11(f).
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Figure 11: Cremer-Pople puckering coordinates for six-membered rings is given either by
(qx,qy,qz) in Cartesian coordinates or by (Q,θ,φ) in spherical coordinates (a). Two common
collective variables in enhanced sampling MD and free energy calculations are C1 = (θ, φ)
(b) and C2 = (qx, qy) (c). Fixman correction associated with the change of variables between
these CVs while staying on the intrinsic manifold, i.e. Q fixed (d). Different portions of
configuration space visited by fixing each of these two CVs (e) when there is variation along
Q direction (f).
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