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Summary. In this work, the computational performance of the Nektar++ framework for solv-
ing the incompressible Navier-Stokes (NS) equations using Spectral h/p elements is assessed
and improved for industry-relevant geometries at high Reynolds numbers. There is an increas-
ing need for simulating complex geometries with greater accuracy at a reduced computational
cost. These simulations involve multiple spatial/temporal scales, and they should model or re-
solve complex transient phenomena such as turbulence transition, separation, and vortex system
evolution. Standard explicit techniques require very low time steps, which are not feasible within
an industrial environment, hence the need for efficient implicit time-stepping techniques. This
study uses the implicit Sub-Stepping Velocity Splitting Scheme to solve the incompressible NS
equations numerically in a segregated manner. This method is distinguished by its use of a mixed
discretization scheme. Specifically, it employs Discontinuous Galerkin discretization to solve an
unsteady advection equation during the Advection step while using Continuous Galerkin dis-
cretization for the Pressure and Diffusion steps. First, the performance of the proposed method
is evaluated in terms of its numerical efficiency for both serial and parallel computations. Then,
the Advection, Pressure, and Diffusion steps are explored based on the fundamental kernel
efficiency to identify the most time-consuming components, aiming at reducing the memory
footprint and moving them closer to the CPU-bound of the roofline model. We will present
a systematic performance analysis, the challenges, and the advancements for mixed discretiza-
tion time-stepping techniques relevant to any available Finite Element code aiming at solving
exascale industrial problems.

1 INTRODUCTION

Unsteady numerical solvers need efficient time-marching techniques to simulate flows around
complex geometries at high Reynolds (Re) numbers with reasonable computation cost. The
computational cost is directly proportional to the timestep size and the number of simulated
timesteps. For industry-relevant geometries involving multiple spatial and temporal scales, the
Courant-Friedrichs-Lewy (CFL) criterion restricts the maximum timestep size for explicit time-
stepping techniques, significantly increasing their cost. This can be mitigated by using implicit
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time-stepping techniques that allow timesteps significantly above the CFL limit. The considered
unsteady flows are described by the incompressible Navier-Stokes (NS) equations, which are
discretized using a continuous Galerkin projection, while the pressure and velocity fields are
approximated by Spectral/hp Finite Elements (FE).

Maday et al.[1] were the first to introduce the framework, “Operator-Integration-Factor”
scheme (OIFS), for developing time-stepping techniques for the spectral/hp element commu-
nity. According to that, any time-dependent ordinary or partial differential equation can be
split into an ensemble of sub-problems equal to the number of operators in the initial equation.
An alternative method to develop implicit time-stepping schemes is using the semi-Lagrangian
formulation of the mass and momentum equations. Xiu et al.[2] applied this approach to homoge-
nous turbulent flows and achieved a similar level of accuracy with the Eulerian formulation of
these problems at a reduced cost. Xu et al.[3] extended the previous study by investigating a 3D
channel-flow. They reported errors comparable to those of their Eulerian counterpart; however,
the performance needed further improvements. Sherwin[4] combined the semi-Lagrangian for-
mulation with the OIFS and demonstrated unconditional stability for 2D flow problems. Xiu et
al.[5] compared the schemes proposed in [2] and [4] for canonical flow problems and summarized
the conditions that favored each alternative. Patel et al.[6] leveraged the OIFS to discretize the
NS equations for a moving frame of reference to simulate the flow inside an internal combustion
engine.

Despite various implementations of implicit time-stepping schemes, only Patel et al.[6] have
discussed their scheme’s accuracy and computational performance for an industry-relevant prob-
lem. There is a clear need to expand and generalize this conversation about stability, accuracy
and performance for other industrial flows around complex geometries at high Re numbers
while utilizing these schemes. To address this issue, we have used the “auxiliary” form of the
semi-Lagrangian formulation, or the “Sub-Stepping Scheme”[4] and simulated the flow around
a multi-element wing at Re = 208, 045 as shown in Figure 1. The auxiliary form was selected
over the strong form to avoid the computational cost of the global interpolation during particle
tracking to identify the location and the velocity at each departure point.

