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Summary. In this work, we study the effects of fiber reinforcements on the deformation be-
havior of hoses under internal pressure. We model helically wound reinforcements in three
configurations: a straight hose, a full torus and a quarter torus. For straight hoses, the deforma-
tion in both diameter and length is significantly influenced by the wrapping angle of the fibers.
Notably, a neutral wrapping angle exists where no deformation occurs under internal pressure.
For the full and quarter torus models, the variation of the toroidal helix wrapping angle along
the cross-section is taken into account. We discuss the extent to which the type and orientation
of the fiber reinforcements affect the Bourdon effect, using the finite element method.

1 INTRODUCTION

Hoses are mainly made of fiber-reinforced rubber, with reinforcements varying from nylon
to steel. The application fields range from the automotive, heavy and agricultural machinery
industry to rail vehicle technology. There they perform important functions, e.g. as brake hoses,
coolant hoses, air intake hoses or fuel hoses, where their use is particularly advantageous in
scenarios where rigid pipes are impractical due to considerations of weight, assembly complexity
or the necessity for flexible connection points. In this context, interactive assembly simulations
for flexible structures, such as cables and hoses, play a crucial role in vehicle development [1, 2].
These simulations commonly utilize geometrically non-linear rod models [3]. However, when
the hoses are curved, fiber-reinforced and pressurised, deformation behavior occurs that cannot
be easily predicted using nonlinear rod theory. A 3D continuum model is used to evaluate how
curvature, helical reinforcement and internal pressure affect the hose deformation. In our current
work, we focus on the influence of a single reinforcement layer on the deformation behavior. For
straight hoses, the deformation in diameter and length due to the internal pressure depends on
the wrapping angle of the fibers. The effect of the neutral angle in hydraulic hoses, in literature
sometimes also called critical angle at which the hose doesn’t deform, has been studied based on
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membrane theory in [4, 5], on classical laminate shell theory in [6, 7] and on three-dimensional
elastic theory in [8, 9, 10]. Experimental change-in-length tests for manufacturers of high-
pressure hydraulic hoses are described in [11]. This standard provides detailed instructions for
conducting the experiments and outlines the acceptable elongation or shortening limits based
on the hose’s construction and size. The mechanical behavior of curved, linear-elastic and
isotropic structures under internal pressure has been studied in [12, 13]. The so-called Bourdon
effect describes how internal pressure in a curved hose generates an outward resultant force that
tends to straighten the bend, thereby increasing deformations and stress levels. An analytical
description of the varying wrapping angle of a toroidal helix along the cross-section of curved
structures is provided in [14]. For the procedure of winding on the curved parts of a composite
frame, a mathematical model, which describes how to determine the number of rovings on
toroidal parts is presented in [15]. The structure of this paper is as follows: Section 2 presents
an analytical examination of the neutral wrapping angle in straight hoses, the Bourdon effect
and the variation of the wrapping angle of a toroidal helix. Section 3 details the structure
and model parameters employed in our finite element analysis. Section 4 shows the numerical
results for the examples of a straight hose, a full torus and a quarter torus and discusses the
characteristics that influence the Bourdon effect. Section 5 offers concluding remarks.

2 THEORETICAL BACKGROUND

In this section, we present analytical considerations which are relevant for the description
of the behavior of reinforced, curved hoses. We give a brief introduction to the already known
neutral wrapping angle of straight hoses. We extend this to curved hoses by presenting the
Bourdon effect. Finally, we combine the curved hose with the helically reinforcement by deriving
the varying wrapping angle of the toroidal helix.

