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Abstract

We present an adaptive meshfree method to approximate phase-field models of biomembranes.
In such models, the Helfrich curvature elastic energy, the surface area, and the enclosed volume
of a vesicle are written as functionals of a continuous phase-field, which describes the interface
in a smeared manner. Such functionals involve up to second-order spacial derivatives of the
phase-field, leading to fourth-order Euler-Lagrange partial differential equations (PDE). The
solutions develop sharp internal layers in the vicinity of the putative interface, and are nearly
constant elsewhere. Thanks to the smoothness of the local maximum-entropy (max-ent) mesh-
free basis functions, we approximate numerically this high-order phase-field model with a direct
Ritz-Galerkin method. The flexibility of the meshfree method allows us to easily adapt the grid
to resolve the sharp features of the solutions. Thus, the proposed approach is more efficient
than common tensor product methods (e.g. finite differences or spectral methods), and simpler
than unstructured C0 finite element methods, applicable by reformulating the model as a sys-
tem of second-order PDE. The proposed method, implemented here under the assumption of
axisymmetry, allows us to show numerical evidence of convergence of the phase-field solutions
to the sharp interface limit as the regularization parameter approaches zero. In a companion
paper, we present a Lagrangian method based on the approximants analyzed here to study the
dynamics of vesicles embedded in a viscous fluid.

Keywords: maximum-entropy approximants, meshfree methods, adaptivity, phase field
models, biomembranes, vesicles.

1. Introduction

Biomembranes are the fundamental separation structure in animal cells, and are responsible
for the compartmentalization of the cell or for the transport of substances through cargo vesi-
cles or tubes. They also play a key role in bio-mimetic engineered systems [1]. Their complex
behaviour, rich physical properties, formation and dynamics have been objects of experimental
and theoretical investigation for biologists, chemists and physicists during many years [2, 3].
Biomembranes are composed by several kinds of lipids self-assembled in a fluid bilayer, which
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presents a liquid behaviour in-plane and solid out-of-plane [4]. Vesicles are closed biomembranes,
which play an important role in biophysical processes such as in the delivery of proteins, anti-
bodies or drugs into cells, and separation of different types of biological macromolecules within
cells. Vesicles serve as simplified models of more complex biological systems, and can be used
to study the interaction between lipid bilayers and the surrounding medium, e.g. under osmotic
stress [5], shear flow [6], or electrical fields [7]. Depending on the lipid composition, lipid bilay-
ers can phase-separate forming multicomponent vesicles [8], which have also been the object of
numerous studies as model systems for rafts.

Lipid bilayers can be modeled by very different techniques, depending on the focus. Atomistic
[9] and coarse-grained [10] molecular dynamics (MD) can access molecular processes and the self-
assembly. However, due to the slow relaxation of the bending modes, the computational cost of
molecular simulations scales as L6, where L is the lateral dimension of the system [11]. Even if
coarse-grained MD simulations have been able to describe the collective dynamics of membrane
patches of tens of nanometers, this sets a very stringent limit on the system sizes accessible with
these methods. Other mesoscopic methods such as dynamically triangulated surfaces have been
proposed to deal with intermediate scales [12]. On the other end of the spectrum, continuum
mechanics has showed great success over the last decades in describing the equilibrium shapes of
vesicles [4, 13, 14]. Continuum models have also helped understand the dynamics of fluctuations
of bilayers [15], or the shape dynamics of membranes [16, 17]. Continuum mechanics models
of biomembranes disregard atomic details, but still can incorporate many important effects
such as the bilayer asymmetry, the spontaneous curvature, the diffusion of chemical species
on the bilayer, or the dissipative mechanisms arising from the friction between the lipids [18].
Furthermore, these methods can easily access wide spans of time and length scales. The main
drawback of these models is that they are usually formulated as complex nonlinear high-order
partial differential equations (PDE). Here, we focus on the numerical approximation of a simple
curvature model for biomembranes.

The Canham-Helfrich functional [19, 20] is a widely accepted continuum model for the cur-
vature elasticity of fluid membranes, which explains to a large extent the observed morphologies
of vesicles. This sharp interface model has been the basis of a number of numerical parametric
approaches for the equilibrium analysis of axisymmetric and three-dimensional vesicles. The
resulting equations for the parameterization are fourth-order nonlinear PDE. This functional is
reparameterization invariant, which reflects mathematically the in-plane fluidity of lipid bilay-
ers above the transition temperature. This feature poses numerical difficulties to parametric
methods, since this invariance needs to be controlled to avoid serious mesh distortions [21, 22].

