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ABSTRACT
The distribution of natural strata is uncertain due to tectonic movements and sedimentation. Capturing geological
uncertainty is a challenge for traditional deterministic models. In this study, an improved three-dimensional coupled
Markov chains method for probabilistic stratigraphic reconstruction was developed. This method considers the
correlation between the field borehole data. On this basis, an inversion analysis method for horizontal transition
probability matrix estimation is proposed. This method makes the predictions more suitable for possible stratigraphic
distributions. The accuracy of the method was further verified by different borehole schemes from the Mawan Tunnel in
Shenzhen. The results show that the proposed method can still have high accuracy when the number of boreholes is
sparse. This method can reflect the asymmetry, continuity and anisotropy of three-dimensional strata.
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1. Introduction
The properties of natural geological formations

exhibit significant uncertainty due to complex
geological, environmental, and physicochemical
processes, rarely being homogeneous, a widely accepted
notion (Elkateb et al., 2003; Phoon & Kulhawy, 1999).
Geological variability significantly impacts the
subsurface geological structures (Yeh et al., 2021;
Zhang et al., 2020). Geological uncertainty manifests
primarily in two forms (Elkateb et al., 2003): one being
the geological variability within heterogeneous
formations, often presenting as irregular embeddings of
one geological material within another (Elfeki, 2006);
the other uncertainty arises from spatial variability of
the same geological parameters within a single
formation, manifesting as spatial variations of
geological parameter properties from one point to
another (Griffiths et al., 2002; Phoon & Kulhawy, 1999).
Due to insufficient borehole data in practical
engineering, research on subsurface variability remains
relatively scarce. One choice for modeling subsurface
variability is based on geostatistical variogram
simulation methods, such as the Kriging method (Chiles
& Delfiner, 1999), Gaussian threshold models
(Matheron et al., 1987), and multipoint geostatistics
methods (Strebelle, 2002). However, these methods
have limitations, such as the inability of the Kriging
method to fully utilize the cross-correlation information
contained in the data (Deutsch & Journel, 1998).
Gaussian threshold models and multipoint geostatistics
methods heavily rely on the quality of site-specific
borehole data and require a sufficient number of
borehole data to infer the spatial correlation structure of

geological heterogeneity, which is often inadequate in
practical engineering, making it difficult to meet the
requirements of these methods (Carle, 2000; Zhang &
Dasaka, 2010). From the aforementioned research
findings, it is evident that subsurface variability is
objectively present, and the coupled Markov chain
model is a computationally efficient simulation method.
However, due to the typically limited amount of field
borehole data, estimation of the horizontal transition
probability matrix in the coupled Markov chain model
based on finite field data is a major research focus.

2. Methodology

2.1. Improved three-dimensional coupled
Markov chain model

In geotechnical engineering, the uncertainty simulation
of subsurface involves different soil types distributed
across various spatial locations within the strata,
corresponding to different states in the Markov chain.
By dividing the strata into units and considering the
distance between soil units as the difference in order
between states in the Markov chain, Markov chains can
be used to describe the transition of soil states. A three-
dimensional coupled Markov chain (ICMC3D) provides
a more realistic simulation of subsurface uncertainty
compared to one-dimensional Markov chains limited to
two directions. As depicted in Figure 1, the soil within
the simulation area is divided into Nx×Ny×Nz units
of equal size, with each unit corresponding to its own
soil state. Additionally, it is necessary to determine the
soil types exposed at the ground surface and the
information from the nearest boreholes. The specific



calculation formula is shown in Equation (1):

Figure 1. Schematic diagram of three dimensional modified
coupled Markov chain.
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where C’ represents the normalized parameters. P x
mq

represents the transition probability between the state of
Sq and Sm in the x-direction. The other elements P y

nq and
P z
lq have the same meaning. Nx-i is the relative distance

between the state of Sq and So along the x-direction and
Ny-j is the relative distance between them along the y-
direction. (P x

mq )(Nx-i)represents the transition probability
between the state of Sq and So in the x-direction. The
other elements (P y

nq )(Ny-j) have the same meaning.

