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Summary. In this work, a novel cost function is introduced within the domain of multi-fidelity
Bayesian Optimisation, addressing a significant gap in the consideration of costs associated with
experimental design in real-world applications. This newly proposed cost function encapsulates
the property of most studies - some parameters are cheaper to change than others. This new
cost function is applied to a synthetic test function and an engineering dataset with relevant
properties using a number of strategies, including single and multi-fidelity treatments. It is
found that, in both single-fidelity and multi-fidelity settings, adaptive cost treatment generally
improves the performance of optimisers. However, in certain cases, care needs to be taken in
determining the relative costs due to ‘scanning’ behaviour - especially when fidelities are not
well correlated.

1 Introduction

Bayesian Optimisation (BO) describes the problem of constructing a strategy for finding
optima of unknown functions through repeated sampling. A BO strategy works by taking
samples from the unknown function, building a surrogate model of the unknown function based
on that sample data, and sequentially selecting further points to sample based on the outputs of
that surrogate model. A typical assumption of BO is that sampling is costly, and that a useful
strategy is one that converges on a global optimum while minimising the costs associated with
sampling.

Multi-fidelity Bayesian Optimisation (MF-BO) is a variation of the BO problem but where
the experimentalist has access to a set of lower-fidelity functions, correlated to the original
function from which they can take samples. These correlated functions are less costly to sample
from than the original, and so successful MF-BO strategies must balance trade-offs between
costs and accuracy when evaluating points to sample.

Many problems in engineering can be framed as instances of BO and MF-BO problems. MF-
BO problems often arise when an experimentalist has the choice between either taking physical
measurements of a system, or running cheaper (but less accurate) computer simulations of that
same system [10], such as when determining the aerodynamic performance of a wing: a physical
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experiment, or a Reynolds Averaged Navier Stokes (RANS) simulation can be performed, where
the more trusted results would come from the physical experiment - but at a much higher cost.

Multi-fidelity systems are ubiquitous in fluid dynamics. From the initial design space coverage
using low-order or simplified models to determine desirable attributes, to more detailed analysis
of particular candidate designs with more robust methods such as Large Eddy Simulations (LES),
and even experiments, there exists different fidelity data in different quantities of any system -
and each fidelity exhibits better agreement with the true system, which typically correlates with
increased cost of observation.

Many different types of MF-BO problems have been explored previously [6, 13, 9, 15]. In its
most basic form, the cost of sampling is solely dependent on the fidelity of the sampled function.
Further work has seen cost functions that take experiment parameters into account [15], so that
not all experiments at the same fidelity are equally as expensive; a practical consideration central
to much practical design.

The availability of these information sources of variable fidelities presents a number of prac-
tical problems to an experimentalist:

1. What is the best way to combine the results of different types of experiments (with different
biases and uncertainties across the design space)?

2. Which type of experiments should be performed (and in what regions of the design space)
to gain the most useful information in the most cost-effective manner?

In this paper, we introduce a new, dynamical cost function to MF-BO. That is, a cost is
associated with the sampling of a point in the design space, but this function also depends on
the previously sampled point. The fact that some experiments are more expensive to perform
than others has been incorporated by others in previous research but, to the authors’ knowledge,
there has been no attempt to incorporate dynamic cost functions of the type described in the
multi-fidelity context.

The paper discusses the previous related work on the topic and relevant theoretical back-
ground. Then, the additional dynamic cost function is explained in detail, as well as how it fits
into a multi-fidelity context. After this, an algorithm to efficiently optimise an expensive ‘black-
box’ function with multiple information sources, with a dynamical cost function is proposed and
is then applied to one synthetic test case and one real engineering case.

2 Methodology

2.1 Gaussian Processes

Gaussian Processes (GPs) are stochastic processes - that is, a set of indexed random variables
- with the defining property that any finite subset of the indexed variables is jointly normally
distributed [12]. The covariance between two random variables in the normally distributed
subset is defined by some specified function called the kernel K(x, x′; θ), with θ being a vector
of hyperparameters.