Phase-field counterparts of this model have been proposed and exercised numerically [23,
24, 25]. Although these methods increase the dimension of the problem, they naturally over-
come the limitations of parametric methods when extreme shape, or even topology changes are
present, and produce more robust simulations. Furthermore, these methods are more amenable
to scalable parallel computations for complex systems, particularly when coupling it to the fluid
mechanics of the ambient medium. Yet, the numerical solution of these models, again expressed
mathematically as nonlinear fourth-order PDE, is challenging. Here, we propose to address
high-order character of the equations and the sharp fronts they develop with an adaptive mesh-
free method. We establish here the ability of the local maximum-entropy approximants [26]
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to accurately and efficiently approximate equilibrium solutions of the phase-field model with a
straight Ritz-Galerkin approach. In a companion paper [27], we propose a Lagrangian method
to deal with the dynamics of vesicles embedded in a viscous fluid in the low Reynolds number
limit, representative of most biological situations of interest.

The outline of the paper is as follows. Section 2 introduces the sharp interface and the
phase-field models for the curvature elasticity of biomembranes, as well as a brief account of the
numerical strategies to address these models. Section 3 describes the discretization of the phase-
field functionals with the local maximum-entropy approximations schemes, the algorithm to find
equilibrium solutions, and the method used to distribute the nodes. Numerical experiments to
evaluate the performance of the approximants and the adaptive strategy are presented in Section
4. The final conclusions are collected in Section 5.

2. Sharp interface model, phase-field model, and its numerical treatment

2.1. Sharp interface model

In the sharp interface (S-I) approach, the membrane is a mathematical surface without
thickness. The equilibrium shapes of vesicles minimize the Canham-Helfrich energy under area
and enclosed volume constraints follow from

(S-I model) Minimize E(Γ) =
k

2

∫
Γ

(H − C0)2 dS + kG

∫
Γ
K dS

subject to V (Γ) =
1

3

∫
Γ
x · n dS = V0

A(Γ) =

∫
Γ
dS = A0,

where Γ is the surface, k the bending rigidity, kG the Gaussian bending rigidity, H the mean
curvature, K the Gaussian curvature, n the normal to the surface, V0 and A0 are the prescribed
volume and surface area, and C0 is the spontaneous curvature. For surfaces of constant topol-
ogy, the second integral in the curvature energy is a constant, and for this reason it is often
ignored. We do not consider this term in the remainder of the paper, although is can be easily
incorporated.

The area constraint comes from the near inextensibility of lipid bilayers under the usual
applied forces. The volume can be regulated by osmotic effects, since biomembranes are semi-
permeable. If the volume V0 is smaller than the volume enclosed by a sphere of area A0, then
various equilibrium shapes are possible. For a given area and volume, there exist multiple
equilibrium branches, as a consequence of the nonlinearity and non-convexity of the S-I model.

Various numerical methods have been proposed to solve the S-I model. Given the fact that
the functional involves second derivatives of the parameterization, a direct Galerkin approach
demands C1 parameterizations. In 3D, this has been realized with subdivision finite elements
[21, 28] and spherical harmonics [22]. Alternative formulations are amenable to C0 finite elements
[29, 30]. All these parametric approaches need to control the tangential motions of the mesh to
avoid severe distortions.
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2.2. Phase-field model

Phase-field models provide a powerful tool to tackle moving interface problems [31], and
have been extensively used in physics and materials science (see [32, 33] and references therein).
Recently, they are gaining popularity in a wide set of applications in applied science and engi-
neering such as fracture [34, 35], microstructure formation and fracture evolution in ferroelectric
materials [36], growth of thin films [37], image segmentation [38] and multi-phase flows [39], to
mention a few.

The idea behind phase-field modeling is to replace the sharp description of the interface by
a smeared continuous layer. To this end, an auxiliary field φ, called order parameter or phase-
field, is introduced to represent the phases (e.g. inside and outside of the vesicle), and also
the interface. The phase-field adopts distinct values, say -1 and +1, in each of the phases, and
smoothly varies between these values in the diffuse interface. Typically, an energy functional
expressed in terms of the phase-field models the physical phenomena at hand. Hence, the
phase-field equation accomplishes two tasks at once: (1) it localizes the phase-field to represent
a (smeared) interface, and (2) it encodes the interfacial physics. In sharp interface models, the
geometric description of the interface is extrinsic to its physics.