2.1 Neutral angle

In the study of reinforced straight hoses under internal pressure, the concept of the neutral
wrapping angle plays a crucial role. This angle, at which the reinforcing fibers are wound
helically around the hose, is essential in balancing the internal stresses induced by the pressure.
The internal forces are counterbalanced by the helical reinforcement, preventing any elongation
or contraction of the hose and maintaining its structural integrity and functionality. In the
following, we derive the expression for the neutral wrapping angle γN .
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Figure 1: Forces acting on a reinforced hose under internal pressure
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We consider the hose as a straight cylinder closed at both ends with the radius r, the length
L and a wrapping angle γ, see Fig. 1. We use a cylindrical coordinate system with the directions
r-radial, φ-hoop and x-axial. The following analytical considerations are based on thin-walled
membrane theory, so that the normal stress in the radial direction σr can be neglected, assuming
a plane stress state. The principal stresses here are as follows

σ =

(
σ1 0
0 σ2

)
=

(
σφ 0
0 σx

)
; with σφ =

pr

h
, σx =

pr

2h
. (1)

The angle γR of the resultant force Fφ and Fx (see Fig. 1) can be expressed by

tan γR =
Fφ

Fx
=

prL

pπr2
=

L

πr
. (2)

The length of one helix turn is given by

L =
2πr

tanγ
. (3)

For equilibrium state, the helix angle γ should correspond to the angle of the resultant force
γR, so that γ = γR. By inserting (3) in (2) we get the angle γN at which no deformation occurs
when the hose is pressurised:

tan γR =
2

tan γ
= tan γ −→ γN = tan−1(

√
2) = 54.74◦. (4)

.

2.2 Bourdon effect

Internal pressure in curved hoses generates an outward force that causes the hose to straighten.
This effect is known as the Bourdon effect [16]. For the modeling of structures with a curved
center line, a toroidal coordinate system is used with the three coordinate directions r - radial,
θ - toroidal and φ - poloidal. The poloidal angle φ = π

2 is called extrados, φ = 3π
2 is called

intrados, while φ = 0 = π is called crown, see Fig. 2.
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Figure 2: Outwardly directed force on an infinitesimal area dA of a pressurised curved hose
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To analyze the Bourdon effect in a pressurised toroidal structure, we determine the effective
outward force F⃗ by integrating the pressure p over an infinitesimal area dA. The area dA of a
torus can be described as follows

dA = r(R0 + r sinφ)dφdθ. (5)

The outwardly directed force F⃗ can be decomposed then into the components Fx1 and Fx2

Fx1 = −
∫ θ2

θ1

pπr2 sin θdθ, Fx2 =

∫ θ2

θ1

pπr2 cos θdθ. (6)

The force component Fx3 disappears when being integrated along the cross-section φ, so that
no Bourdon force appears in the x3-direction. A more detailed description of the derivation of
the infinitesimal area dA and the Bourdon forces Fx1 and Fx2 can be found in [17, 18].

2.3 Toroidal helix

In Fig. 3a, a straight helix is shown to introduce relevant parameters for helical structures.
The wrapping angle γ describes the angle of the helix to the neutral fiber. The helix angle α
is the complementary value (α = π

2 - γ), describing the angle between the helix and his base
area. The pitch h describes the vertical distance between two consecutive turns (h = 2πr tanα),
while N characterizes the number of turns, so that the length of the neutral fiber is given by
L = Nh. For helically fiber reinforced curved structures, a helical pattern is wrapped around a
torus, hereafter called toroidal helix, see Fig. 3b. We therefore take into account that, unlike
in a straight helix, the wrapping angle of a toroidal helix is not uniform, but varies along the
cross-section of the torus. We remain in the toroidal coordinate system defined in Section 2.2,
so that the parametrization of a toroidal helix is as follows

x1(φ, θ) = (R0 + r sin(Nφ)) cos θ,

x2(φ, θ) = (R0 + r sin(Nφ)) sin θ,

x3(φ, θ) = −r cos(Nφ).

(7)

The tangent vector t⃗ at any point of the toroidal helix can be obtained by the following procedure.
First we form in (8) the partial derivatives of the Cartesian coordinates x1, x2 and x3 according
to the angular coordinates of the torus θ and φ, then we determine in (10) the change in arc
length ds using the infinitesimal Cartesian changes dx1, dx2 and dx3 of (9).