2.2. Estimate transition probability matrix

The vertical transition probability matrix can be
estimated based on borehole data. Firstly, boreholes are
discretized in the vertical direction to determine the
rock-soil type for each cell. By counting the transitions
between various soil types, the vertical transition count
matrix is derived. Secondly, the vertical transition
probability matrix can be calculated using Eq.(2) as
follows:
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where T v
lk represents the number of transitions from state

Sl to Sk in the vertical direction; p v
lk defines the ratio of

transition count matrix T v
lk to the sum of the transition

counts from state Sl to all other soil states. All elements
of the vertical transition probability matrix can be
sequentially computed.

This section illustrates the computation of the
transition probability matrix using three types of
geotechnical materials as an example for clarity. A
method akin to the vertical transition matrix is utilized
to calculate initial transition count matrices for the x-
direction and y-direction. They are denoted as Tx’, Ty’
and Tz’, as shown in the Eq.(3):
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Based on the Walter Principle, diagonal elements of
the transition count matrix are transformed to estimate
the horizontal transition probability matrix. The term
txyz represents the maximum value among cell
positions in T x’

ij , T y’
ij and T z’

ij , as illustrated below:
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where cota is the cotangent value of the dip angle of
strata in the x-direction; cotb is the cotangent value of
the dip angle of strata in the y-direction. lz is the
simulation cell step length in the vertical z-direction; lx
is the simulation cell step length along the x-direction;
And ly is the simulation cell step length along the y-
direction.

It is worth noting that the initial transition count
matrix serves as an intermediate matrix offering
additional information on the x-directional and y-
directional transitions. The final transition probability
matrices for the x-direction and y-direction will be
derived through further computations. The specific
calculation equation is as follows:
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where T x’
ij represents the transition count from lithology

i to lithology j. T y’
ij and T z’

ij have a similar meaning of
representation. nx, ny and nz are the number of
simulation cells in the x-direction, y-direction and z-
direction, respectively.

With N proposed dip angles set for both x-direction
and y-direction, a total of N2 combinations of angles are
considered. Error matrices of input and output transition
probabilities in x-direction and y-direction are calculated
for each combination. Each angle combination needs
nsim simulations to achieve consistent output results.
The mean squared error (MSE) for the stratigraphic dip
angles is calculated, with the following equation:

2 21 [( ) ( ) ]x x y y
cal calMSE Tr Tp Tp Tp Tp

nsim
    (6)

where Tpx is the input transition probability matrix and
T x’

cal is the output transition probability matrix in x-
direction. Tpy is the input transition probability matrix
and T y’

cal is the output transition probability matrix in y-
direction. diag means the diagonal elements of a matrix;
Tr means a trace of a matrix. The dip angle combination
corresponding to the minimal MSE among the
computed N2 combinations is selected. This
combination is deemed the optimal stratigraphic dip
angle set for simulating the site in question. Finally, The
most probable transition probability matrix can be
calculated using Eq.(2).

3. Case Study
This paper applies the aforementioned method to the

Ma Wan Cross-Sea Tunnel project in Shenzhen, China.
Based on the geological survey data before tunnel
construction, a corresponding geological model is
generated, and the input borehole data are shown in
Figure 2.

Figure 2. Borehole location and exposed strata diagram.

Figure 3. The optimum dip angles combined value optimizes
the surface diagram.

Figure 4. Most likely 3D geological map based on ICMC3D.

Figure 5. 3D simulation information entropy diagram.