The phase-field model for biomembranes proposed by Du et al. [23, 40] replaces the S-I model
by:

(P-F model) Minimize E[φ] = fE
k

2ε

∫
Ω

[
ε∆φ+

(
1

ε
φ+ C0

√
2

)(
1− φ2

)]2

dΩ

subject to V [φ] =
1

2

(
V ol(Ω) +

∫
Ω
φ dΩ

)
= V0

A[φ] = fA

∫
Ω

[
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

]
dΩ = A0

φ|∂Ω = −1,

where ε is a small regularization parameter, fE = 3
8
√

2
, fA = 3

2
√

2
, Ω is the domain bounding

the vesicle, and ∂Ω its boundary. The regions {x : φ(x) > 0} and {x : φ(x) < 0} represent, the
inside and outside of the membrane, while the level set {x : φ(x) = 0} can be used to realize
the position of the membrane.

Formal asymptotics [40], as well as rigorous mathematical analysis [41] (see also [42] for a
review), provide the connection between the P-F model and the S-I mode when ε → 0. As
this limit is never achieved in the numerical calculations, a modeling error is always present
in practice. This model has been coupled with the Navier-Stokes equations in [43]. Similar
ideas to couple phase-field models of biomembranes with fluid or other physical fields have been
developed by other researchers as well [7, 24, 44, 45].

2.3. Numerical approaches for the phase-field functionals

The main advantage of the phase-field model is the unified treatment of the interfacial
tracking and the mechanics, which potentially leads to simple, robust, scalable computer codes.
This comes at the expense of a much higher computational cost, particularly if the modeling
error with respect to the sharp interface limit needs to be small. Indeed, in can be seen that
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the phase-field model produces solutions with the profile φ(x) = tanh
[
d(x)√

2ε

]
, where d(x) is the

distance to the interface. Resolving this profile requires a very fine discretization for small values
of ε, but this high resolution is only required in the vicinity of the interface. Away from it, the
phase-field is nearly constant. Hence, this problem naturally calls for adaptivity. Furthermore,
a numerical method for the phase-field model needs to address the second-order derivatives in
the energy and area functionals.

Traditional numerical methodologies like finite difference [23, 44] and spectral methods [43]
have been used for phase-field models of biomembranes. Recently, isogeometric analysis [46], a
Galerkin method based on tensor products of 1D NURBS approximants, has shown an excellent
performance for the Cahn-Hilliard equation, handling successfully the sharp transitions of the
solutions without spurious overshoots [47, 48]. Although these structured methods can handle
higher-order operators, they have difficulties in adapting to localized features. C0 finite element
approaches can deal with the high-order character of the functional by reformulating the model
as a system of second-order PDE [49] and are well suited for adaptivity [50], but suffer from poor
accuracy for a given computational cost. A number of adaptive techniques have been developed
for the Cahn-Hilliard model, including an adaptive multigrid finite-difference method [51, 52],
a Fourier spectral moving-mesh method [53], an adaptive FEM with linear [45, 54, 55] and
quadratic [56] shape functions after recasting the higher-order phase-field as a system of lower-
order equations, and a finite volume approach for unstructured grids [57]. Adaptive methods
based on finite differences [58, 59], Fourier spectral [60], or finite volumes [61, 62] have been
proposed for other higher-order phase-field equations.

Here, we propose a Ritz-Galerkin method based on the local maximum-entropy meshfree
approximants [26]. These meshfree approximants are:

• C∞, and therefore handle without difficulties the high-order character of the functionals,

• non-negative, and therefore possess monotonicity properties, as B-Splines and NURBS
successfully applied to Cahn-Hilliard models [47],

• ideally suited for local refinement and dynamic adaptivity, as the basis functions rely only
on the vicinity of neighboring nodes, instead of a mesh.