∂x1
∂φ

= rN cos(Nφ) cos θ,
∂x1
∂θ

= −(R0 + r sin(Nφ)) sin θ,

∂x2
∂φ

= rN cos(Nφ) sin θ,
∂x2
∂θ

= (R0 + r sin(Nφ)) cos θ,

∂x3
∂φ

= rN sin(Nφ),
∂x3
∂θ

= 0.

(8)

dx1 =
∂x

∂φ
dφ+

∂x

∂θ
dθ = (rN cos(Nφ) cos θ) dφ− (R0 + r sin(Nφ)) sin θ dθ,

dx2 =
∂x

∂φ
dφ+

∂x

∂θ
dθ = (rN cos(Nφ) sin θ) dφ+ (R0 + r sin(Nφ)) cos θ dθ,

dx3 =
∂x

∂φ
dφ+

∂x

∂θ
dθ = rN sin(Nφ)dφ.

(9)
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ds =
√
dx21 + dx22 + dx23 =

√
(r2N2dφ)2 +

(
(R0 + r sin(Nφ))2 dθ2

)
. (10)

t⃗ =

(
dx1
ds

,
dx2
ds

,
dx3
ds

)T

. (11)

The tangent vector u⃗ of the neutral fiber of the torus can be expressed using the unit circle

u⃗ = (− sin θ, cos θ, 0)T . (12)

By using the scalar product between the tangent vector of the toroidal helix t⃗ and the tangent
vector of the unit circle u⃗, the wrapping angle γ of the toroidal helix around the torus is calculated
including the simplification of trigonometric functions due to periodicity

cosγ = t⃗ · u⃗ −→ γ = cos−1

(
R0 + r sinφ√

r2N2 + (R0 + r sinφ)2

)
. (13)

The wrapping angle γ varies along the torus, showing that the angle is smaller at the extrados
of the torus (φ = π

2 ) and larger at the intrados (φ = 3π
2 ), see the black line in Fig. 3c. On

the crown (φ = 0, π), the wrapping angle γ corresponds to the one of a straight helix, when
the number of windings N and the length of the neutral axis L for a toroidal and straight helix
is equal. In the limit range of small curvature, γ becomes approximately constant. For larger
curvatures, the variation of the wrapping angle increases. In comparison to a straight helix
with constant slope and constant infinitesimal arc length ds, the toroidal helix has a continuous
change of the direction of the tangent vector t⃗, due to a change of the local curvature. Thus,
there are differences in the paths of the discretization points on the helix, when it wraps around
a torus, which leads to a variable ds, see the red line in Fig. 3c. When the infinitesimal arc
length ds increases, the wrapping angle γ decreases and vice versa.
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Figure 3: N = 5, r = 11, γstraight,crown = 60◦ for straight helix in (a) and toroidal helix in (b).
Varying wrapping angle γ of the toroidal helix in (c)
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3 FINITE ELEMENT METHOD

For investigating to what extend the type and orientation of the fiber reinforcements affect
the deformation behavior of hoses under internal pressure, we use the finite element method
with the commercial software ANSYS and its command language APDL [19],[20]. The model
parameters are listed in Table 1.