Figure 1: Extruded Imperial Front Wing

The Sub-Stepping scheme has been proven to extend the stability margin of the investigated
multi-element wing and allowed for a maximum speed-up by a factor of 4.5 in total computation
time while maintaining accuracy similar to that of the Eulerian formulation. In the following
sections, the mathematical formulation of the Sub-Stepping scheme is described, and the system
of equations is then discretized in space. The flow around the multi-element wing is provided,

2



Liosi A. I., Swift A., Chatzopoulos A., Bottone A., Horikoshi M., Hoessler J. and Sherwin S. J.

and the results of the Eulerian form and the Sub-Stepping scheme are compared. A range of
different timesteps have been investigated, and the computational performance of the scheme
has been analyzed.

2 METHODS

The semi-Lagrangian formulation of the NS equations is expressed as
Du

Dt
=

∂u

∂t
+ u · ∇u = −∇p + ν∇2u (1)

where the material derivative is expressed in the Lagrangian frame of reference, but the pressure
and the viscous terms are in the Eulerian frame of reference. The variables denoted with
bold correspond to vectors, while the rest are scalars. Following the “High-Order Velocity
Correction Scheme”[7], the unsteady term is firstly discretized in time. For simplicity, the
Backward Difference Formula with first-order accuracy has been chosen for the following.

Du

Dt
=

un+1 − un
d

∆t
(2)

where the un
d corresponds to the velocity at the departure point xd = (xd, yd, zd) and at time

instance tn.
It is necessary to obtain the velocity field at the departure point. For this reason, the unsteady

advection equation is solved in an auxiliary pseudo-time tn+1−q < τ < tn+1 where q stands for
the total number of iterations executed in pseudo-time.

∂û

∂τ
+ u · ∇û = 0 (3)

where û is a complementary velocity field that represents the influence of convection on
the examined flow, u is the advection divergence-free velocity which is extrapolated from the
previous time step to the next one.

The second step of the splitting scheme is to equate the pressure term with the material
derivative of velocity

ũ− un
d

∆t
= −∇pn+1 (4)

where ũ is a divergence-free auxiliary velocity field, pn+1 is the pressure field at the next time
step. Again, using the divergence operator to extract a unique expression for the pressure field
at the new time-step

∇2pn+1 =
1

∆t
∇ · un

d (5)

Furthermore, û(x, tn+1−q) = u(x, tn+1−q) along the characteristic of the hyperbolic, unsteady
advection equation. Based on this relation, the velocity at the departure point is found.

The final step is to correct the velocity field by the pressure at the current timestep.
un+1 − ũ

∆t
= ν∇2un+1 (6)

ũ = −∆t∇pn+1 + un
d (7)

The velocity Helmholtz equation, or “diffusion” step becomes

∇2un+1 − 1

ν∆t
un+1 =

1

ν
∇pn+1 − 1

ν∆t
un
d (8)

Therefore, the final system of equations required to obtain the pressure and velocity field at
each timestep is composed by the Eq. 3, 5, 8 and is summarized as a flow-chart in Figure 2.

3



Liosi A. I., Swift A., Chatzopoulos A., Bottone A., Horikoshi M., Hoessler J. and Sherwin S. J.

Figure 2: Flow-Chart for the Sub-Stepping Scheme

2.1 Discretization in space

The final system of equations involves solving an unsteady advection equation, a Poisson equa-
tion for the pressure field and a Helmholtz equation for the velocity vector field. The unsteady ad-
vection equation is discretized in space using a Discontinuous Galerkin (DG) projection[8]. The
pressure and velocity equations are discretized in space with a Continuous Galerkin projection[9].
For hyperbolic problems such as the unsteady advection, where the solution is not smooth, it is
beneficial to use a DG projection for two main reasons. Firstly, flow discontinuities can be cap-
tured more easily without posing stability issues. Secondly, when solving the discretized system
of equations, assembling the global mass matrix that includes the influence of all elements is
unnecessary. It is possible to solve the system of equations locally within a single element and
then progress to the next one until the entire domain is computed. The localized solution of the
system, along with efficient programming techniques, can remarkably reduce the computational
cost of the advection step. This cost is important because its relationship to the diffusion step
is the limiting condition for when it is beneficial to use the Sub-Stepping scheme.

2.2 Notes on the boundary conditions

To close the system of equations, an appropriate boundary conditions is necessary for the
pressure field which is obtained by the inner product of Eq. 1 multiplied by the normal vector
to the surface.

∂pn+1

∂n
= n ·

[
ν∇2un+1 −

un+1 − un
d

∆t

]
= −n ·

[
ν∇×∇un+1 +

un+1 − un
d

∆t

]
(9)

Given that ∇2u = ∇(∇·u−∇×∇u) and u is divergence-free. The viscous term was expressed
by the solenoidal component of velocity as it is more stable in this form[7]. The velocity at the
current timestep can be found via extrapolation from the previous timesteps.