3. Ritz-Galerkin approximation of the functionals with maximum-entropy schemes

We describe here the numerical approximation of the variational problem to obtain equilib-
rium axisymmetric configurations for biomembranes. To fix the rigid body displacements of the
membrane along the axis of symmetry, we need to supplement the P-F model given above with
the constraint

M [φ] =

∫
Ω
φ (z − zc) dΩ = 0,

where zc allows us to center the phase-field solution in the simulation box.
We discretize the equations with local maximum-entropy approximation schemes. These

meshfree approximants are non-negative and satisfy up to first-order consistency conditions.
They have been shown to accurately approximate fourth-order PDE, such as the Kirchhoff-Love
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Figure 1: Voronoi tessellation for a random nodal distribution (left), CVT for a uniform density (center) and for
a density function ρ = 10 exp

[
−2(x2 + y2)

]
+ 0.1 (right).

theory of thin shells [63, 64]. Second-order maximum entropy approximants have been developed
[65, 66], and it has been shown that the linear approximants used here deliver comparable accu-
racy with a much simpler implementation. We follow a Ritz-Galerkin approach to approximate
the variational formulation of the continuous problem by an algebraic optimization program,
which we solve with an augmented Lagrangian method to impose the linear and nonlinear con-
straints, combined with L-BFGS and Newton-Rahpson nonlinear solvers. We locally adapt the
node distribution to computationally afford very small values of ε by resorting to Centroidal
Voronoi Tesselations (CVT) [67]. This method distributes nice grids of points obeying a pre-
scribed density function, as illustrated in Figure 1. Here, we define the density functions such
that the points are highly concentrated in the regions with high gradients of the phase-field (see
Section 4.2).

3.1. Local maximum-entropy approximants

Meshfree methods define basis functions from a scattered set of nodes, not supported on a
mesh as in traditional finite elements. The most popular meshfree approximants are based on
the moving least squares (MLS) idea [68]. In recent years, the information theoretic concept
of maximum-entropy has been put forth to develop polygonal approximants [69] and meshfree
approximation schemes [26]. These maximum-entropy approximants present some advantages
over MLS methods, such as their strict non-negativity, the straightforward imposition of bound-
ary data, the robustness of their evaluation, or the simpler quadrature [65]. Moreover, the
non-negativity and the linear reproducing conditions endow them with the structure of convex
geometry [26], which enables the connection with other non-negative technologies like isogeo-
metric analysis [46] or subdivision surfaces [70].

Maximum-entropy basis functions, denoted by pa(x), a = 1, . . . , N with x ∈ Rd, where d
is the space dimension, are enforced to be non-negative and to fulfill the zeroth and first-order
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consistency conditions

pa(x) ≥ 0,

N∑
a=1

pa(x) = 1,

N∑
a=1

pa(x) xa = x,

where the last equation allows us to identify the vectorial weights xa with the positions of the
nodes associated with each basis function.

The idea behind local maximum-entropy basis functions is to defined information-theoretical
optimal approximants, only biased by locality, i.e. the property that the function approximation
at a given point should depend on nodal values of nearby nodes. These approximants exhibit a
(Pareto) compromise between two competing objectives, minimum width (locality) and entropy
maximization (information theory optimality criteria), subject to the consistency constraints
(reproducibility conditions). With these requirements, we write the following optimization pro-
gram to select the approximants

For fixed x, minimize
N∑
a=1

βapa|x− xa|2 +
N∑
a=1

pa ln pa

subject to pa ≥ 0, a = 1, . . . , N

N∑
a=1

pa = 1,

N∑
a=1

paxa = x,

where the non-negative nodal parameters βa = γa/h
2
a, a = 1, . . . , N define the locality of the

approximants [26, 71]. The dimensionless aspect ratio parameter γa characterizes the degree of
locality of the basis function associated to the node xa, while ha denotes a measure of the nodal
spacing around node a. The local grid spacing ha should be chosen to resolve the sharp features
of the phase-field solutions, and should therefore be commensurate to ε. The basis functions
become sharper and more local as the value of the dimensionless parameter γa increases, and
the Delaunay approximants arise as specialized limits (γa ≥ 4 in the practice), as illustrated
in Figure 2 for a one-dimensional domain. In previous works, we characterized the behaviour
of the approximants for problems involving higher-order derivatives, specifically for plates and
thin-shells analysis [63, 66]. Typically, low values of γa lead to more accurate results for problems
with smooth solutions, but also result in significantly more expensive calculations. This is due
to the wider band-width and to the fact that more quadrature points are typically required. We
found that the appropriate locality parameters are in the range 0.6 ≤ γ ≤ 1, being γ = 0.8 the
most convenient because it provides a good trade-off between computational cost and accuracy.