Table 1: Model parameters for finite element analysis

Curvature Radius Inner Radius Thickness Matrix Modulus Fiber Modulus

R0 ri h EM EF

50mm 10mm 2mm 250 N
mm2 250·102 N

mm2

Poisson’s Ratio
Matrix

Poisson’s Ratio
Fiber

Pressure
Volume Ratio

Matrix
Volume Ratio

Fiber

νM νF p VM VF

0.4 0.4 1 N
mm2 0.75 0.25

Hexahedral 3D continuum elements with 20 nodes are used in this study. Since we want to
investigate the influence of a single reinforcement layer, the following examples of a straight
hose, a full torus and a quarter torus are discretized with one element in the radial direction,
one element per 10° in the circumferential/poloidal direction and a total of 50 elements in
the axial/toroidal direction, as illustrated in Fig. 4. In order to consider reinforcements with
a reasonable computational effort, we use a smeared modeling approach. This approach is
particularly suitable for structures in which the reinforcements are distributed and arranged
in an uniform pattern. By integrating the stiffness of the reinforcements into the volumetric
elements, we introduce an orthotropy that is aligned with the direction of the reinforcements,
specified by the wrapping angle γ. The effective constitutive tensor C is calculated as the
weighted sum of the constitutive tensors of the matrix and the fibers

C = VMCM + VFCF . (14)

The analysis is carried out using the theory of large deformations. The internal pressure p is
modeled as a follower load in ten load steps. For the quasi-static analysis, the Newton-Raphson
algorithm is used, which provides a robust method for solving non-linear equations.

Figure 4: Discretized structure: straight hose, full torus and quarter torus
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4 RESULTS AND DISCUSSION

This chapter presents the simulation results for a straight hose, a full torus, and a quarter
torus, using the parameters from Chapter 3. It discusses the impact of the fiber orientation on
the deformation. In Chapters 4.2 and 4.3, the displayed wrapping angle γ refers to the angle on
the crown, with the understanding that it varies along the cross-section, see Section 2.3.

4.1 Straight hose

A partial section of the reinforcement layer of a straight hose is illustrated for the neutral
wrapping angle γN in Fig. 5a. Fixed-free boundary conditions are applied, with all nodes at x
= 0 constrained in the way u∗ = ux,φ = 0. Internal pressure is applied to the hose’s inner walls
and nodal forces at the free end (x = L) are added to account for end forces

FNodal,End =
pπr2i

nNodal,End
. (15)

Fig. 5b illustrates how the geometry of reinforced hoses is affected by internal pressure loading
increase. For the neutral wrapping angle γN = 54.74◦ (see solid vertical line), there is no
change in the hose geometry, neither in the axial direction x, nor in the radial direction r. For
the case γ < γN , the hose length decreases with the strain ϵx (see solid lines) and the hose
diameter increases with the strain ϵr (see dashed lines). For the case γ > γN , the length of the
hose increases, while the hose diameter decreases. The fibers align according to the resulting
force due to the internal pressure. The larger the radius of the hose, the greater the change in
elongation and contraction in the axial and radial direction.

(a) Reinforcement layer for the
neutral wrapping angle γN

50 55 60

-4

-2

0

2

4

6
10-3

(b) Deformation behavior and
neutral wrapping angle γN

0 45 90 135 180
-5

0

5

10
10-3

(c) Axial strain ϵx for different
wrapping angles γ

Figure 5: Straight hose

Fig. 5c shows the axial deformation behavior with wrapping angles γ varying from 0◦ to
180◦. It demonstrates that the linear relationship from Fig. 5b between the wrapping angle
γ and the deformation ϵx,r only applies to the range of angles around the neutral wrapping
angle γN . The deformation curve in Fig. 5c exhibits axial symmetry about the 90◦ axis (see
dashed vertical line), indicating that the axial deformation is independent of the helical winding
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direction (whether right-handed or left-handed), due to the zero Gaussian curvature κ along the
cross-section. As the wrapping angle γ increases from 0◦ (fibers parallel to the hose axis), the
axial reinforcing effect of the fibers decreases until a certain minimum. The angle at which this
minimum occurs, depends on the geometry parameters L and ri. Beyond, the axial stiffness
increases as the fiber orientation becomes more balanced between the circumferential and axial
load, until the neutral wrapping angle γN is reached. Moving further from γN , the stiffness
decreases again, reaching an elongation maximum at 90◦ (fibers form rings around the axis).