The covariance kernel can take many forms and can be selected based upon the expected form
of the function. The most common is the smooth and continuous Radial Basis Function kernel
which is used in this work. For an excellent discussion of different kernels and their properties,
one can refer to [5].
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The prediction of the mean and the variance of the GPs are performed with the equations
[12]:

y(x∗) = µ1 + K(x∗, x)
(
K(x, x) + σ2I

)−1
(y − 1µ) (1)

Σ(x∗) = K(x∗, x∗) − K(x∗, x)
(
K(x, x) + σ2I

)−1
K(x, x) (2)

where x∗ are the prediction points, x are the training points, K are the kernels conditioned on
hyperparameters according to the prior covariance function, I is an identity matrix, σ2 is the
noise, and 1 is a vector of ones.

2.2 Multi-fidelity Gaussian Processes

Multi-fidelity Gaussian Processes, in a variety of forms, have found use in a broad range of
engineering problems for BO. There are two models which are generally used when optimis-
ing problems with access to cheaper information sources. One is the Auto-Regressive model of
Kennedy and O’Hagan [9] and has been shown to be useful for hierarchical information struc-
tures, where the highest fidelity is the ‘truth’ and all other observations are corruptions of this
‘truth’.

The other commonly used model, which will be the model used in this paper, is the Linear
Model of Coregionalisation (LMC). The LMC model is referred to as a ‘multi-output’ model;
since it correlates different outputs together whilst not assuming a strict hierarchy [4].

The model works by transforming the covariance matrix into:

K(x, x′) =
t∑

i=1
Biki(x, x′)

where B is a coregionalisation matrix [2] with components
∑ri

j=1 aj
s,ia

j
s′,i with r referring to the

rank of matrix B, which controls the number of GPs that share the same covariance structure,
and a is a scaling parameter between each GP. Inference with this model follows the same
strategy as in eqs. (1) and (2). In this work, the model is implemented using GPyTorch [8] to
take advantage of the automatic differentiation capabilities.

2.3 Acquisition Functions and Bayesian Optimisation

In the simplest terms, BO can be summarised as [7]: maxx∈A f(x) where A is the domain
of the problem. This maximisation can be translated to minimisation by simply negating the
function at all points. Generally, since the function f(x) is expensive to evaluate, it’s desirable
for the search to try to balance exploration and exploitation. Exploration utilises the confi-
dence intervals from the model to determine where the model is uncertain of the form of the
function. For BO to be efficient, these uncertainties should be well-defined and derived from
noise in the data rather than uncertainties in the model’s parameters. The exploitation aspect
of BO concerns utilising the model where optimal values are likely to already exist. This allows
the optimiser to resolve the area of the desired optimum to the finest extent, whilst avoiding
‘wasteful’ observations where an optimum is unlikely to exist.

As the most probable value of the function is µ∗ then, since some uncertainty, σ∗ exists in
the model, the expectation of improvement becomes:
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Figure 1: Multi-Fidelity Bayesian Optimisation. The top figure demonstrates the true high,
, the true low, , the samples from the high and low-fidelity functions as circles and crosses;
respectively, and the GP model fits, . The bottom figure shows the acquisition functions
before, , and after scaling, .

E[I(x)] =
(

(µ∗(x) − ybest)Φ
(

µ∗(x) − ybest

σ∗(x)

)
+ φ

(
µ∗(x) − ybest

σ∗(x)

))
(3)

where Φ is the cumulative distribution function, and φ is the probability distribution function,
which are both Gaussian. Equation (3) dictates that when σ∗ = 0, then E[I(x)] = 0 as there is
nothing more to learn about the function in this area; this prevents the suggestion of resampling.

Figure 1 shows a multi-fidelity function where the lighter colour denotes high-fidelity and
darker denotes low-fidelity. The aim is to find the minimum of the high-fidelity function by using
the EI acquisition function from eq. (3), but dividing it by a cost. The bottom figure shows
how a sample is to be taken from the high-fidelity source, but after scaling by cost (assuming
the high-fidelity is five times the cost of low-fidelity), the optimiser elects to add the low-fidelity
point. This occurs over and over until a suitable convergence criterion is met. After this, since
different fidelities are generally of different costs and offer different levels of information, the
‘value’ of querying a sample can differ; hence, authors began to implement strategies of deciding
when low-fidelity and high-fidelity queries are appropriate based on normalising the amount of
information gain of a query by a suitable cost function.

2.3.1 Multi-Fidelity Specific Acquisition Functions

The method used in this paper is a Knowledge gradient method, which are a relatively inex-
pensive way of normalising information gain per unit cost when compared to the first introduced
entropy-based methods [10].