3 PROBLEM DESCRIPTION

The examined multi-element wing is a simplified configuration from the “Imperial Front
Wing” (IFW), which is a Formula 1 front-wing geometry that was released as open-source in
[10]. Specifically, the IFW was cut at a spanwise location of y = -250 mm. This cross-section
was then extended by 50 mm in the spanwise direction to create the “Extruded IFW”, the focus
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of this study, as shown in Figure 1. The characteristic length of the geometry is the same as the
chord length of the main element, which is 0.25 m. The freestream velocity is 12.5m

s , resulting
in a Re = 208, 045. The Extruded IFW is simulated inside free-stream air. The free-stream
air enters the domain and is imposed as a uniform Dirichlet boundary condition at the inlet.
Likewise, the ceiling and the ground have the same boundary conditions as the inlet. The side
walls are treated as slip walls where the gradient of the in-planar velocity components is zero,
while the normal velocity component is set to zero to prevent cross-flow development. A high-
order stable form of zero Neumann boundary condition at the outlet is used for velocity, and
the pressure is fixed to the ambient pressure.

All simulations were performed using Nektar++[11], an open-source framework for solving
unsteady partial differential equations using the spectral h/p element method. High-order poly-
nomials were used to approximate the flow variables. NekMesh[12], the mesh-generation utility
of Nektar++, was used to create an unstructured, conformal high-order mesh, which included
only prisms and tetrahedrons. A fourth-order polynomial was used for the velocity, and a third-
order polynomial was used for the pressure, following a Taylor-Hood approximation to ensure
better stabilization properties for the pressure Poisson equation. Polynomial de-aliasing was em-
ployed via over-intergration. A second-order accurate time-integration scheme with a constant
time-step was utilized. The simulation was initialized from an existing velocity field obtained via
RANS modeling, and the relative pressure was set to 0. The discretized system of equations for
velocity and pressure was solved numerically using an iterative method, the Conjugate Gradient
(CG) algorithm. It involved applying static condensation to reduce the number of algebraic
degrees of freedom. To ensure algebraic convergence, an absolute tolerance of 1e−4 was set for
all the flow variables.

4 DISCUSSION ON ACCURACY, STABILITY & PERFORMANCE

The flow around the Extruded IFW was simulated for a physical time of 2.5 seconds, using
a range of timesteps from dt = 1e−5 sec up to dt = 4e−4 sec. The flow results and the total
computation time from the standard semi-implicit velocity-correction scheme[7] are treated as
reference for the following comparisons. The maximum timestep used for the reference simulation
was dt = 1e−5 sec. All the simulations were performed using twelve Intel Xeon Platinum 8358
(Ice Lake), 2.60GHz, 32-core, compute nodes, fully populated. Each node includes 64 cores and
512 GB RAM.

4.1 Exploring stability in time

The computational performance of the Sub-Stepping scheme is assessed based on total com-
putation time. Additionally, the duration of its components is monitored to identify potential
areas for improvement. The first key performance indicator (KPI) examined is the “Speed-Up”
which is defined as the ratio of the reference case’s computation time divided by the sub-stepping
scheme’s computation time with a certain discrete timestep. It represents the performance ben-
efits of utilizing the Sub-Stepping scheme compared to the reference. The second KPI of interest
is the computational cost to solve one simulation timestep. The variation of the “Speed-Up”
with the examined timesteps is illustrated on the left of Figure 3, while the variation of compu-
tation time per simulation timestep is on the right side of this figure. The “Speed-Up” increases
rapidly as the discretization timestep is increased until dt = 1e−4 sec. Beyond this timestep,
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the scheme’s performance saturates, and the reduction rate for the total computation time is
lower than before. The maximum “Speed-Up” achieved for this configuration is 3.72. Similar
trends are observed in the computational cost per simulation timestep. Specifically, the cost
per timestep slowly increases until dt = 1e−4. After this point, there is a sharp increase in the
computational cost, highlighting the modest performance benefits.
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Figure 3: Speed Up (Left) and Cost Per Time Step (Right) for each examined timestep