4.2 Full torus

For an isotropic full torus, the Bourdon effect uniformly increases the curvature radius R0.
Unlike a straight hose, where a constant neutral wrapping angle γN can be theoretically defined
(see Section 2.1), such a constant neutral angle does not exist for the torus, due to its varying
Gaussian curvature κ. The Gaussian curvature κ varies between negative values (concave area),
zero (equatorial line) and positive values (convex area). Boundary conditions are specified along
the three symmetry planes of the torus: the horizontal plane and the two vertical planes at φ =
π
2 ,

3π
2 in the way u∗ = uφ = 0 and at θ = kπ

2 (where k = 0, 1, 2, 3) in the way u∗ = uθ = 0. In Fig.
6 we have a look at the larger radius of the torus R0. We present the percentage change of the
radius of curvature R0 for different wrapping angles γ. The torus axes from θ = 0 → π is shown
in black and from θ = π

2 → 3π
2 in red. We distinguish between a constant radius of curvature

R0 (solid lines) and a constant number of turns N ∈ N (dashed lines). Both are related by the
following equation

R0 = Nr tanα = Nr tan(
π

2
− γ) = Nr cot(γ). (16)

For a constant R0, increasing the wrapping angle γ leads to an increase in the number of turns N ,
while keeping N constant results in a decrease in R0 as γ increases. The dashed lines (Nconst)
are not applicable for γ = 0, π

2 , π, as no toroidal helix exists for these angles. Due to the
fiber-induced anisotropy, the expansion of R0 is uneven, making the torus oval-shaped.

0 45 90 135 180

-0.5

0

0.5

1

1.5

Figure 6: Bourdon effect for a reinforced full torus with R0, const = 50mm and Nconst = 8.
Mean value ∆R0

R0
= 0.17%
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For low and high wrapping angles γ, R0 even decreases, although the average percentage
change ∆R0

R0
remains positive, demonstrating the Bourdon effect. A zero-crossing near the neu-

tral wrapping angle γN of a straight hose (54.7◦) shows that at this angle, the torus experiences
no deformation, with neither R0 nor the arc length changing. In summary, Fig. 6 highlights
that the percentage change in the curvature radius (Bourdon effect) depends more on the re-
inforcement orientation than on the torus geometry. Fig. 7 examines the small radius r of the
torus by observing its cross-sectional ovalization. In isotropic tori, ovality arises due to unevenly
distributed poloidal stress, with maximum stress at the intrados and minimum stress at the
extrados [17]. The ovality is calculated with the main axis a1 running from extrados to intrados
and the main axis a2 running from crown to crown, as shown in Fig. 2

Ω [%] =
a1 − a2
a1 + a2

. (17)

We see that the degree of ovalization, whether longitudinal (positive) or transversal (negative),
is strongly influenced by the reinforcement orientation, reflecting the material’s anisotropy. Fig.
7a shows the ovalization behavior at four toroidal positions for different wrapping angles γ with
a constant curvature radius R0. Due to the anisotropic behavior of a reinforced full torus, the
ovalization varies along the toroidal direction θ. While the ovalization along one axis (in this
example θ = π

2 → 3π
2 ) remain equal, those along the other axis (in this example θ = 0 → π)

differ. Changing the winding direction from left to right-handed, mirrors the deformations along
the torus’s symmetry planes. This symmetry is evident, as the red line in the [0◦, 90◦] interval
mirrors the black line in the [90◦, 180◦] interval, and conversely. Besides the wrapping angle γ,
the fiber-to-matrix volume ratio also significantly impacts the torus’s cross-sectional ovalization.
Fig. 7b focuses on the ovalization for right-handed reinforcements (0 to 90◦), as the results can
be extrapolated to left-handed fibers (90 to 180◦) based on the observations from Fig. 7a. The
higher the fiber volume ratio, the stronger the ovalization and the influence of the fibers.