The optimisation occurs in rounds of exploration where the next sample is chosen by eval-
uating each of the fidelities and their expected information gain upon the next iteration. To
calculate this, the authors in [11] developed the Multi-Information Source Optimisation using the
Knowledge Gradient (misoKG) algorithm. Having modelled n data points at various fidelities
and points in the design space, the ‘misoKG factor’ is given by [11]:
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MKGn(t, x) = E

max
x′∈D

µ(n+1)(0, x′) − max
x′∈D

µ(n)(0, x′)

Ct(x)

 (4)

where µ(n) is the posterior mean of the model at iteration n, Ct(x) is the cost of the information
source at fidelity t at point x in the domain, and tn+1 and xn+1 are the next fidelity and sample
locations, respectively, µi(0, x) represents the expected value of the true objective function at x
after sampling i data points. Monte-Carlo sampling is used to estimate eq. (4) using the software
package BOtorch from [3].

2.4 Cost-Adaptive Methodology

In a situation where it is possible to choose from a wide variety of experiments, it is inevitable
that the cost of performing different experiments will vary. Not only will some experiments be
intrinsically more expensive to perform (perhaps they use more power, or take more time than
other experiments), but in practice, there are costs associated with changing the parameters of
the experiments or switching from one experiment type to another. It is clear that the cost of
performing the next experiment in a series is therefore not only a function of the experiment
parameters but also of the parameters of the past experiments too. Under these assumptions,
we can construct cost functions that better reflect the practical nature of experiments.

As well as being of variable cost, different experiments are likely to result in variable utility.
The assessment of the utility of a potential experiment is a key aspect of (BO): a surrogate
model in combination with an acquisition function can be used to assess the potential utility.
Dividing the utility of a potential experiment with the cost it would take to perform it offers a
useful metric - utility per unit cost. It is this metric of an experiment (or series of experiments)
that should be maximised.

2.4.1 A New Cost Function

As an example, we consider a system with a QOI and two continuous parameters that can
be altered from one experiment to another experiment. We imagine that the cost of a potential
experiment at a location in the parameter space (x1, x2) is a function of the new parameters,
as well as a function of the old ones (x1.prev, x2.prev, ). We assume some facts about this cost
function, that should generalise to a large number of experimental systems:

1. There is some intrinsic, non-zero cost to every experiment: Cintrinsic = Cin(x1, x2) > 0.

2. There is an additional cost incurred if a parameter is changed from its previous value:
Cchange = λ1δ(x1 − x1,prev) + λ2δ(x2 − x2,prev) where δ(x) is defined by: δ(0) = 0 and
δ(x ̸= 0) = 1 and λ1, λ2 are suitably chosen coefficients.

3. There is an associated cost with switching between experiments: Cswitch.

The coefficients chosen, λx = λ1 . . . λn should be normalised by the most expensive parameter.
For example, the expensive parameter is 1, whereas a parameter that is only 20% of the cost of
this will therefore have a value of 0.2.
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The total cost of an experiment is then given by the sum of these terms:

Ctotal = Cin(x1, x2) + Cchange(x1, x2, x1,prev, x2,prev) + Cswitch (5)

It is trivial to expand to higher dimensions, and in a general n dimensional case becomes:

Ctotal = Cin(x, xprev) + Cchange(x, xprev) + Cswitch (6)

where we can define x as the collection of inputs at the observation point, (x1, x2, . . . , xn); and
xprev as the inputs from the previous observation, (x1,prev, x2,prev, . . . , xn,prev).

As the cost can depend on several factors, such as time and money, defining exactly what the
cost of an information source is can be difficult. Where cost-aware optimisation strategies have
been introduced, such as in [10, 13, 15] they have assumed that the cost of each information
source is constant across every dimension of the domain. This, however, becomes problematic
when optimising problems that contain real multi-fidelity data.

2.4.2 Using the Adaptive Cost-Function

In this work, the new cost function is applied to eq. (4) as C(x) which works as a subclass
of the BOtorch [3] AffineFidelityCostModel class. The implementation saves the previous
observation, and uses the λ values, stored as a tensor, to reduce costs down the appropriate
dimensions - it also does this in the t-batches of data, a feature of BOtorch, to allow the acqui-
sition function to be aware when dispatching across multiple cores. The cost function changes
how expensive it is to take a sample given the previous observation in each fidelity. It applies
to both a single-fidelity setting, where an experiment to determine the optimal configuration
needs to be determined, but it works more intuitively in a multi-fidelity setting. This is because,
in a single-fidelity setting, the optimisation doesn’t have an indication from lower-information
sources to suggest where the optimal configuration might be. Hence, the exploratory phase in
a single-fidelity setting will be highly robust and, especially in experiments, already be enough
resolved to remove the need for further exploratory analysis.