An inverse analysis method for the formation dip
angle mentioned in Section 2 is employed. The
ICMC3D method is used for stochastic geological
modeling. Finally, the optimal combination of dip
angles is obtained through calculation, as illustrated in
Figure 3. The values of the transition probability matrix
for the corresponding ICMC3D model are provided in
the appendix. Figure 4 shows the most probable three-
dimensional stratum distribution obtained after 400
calculations based on the optimal dip angle combination.
Similarly, the spatial distribution morphology of
uncertainty in subsurface simulation, commonly
assessed using the entropy index in probability
geological modeling, is obtained through computation,
as shown in Figure 5. The average entropy of the
simulated space is calculated to be 0.1383.

In order to further validate the accuracy of the
model and the extensibility of geological simulation,
this study reduces the number of boreholes inputted into
the ICMC3D model by one-third, specifically removing
boreholes 1 to 14 (BH1-BH14). The spatial distribution
of these specific boreholes is illustrated in Figure 2.
Boreholes 15 to 36 are then inputted into the model for
three-dimensional geological simulation. Boreholes 1 to
14 are utilized as a training set to evaluate the predictive
accuracy of the model. Specifically, the simulated
stratigraphic sequence is compared with the



corresponding borehole-exposed stratigraphic sequence.
The comparative results are shown in Figure 6. The
results indicate that, except for a few individual
boreholes, the geological simulation accuracy can reach
above 70%, with borehole 14 achieving an accuracy of
98%. This demonstrates the good accuracy of the
ICMC3D model in three-dimensional geological
modeling.
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Figure 6. Different borehole accuracy curves.

4. Conclusion
This study applied the methodology to the Ma Wan

Cross-Sea Tunnel project in Shenzhen, China,
generating a geological model based on pre-construction
surveys, with borehole data inputted as previously
described. Utilizing the inverse analysis method for
formation dip angles and ICMC3D for stochastic
geological modeling, optimal dip angle combinations
were computed. The most probable three-dimensional
stratum distribution was obtained after 400 calculations.
The spatial distribution morphology of uncertainty in
subsurface simulation was analyzed using the entropy
index, resulting in an average entropy of 0.1383 for the
simulated space. To validate the model's accuracy, one-
third of the borehole data were removed, and the
remaining data were used for simulation. Comparative
analysis showed high accuracy, with one borehole
reaching 98%. This underscores the robustness of the
ICMC3D model in three-dimensional geological
modeling.
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Appendix
Table 1. The calculated x-direction transition probability

matrix
x-direction transition probability matrix

T 1 2 3 4 5 6 7

ype

1
0.

997
0.

002
0.

000
0.

000
0.

000
0.

000
0.

000

2
0.

004
0.

993
0.

003
0.

000
0.

000
0.

000
0.

000

3
0.

001
0.

001
0.

997
0.

001
0.

001
0.

000
0.

000

4
0.

000
0.

000
0.

000
1.

000
0.

000
0.

000
0.

000

5
0.

000
0.

000
0.

000
0.

000
1.

000
0.

000
0.

000

6
0.

000
0.

000
0.

000
0.

000
0.

002
0.

996
0.

001

7
0.

000
0.

000
0.

000
0.

000
0.

000
0.

003
0.

997

Table 2. The calculated y-direction transition probability
matrix

y-direction transition probability matrix
T

ype
1 2 3 4 5 6 7

1
0.

977
0.

021
0.

002
0.

000
0.

000
0.

000
0.

000

2
0.

034
0.

943
0.

023
0.

000
0.

000
0.

000
0.

000

3
0.

005
0.

010
0.

974
0.

006
0.

006
0.

000
0.

000

4
0.

000
0.

000
0.

007
0.

985
0.

007
0.

001
0.

000

5
0.

000
0.

000
0.

002
0.

004
0.

989
0.

005
0.

000

6
0.

000
0.

000
0.

000
0.

004
0.

019
0.

965
0.

012

7
0.

000
0.

000
0.

000
0.

000
0.

000
0.

025
0.

975
Note: Types 1-7 indicate rockfill, muck, medium sand, silty

clay, fully weathered rock, strongly weathered rock and
medium weathered rock.
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