Overall, the “Speed-Up” is above one for the entire range of the investigated discretization
timesteps, except for dt = 1e−5 sec. It is beneficial to use the Sub-Stepping scheme across the
entire range of examined discrete timesteps as the total computation time of the simulation
decreases. Furthermore, the stability margin of the configuration is increased, as it is possible
to simulate the flow around the Extruded IFW by using a discrete timestep forty times larger
than the reference timestep.
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Figure 4: Conjugate Gradient Iterations per timestep (Left) and Mean Sub-Steps per timestep
(Right)

It is interesting to understand how the computational cost is distributed when varying the
timestep, as it can help unlock the scheme’s performance potential. To assess the variation
in cost for the pressure and velocity steps, the average pressure and velocity iterations of the
conjugate gradient solver are plotted against each discrete timestep in Figure 4. The mean
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velocity iterations remain nearly constant for each timestep, indicating that the cost of the
viscous step remains the same for all simulations. The pressure iterations gradually increase
until dt = 1e−4 sec. Past this timestep, the pressure iterations rapidly grow, indicating an
increase in the cost of the pressure step due to the algebraic system becoming stiffer and harder
to converge. For the advection step, the mean Sub-Steps, which represent the pseudo-steps
needed to solve the unsteady advection equation, are illustrated on the right side of this figure.
The cost of the advection step increases in proportion to the number of Sub-Steps required.

The maximum tested timestep is dt = 5e−4 sec and the simulation did not complete, because
the pseudo-timestep became smaller than 5e−7 sec.

4.2 Impact in accuracy

The influence of the timestep increase in the accuracy of the flow results is reviewed based
on the integral values such as the coefficient of lift and drag. The variation of the integral forces
over time is shown in Figure 5. To aid visualization, the time-averaged signal of the coefficient
of lift and drag are presented separately. While the oscillations have minimal impact on the lift
coefficient, with an amplitude of only 2% from the mean value, they are more pronounced for
the drag coefficient, ranging from 10% to 15% of the mean value. This could be attributed to
under-resolved flow features within the wing’s boundary layer. The oscillations are primarily
driven by pressure contributions to the forces. The simulations utilized a Jacobi preconditioner
for the pressure system of algebraic equations. It is anticipated that implementing an improved
preconditioner could help reduce these oscillations.
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Figure 5: Evolution of integral forces with time

Table 1: Integral forces difference with reference

dt, sec CL CL,diff CD CD,diff

1e−5 -8.39 N/A 0.20 N/A

5e−5 -8.35 0.04 0.20 0.0

1e−4 -8.30 0.09 0.20 0.0

4e−4 -7.98 0.41 0.21 0.01

In Figure 5, the evolution of the coefficient of drag with time is very similar for all examined
timestep, except the maximum dt = 4e−4 sec. This difference is reflected in the time-averaged
value of this coefficient, as seen in Table 1. Despite the variation in the drag force evolution,
the difference from the reference case in the time-averaged value is only 5%. A similar trend is
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observed for the lift coefficient, with the downforce (negative lift) developing to reseble the refer-
ence case for all examined timesteps except the maximum one. For the intermediate timesteps,
it is clear that the simulations need to be extended further until they reach the same load as
in the reference case. In the case of the maximum timestep, the Extruded IFW is losing load,
suggesting that the flow is evovling differently than in the reference case. These simulations
need to be extended further until convergence in time is achieved and the flow mechanics are
assessed between the reference and each timestep.

4.3 Advection performance

It is crucial to efficiently solve the unsteady advection equation, as the cost of the advection
step rises rapidly when the discretization timestep nears its stability limit. This can be done in
two ways: by reducing the overall number of sub-steps, or by lowering the computational cost
for a single sub-step.

The main challenge of the scheme is determining the pseudo-timestep for solving the un-
steady advection equation numerically. The pseudo-timestep can be controlled using a user-
defined safety factor or by specifying the minimum required number of Sub-Steps. Currently,
the pseudo-timestep is determined using the CFL number per simulation timestep, which is ad-
justed based on the safety factor. Therefore, adjusting the value of the safety factor can change
both the pseudo-timestep and the number of Sub-Steps. During the advection step, the un-
steady advection equation is solved in pseudo-time using a second-order accurate Runge-Kutta
time-integration scheme.

Table 2: Computational Cost Per Timestep and Sub-Step for each discrete timestep

dt, sec Mean CPU Time Per Timestep, sec Timer Per Sub-Step, sec

1e−5 1.83 0.24

5e−5 3.02 0.24

1e−4 4.69 0.25

4e−4 14.89 0.25

The average computational cost per timestep and Sub-Step for all simulations are summarized
in Table 2. In these tests, a safety factor of 0.5 was used, which is a conservative value. The
cost per Sub-Step remains the same for all examined discretization timesteps. Therefore, the
performance of the advection step is primarily determined by the required number of Sub-Steps.