The difference in this workflow is that it’s an assumption that more exploration in the highest-
fidelity search space can be reasonably performed. If the optimiser can suggest which fidelity of
samples to take at subsequent searches such as in [11, 6], then the relationship between each of
the fidelities must be robust enough to ensure the high-fidelity mapping is appropriate.

There are two distinct ways of interpreting the reduced costs, and each can be incorporated
in slightly different ways. The first is accessing cheaper observations based on an observation
that immediately opens up cheaper exploration paths - such as in an experimental setup where
changing a set of certain parameters is now relatively much cheaper than going from another
observation. The second way is considering in an experiment that a certain expensive geometry
may exist, of which certain parameters can be changed, but the fact that the geometry already
exists allows for a slightly cheaper observation along one of the dimensions this geometry can
travel through.

3 Results

The results that follow demonstrate the effects of the variable-dimension-aware cost function.
Two particular attributes of the systems were investigated in detail:
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Table 1: The optimisation strategies employed.

Strategy Name Surrogate Model Cost Function Acquisition Function Samples from all fidelities?

SFOC GP Original EI No
SFAC GP Adaptive EI No
MFOC LMC GP Original misoKG Yes
MFAC LMC GP Adaptive misoKG Yes

MFSFSOC LMC GP Original EI No
MFSFSAC LMC GP Adaptive EI No

1. The strength of the Pearson’s correlation coefficient, ρ, between the low-fidelity and high-
fidelity functions.

2. The values of the λ parameters.

These aspects of the system were varied and the resulting effects of these variations were
observed and are discussed in this section.

Table 1 specifies the different optimisation search strategies employed in this paper. The
six strategies explore different combinations of surrogate models, cost functions, acquisition
functions and sampling techniques. For example, the MFSFSAC strategy uses the same multi-
fidelity model as the MFAC strategy but a different acquisition function, intended to only add
to the high-fidelity data. Such a strategy might be suitable in circumstances where the cost of
switching between fidelities is prohibitively high, for instance.

These strategies can be adapted to work on problems of any dimension. However, in the
interest of improving the interpretability of the results, the datasets in this paper are restricted
to two-dimensions.

3.1 Six-Hump Camel Back Functions

The Six-Hump Camel Back is a two-dimensional system, comprising two functions (high-
fidelity and low-fidelity) of the form Q(x1, x2) : [ − 2, 2] × [−1, 1] ⊂ R2 → R. The two functions,
{QH , QL}, are defined as follows:

QH(x1, x2) = x2
1 ·
(

4 − 2.1x2
1 + x4

1
3

)
+ x1 · x2 + x2

2 · (−4 + 4x2
2) (7)

QL(x1, x2) = QH (A · (x1, x2)) + x1 · x2 − 15 (8)

where 0 ≤ A ≤ 1 acts as a parameter that determines the correlation between the low and
high-fidelity sources.

The high-fidelity function consists of 6 local minima, of which two are global minima. The
global minima occur at (−0.0899, 0.713) and the point corresponding to this minimum’s reflection
in the line y = x. At these points, the function takes a value of −1.032.

A number of multi-fidelity optimisation strategies were tested on the 6HCB system. The
search strategies were initialised with 50 random samples from the low-fidelity function and 4
random samples from the high-fidelity function. For this set of experiments, the cost of sampling
from the high-fidelity function - the ’Cost Ratio’ = Ch

Cl
- was varied, as was the correlation be-

tween the low- and high-fidelity functions. The correlation between the functions varies between
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(f) MFSFSAC
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Figure 2: Probability of a strategy producing a minimum within 1% of the true minimum for
the Six-Hump Camel Back Function.

0.6 and 1, and the Cost Ratio varies between 2 and 25. A low-fidelity sample is defined to cost
1 unit, and the budget for each strategy is set at 334 units.