0 45 90 135 180
-1

-0.5

0

0.5

1

1.5

2

(a) Ovality Ω along a torus for varied
wrapping angles γ with R0,const

0 30 60 90
-0.5

0

0.5

1

1.5

2

(b) Ovality Ω at θ = 0 for varied fiber
volume fractios VF and wrapping angles

γ with R0,const

Figure 7: Cross-sectional ovalization behavior in a fiber reinforced full torus
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4.3 Quarter torus

The structural response of a pressurised, reinforced quarter torus is shown, using fixed-free
boundary conditions. Here, all nodes at θ = 0 are constrained in the way u∗ = uθ,φ = 0. The
Bourdon effect causes the quarter torus to straighten under internal pressure. Thereby, the
cross-section remains perpendicular to the toroidal axis, but rotating out of the cross-sectional
plane. Fig. 8a illustrates the normalized displacement of the center of gravity at the free end
for different wrapping angles γ. The straightening is characterized by x2 (vertical) and x1 (hor-
izontal), which are 90◦ axisymmetric and therefore independent of the winding direction. The
deformation in x3-direction (along the larger axis of rotation) is point-symmetric and therefore
dependent of the winding direction, whether right-handed or left-handed. Consequently, the
direction of bending during the fabrication of curved fiber-reinforced hoses has an impact on
their deformation direction, an aspect that has not been adequately addressed in the existing
literature. Fig. 8b shows the vertical displacement of the center of gravity ∆x2,S against differ-
ent wrapping angles γ for R0 = const. and N = const. Here again, for N = const., no toroidal
helix exist at γ = 0, π

2 and π. As in Section 4.2, a small γ results in a high curvature radius

R0, showing that the normalized straightening of a quarter torus
∆x2,S

R0
with unsymmetrical

boundary conditions depends more on the geometry than on the reinforcement orientation.
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(a) Deformation of the free end for varied
wrapping angles γ with R0,const

0 45 90 135 180
0

10

20
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(b) Comparison of the straightening
between R0,const = 50mm and Nconst = 2

Figure 8: Bourdon effect for a quarter torus

5 CONCLUSION AND OUTLOOK

This study has examined the deformation behavior of fiber-reinforced hoses under internal
pressure, focusing on both straight and curved configurations. In curved, pressurised structures,
the Bourdon effect emerges as the most significant factor influencing the deformation. For a full
torus, the deformation behavior of the larger circle (radius R0) and the ovalization of the smaller
circle (radius r), are primarily governed by the wrapping angle γ, with less dependence on the
geometry R0. Conversely, in the quarter torus, the deformation is predominantly influenced

10
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by the geometry R0, with less impact from the wrapping angle γ, due to the asymmetrical
boundary conditions applied. As a result, the deformation along the axis of rotation depends
on the winding direction (right-handed or left-handed). Furthermore, for a full torus, there
exists a varying wrapping angle γ, at which no curvature radius expansion ∆R0 takes place,
analogous to the neutral wrapping angle γN of a straight hose. This concept of the neutral
wrapping angle γN , originally defined for straight hoses, can be adapted to toroidal geometries.
In this context, reinforcement fibers should be aligned with the torus’s geodesics - the shortest
paths along its surface, typically following spiral trajectories. Aligning the reinforcement with
these geodesic paths can achieve an isotensoidal load distribution, where the load is evenly
distributed across the toroidal surface, allowing the reinforcements to counterbalance internal
forces, thereby preventing any elongation or contraction of the torus. Future research could
investigate the extension of the single reinforcement layer to multiple layers to analyze how
the positioning of these layers within the cross-section affects the deformation behavior. In
this context, the feasibility of reducing the 3D continuum model to a shell model could be
investigated. However, it must be ensured that the deformation behavior and all relevant effects
are accurately captured. This reduction is particularly relevant for composite materials, where
the complex interactions between multiple layers and the anisotropic properties can be effectively
taken into account.
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