To explore the influence of the safety factor, its value was varied from 0.1 to 1 while using a
timestep of dt = 1e−4 sec. The impact of the safety factor on the “Speed-Up” of the simulation
is shown in Figure 6. It is evident from the graph that the performance of the scheme is
constrained when the safety factor is restricted, leading to a decrease in “Speed-Up”. On
the contrary, relaxing the safety factor further reduces the simulation cost without causing
any stability issues. The maximum ”Speed-Up” achieved without a safety factor is 4.5. It is
possible to raise the safety factor above one and amplify the estimated CFL value, in order to
increase the Sub-Step timestep, thereby lowering the required Sub-Steps. This remark raises
the question regarding the adequacy of the current CFL definition for hyperbolic problems that
are discretized using DG Galerkin. Alternative CFL definitions for automatically specifying the
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Figure 6: Variation of Speed-Up for dt = 1e−4 sec with different safety factors

pseudo-timestep will be explored in future work.

4.4 Parallel performance

Industrial geometries typically involve complex geometrical features that demand many de-
grees of freedom to capture and resolve the surrounding flow phenomena. These simulations
typically take place in a high-performance computing environment using hundreds or even thou-
sands of processing units. For this reason, the parallel performance of the scheme was assessed
within such an environment.
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Figure 7: Computational cost per simulation timestep (Left) and Cost per Sub-Step (Right) for
increasing ranks

The computational cost per simulation timestep and Sub-Step for increasing number of re-
sources or ranks is shown in Figure 7. As the number of ranks increases while keeping the degrees
of freedom constant, the computational cost per simulation timestep decreases. Similarly, the
computational cost per sub-step decreases rapidly until 768 ranks. After this point, the rate
of decrease slows down, raising concerns about the parallel performance of the advection step
in isolation. This could be associated with a potential load imbalance in the advection step,
given that it is discretized in space using a discontinuous projection, but the load is distributed
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between ranks according to the continuous projection.
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Figure 8: Strong Scaling

The strong and weak scaling of the Sub-Stepping scheme is shown in Figure 8, where the
dotted, grey line expresses the ideal scaling and the Speed-Up is defined as

Speed Up =
Total Computation T ime @384 ranks

Total Computation T ime @N ranks
(10)

We observe ideal strong scaling for the sub-stepping scheme in Figure 8. To produce the weak
scaling plot, the number of nodes was fixed to 12, and the allocation of cores was varied to 16,
32, and 64 successively to modify the distribution of the degrees of freedom (DOF) per rank. In
this graph, the reference point is defined at the maximum DOF/rank distribution. As the DOF
per rank decreases, the Speed-Up steadily increases until the 17065 threshold. Below this point,
the Speed-Up increases rapidly at twice the previous rate. The limited increase in Speed-Up
until the 17065 DOF per rank is linked to high memory transfers from the main memory to
the cache. This suggests that the code is within its memory-bound limits. With lower DOF
per rank, fewer memory transfers are required, and the code substantially benefits from its pure
MPI parallelization.

5 CONCLUSIONS

In this study, the performance, accuracy and stability of the Sub-Stepping scheme were in-
vestigated around an industry-relevant geometry at a high Reynolds number, specifically the
Extruded IFW benchmark. The Sub-Stepping allowed the extension of the simulation stability
by using a timestep that is forty times larger than the reference timestep. For this case, a maxi-
mum Speed-Up of 3.72 was achieved with a conservative numerical configuration for solving the
advection step. The cost of the viscous step remained invariant for all the tested discretization
timesteps, while the cost of the pressure step increased as the discretization timestep approached
its stability limit. Upon analyzing the computational performance of the scheme, it was found
that the total number of Sub-Steps needed to solve the unsteady advection equation is the lim-
iting factor to its efficiency. The number of Sub-Steps can be reduced by relaxing the CFL
number used to evaluate the pseudo-timestep of the unsteady advection equation. This way, a
maximum Speed-Up of 4.5 was attained without stability issues. Although the overall scheme
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demonstrated ideal strong scaling, the parallel performance of the unsteady advection equation
displayed a concerning trend that requires further investigation.
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