Figures 2c and 2d depict the performance of the MFOC and MFAC strategies with this
system when configured with different cost ratios and correlations. For the adaptive cost case,
the parameters associated with the cost vectors were λ1 = 1.0, λ2 = 0.1. The plots demonstrate
how higher correlations between the low- and high-fidelity functions leads to lower error rates
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when using these particular multi-fidelity strategies. If correlations are too low, the optimiser
can more easily become misguided by the poor relationship, resulting in strategies getting stuck
in local minima and missing the true global minimum. However, the addition of the cheaper
dimension in the MFAC model allows for more exploration in the high-fidelity function, which
allows for more consistent optimisation at lower correlations, the low correlations still have a
tendency to misguide the optimiser.

When the correlation is very strong - around 0.9 or higher - both multi-fidelity strategies are
able to outperform the single-fidelity strategies up to a cost ratio of 12. When the MFAC model
is used, a more favourable cost-vector is able to guarantee convergence of optimisers up to a cost
ratio of 14, after this, too much of the budget is expended on the low-fidelity, such that even
with favourable cost-vectors, the strategy can not properly learn the inter-fidelity mappings.

The cost vector effects on the multi-fidelity models were consistently better than the original
cost counterparts, as opening a cheaper path up allowed the optimiser to search the high-fidelity
space more effectively. This was particularly visible for the MFSFSOC and MFSFSAC models in
figs. 2e and 2f, respectively, where the cheaper dimensions led to consistently better performance
over the non-cost-adaptive variant.

The results of the single-fidelity strategies are shown in figs. 2a and 2b. Varying the correlation
between the functions does not affect the single-fidelity results - in these strategies, low-fidelity
samples are ignored entirely and have no impact on future sampling.

However, the same cannot be said for differences in the λ parameters. The SFAC strategy
assumes the existence of a cheaper-to-explore dimension: in this case, λ1 = 1.0, λ2 = 0.1. SFOC,
with no preferential dimension, has λ1 = 1, λ2 = 1. The SFAC strategy obtains minima within
1% of the true global minimum close to 100% of the time, for Ch/Cl values of up to 11. The
SFAC performance above cost ratios of 15 outperforming the multi-fidelity variants is due to
having to waste any budget on low-fidelity approximations in the initialisation, so the only
learned values are those which are from the high-fidelity.

Overall, the best performer was the MFSFSAC model at the maximum correlation value
(A = 1), with the optimiser guaranteeing the optimum is found within 1% up to a cost ratio of
15. This is due to initialisation with the low-fidelity information providing useful information
about the form of the high-fidelity function. The

3.2 Optimising the Lift-to-Drag Ratio of an Aerofoil

This case concerns the optimisation of the lift-to-drag ratio of a NACA4415 aerofoil as a
function of angles of attack; α ∈ [−5, 20] and Reynolds number; Re ∈

[
9×105, 1×107]. The

system is composed of data from three sources with different fidelities and associated costs.
These sources (and their costs) are as follows, in order of decreasing fidelity: measurements
from a wind-tunnel test [1] (variable cost - C ∈ [2, 26] per sample); SU2 RANS simulations with
the k − ω SST turbulence model (costs 0.5 × wind-tunnel sample); and X-foil simulations (fixed
cost = 1 per sample). The correlation between these sources was 0.95 for the SU2 data, and 0.91
for the X-foil data - where the slight discrepancies are explained by X-foils under predictions of
drag due to viscous effects not being included.

The wind-tunnel data has an additional relevant property, in that one of its variables is
preferential to change over the other - Re is much more practical to alter than α as it only
requires changing the wind tunnel speed - thus making this system an interesting test case of
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Figure 3: The effects of changing the λ values for the angle of attack, fig. 3a and for the Reynolds
number, fig. 3b. The most favourable λ are at values of 0.1, ( ) , the second most favourable
are 0.5, ( ) , and the least favourable are 0.9, ( ) . The original cost models, without
changes in λ, equivalent to 1.0, are denoted by ( ) . All 6 strategies are shown where the
AC models correspond to the changed lambda values. Multi-Fidelity (MF) ( ) , Multi-Fidelity
Single-Fidelity Search (MFSFS) ( ) , and Single-Fidelity (SF) ( ) .

adaptive cost functions. Ch/Cl is defined as the ratio between the wind-tunnel cost and the
X-foil cost.

When assessing the sensitivity of this case to different initial conditions, a method of simulat-
ing different initialisations must be produced. One method of initialisation could be the random
selection of points from the dataset, but this constrains the intialisations somewhat, and could
produce results specific to this particular instance of sampling, as opposed to offering a more
general insight into the behaviour under different strategies. Instead, for each fidelity, the entire
dataset is used to train a single-fidelity GP, and the mean of the resulting posterior is sampled at
random points to produce an initialisation. For the analysis that follows, the data is initialised
with 16 X-foil samples, 4 SU2 samples, and 2 wind-tunnel samples with a budget of 282.

Figure 3 demonstrates the impact of changing the values of λ1 and λ2. The plots show how,
on 12 random initialisations, the probability of the search strategies getting within 1% of the
true global optimum are influenced by these parameters, as well as the cost ratio of wind tunnel
to X-foil data.

Figure 3a represents the behaviour of the system under the assumption that Re is the more
expensive variable to adjust - a realistic assumption. In these cases, MF strategies were superior
- most of the instances obtained minima within 1% of the true optimum at Ch

Cl
= 26. The effects

of changing λα were varied - when Ch/Cl < 5, each change in λα performed similarly.
However, at higher cost ratios, the effects of an increasingly preferential dimension are un-

favourable. When λα was larger, the strategy outperformed strategies with the smallest λα by
almost 20% in the high-cost-ratio regime. This can be understood by considering that high costs
will encourage the optimiser to take observations along the cheapest direction, which results in
slightly more coverage in scans of the high-fidelity function. In the angle of attack case, since
the relationship is relatively simple - increasing the angle of attack increases lift significantly up
to a certain point (the stall angle), while drag also increases but at a slower rate. However, as
the angle of attack approaches and exceeds the critical stall angle, drag increases dramatically,
and lift decreases sharply due to flow separation over the aerofoil. This relationship can be
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smoothed over, and an underprediction of the lift to drag ratio in this area can lead to the
optimiser missing the global optimum, and being encouraged to scan down other paths. This
should be partially mitigated with the inclusion of multi-fidelity data, but overconfidence from
poorer local correlations (the prediction of the stall angle is poor in the lower fidelities) hinder
performance for this particular case.

Figure 3b shows the effects of changing λRe - this represents an implicit assumption that
changing Re is more costly than changing α. Similar general trends to the λα changes are
observed for all MFSFS and SF models. MF models performed better for the most part in this
regime: these strategies resulted in minima within 1% of the global optimum for cost-ratios up
to 11 in at least 60% of random initialisations. The best results occurred when λRe = 0.9. A
drop-off in performance occurs at smaller values of λRe for reasons analogous to those discussed
previously - a particularly cheap dimension encourages the model to explore only along ’sweeps’,
hindering a more thorough exploration of the entire domain.

A drawback of using an adaptive-cost methodology to this dataset is that of sensitivity to the
random sampling at initialisation. The GP surrogate model used here reverts to zero-mean when
extrapolating beyond the data, and so struggles to cope with the limited initial data provided
in the highest fidelity. An unfortunate random initialisation can result in an overconfident,
poorly informed surrogate model, leading to poor subsequent selection. Cheaper λ values can
further exacerbate these issues, by discouraging ’expensive’ exploration, and failing to update
and correct the surrogate model.

4 Conclusion

In this paper, a novel adaptive-cost multi-fidelity Bayesian optimisation framework was in-
troduced and a number of strategies of dealing with problems of this type were proposed. These
strategies were tested on a synthetic test case - The Six-Hump Camelback Functions - and a real
dataset, comprising simulations and experimental measurements of the NACA4415 aerofoil. It
was found that multi-fidelity strategies tended to outperform the single-fidelity strategies when
correlations were above 0.9, up to cost ratios that do not expend budget too quickly, something
that was observed in [14]. The best treatments of this new cost function exist when exploration
in the high-fidelity function need to be encouraged - which is common in many systems. Some
limitations to the strategies were highlighted in the ’real data’ test case. It was observed that,
when data is sparse from a particular data source, some strategies can suffer from unfortunate
initialisations. Problems can also arise when costs to vary a particular experimental parameter
are much lower than the corresponding costs of other parameter changes. Systems of this kind
can encourage the strategies to favour exploration only along a single dimension in the parameter
space, leading to a lack of exploration of the rest of the domain, and thus, getting stuck in local
minima. The overall effects were better performance overall for a single-fidelity system, and an
increase in performance within a constrained budget for different cost-ratios for a multi-fidelity
system.
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