As detailed in [26], the optimization problem is smooth and convex, and admits a unique
solution. An efficient solution follows from standard duality methods. Here, we just summarize
the recipe for the calculation of the basis functions. By analogy with statistical mechanics, we
define the partition function

Z(x,λ) =

N∑
b=1

exp
[
−βb|x− xb|2 + λ · (x− xb)

]
.
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Figure 2: Seamless and smooth transition from meshfree to Delaunay affine basis functions. The transition is
controlled by the non-dimensional nodal parameters γa, which here take linearly varying values from 0.6 (left) to
6 (right).
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Figure 3: One-dimensional local maximum-entropy basis functions (left), and its first and second spatial derivatives
(center-right) computed with a dimensionless parameter γ = 0.8.

At each evaluation point x, the Lagrange multiplier for the linear consistency condition is the
unique solution to a solvable, convex, unconstrained optimization problem

λ∗(x) = arg min
λ∈Rd

lnZ(x,λ).

This optimization problem with d unknowns is efficiently solved with Newton’s method. Then,
the basis functions adopt the form

pa(x) =
1

Z (x,λ∗(x))
exp

[
−βa|x− xa|2 + λ∗(x) · (x− xa)

]
.

We refer to [64, 71] for the expressions to compute the gradient ∇pa(x) and the Hessian matrix
Hpa(x) of the local maximum-entropy basis functions, which are illustrated in Figure 3 for a
one-dimensional domain uniformly discretized and a dimensionless parameter γ = 0.8.

Some properties of the local maximum-entropy approximants, such as smoothnes and vari-
ation diminishing properties [26], are illustrated in Figure 4. These approximants also satisfy
ab initio a weak Kronecker-delta property at the boundary of the convex hull of the nodes
[26]. With this property, the imposition of essential boundary conditions in Galerkin methods
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Figure 4: Illustration of non-negativity, smoothness and weak Kronecker-delta properties for two-dimensional
local maximum-entropy basis functions (left), and the variation diminishing property (right).

is straightforward. Moreover, the approximants are multidimensional and lead to well behaved
mass matrices [26]. We refer to [66] for a more detailed description of maximum-entropy ap-
proximants and their applications.

3.2. Discretization of the minimization problem

We consider the following expansion for the phase-field in terms of the basis functions

φ(x) ≈ φh(x,Φ) =

N∑
a=1

pa(x)φa,

where Φ = (φ1, φ2, ..., φN ) is an array containing the N nodal values of the phase-field, and
insert this ansatz into the variational problem describing the P-F model to obtain the following
algebraic optimization program:

Minimize Eh(Φ) = E[φh] = fE
k

2ε

∫
Ω
W 2
h dΩ

subject to Vh(Φ) = V [φh] =
1

2

(
V ol(Ω) +

∫
Ω
φh dΩ

)
= V0

Ah(Φ) = A[φh] = fA

∫
Ω

[
ε

2
|∇φh|2 +

1

4ε
(φ2
h − 1)2

]
dΩ = A0

Mh(Φ) = M [φh] =

∫
Ω
φh(z − zc) dΩ = 0

φh|∂Ω = −1,

(1)

where

Wh = ε∆φh +

(
1

ε
φh + C0

√
2

)(
1− φ2

h

)
.
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The optimality conditions can be obtained from differentiating the Lagrangian function

L(Φ,ν) = Eh(Φ)− νA [Ah(Φ)−A0]− νV [Vh(Φ)− V0]− νM [Mh(Φ)−M0] ,

where the area, volume and static moment constraints are maintained by the Lagrange mul-
tipliers ν = (νA, νV , νM ). Physically, νA is a membrane tension and νV a pressure difference
between the inside and the outside of the vesicle.

After defining a new set of variables (Φ,ν) = (φ1, φ2, ..., φN , νA, νV , νM ), the optimal so-
lution of this saddle-point problem can be sought with the Newton-Raphson method applied
to the nonlinear system of equations ∂ΦL = 0, ∂νL = 0. However, this approach may lead
to mere stationary points, not minimizers of the elastic energy (physically unstable equilibria).
Furthermore, given the difficulty in setting good initial guesses for the Lagrange multipliers, this
solution strategy is not robust.

A robust strategy that guarantees stable equilibria is based on the augmented Lagrangian
method, which combines the standard Lagrangian with penalties. This method retains the
exactness of the Lagrange multipliers method and the minimization principle of penalty methods.
The minimization is performed iteratively on the phase-field variables only for frozen Lagrange
multipliers, which are updated explicitly (see [72, 73] for further details). The augmented
Lagrangian is

LA(Φ,ν) = Eh(Φ)− νA [Ah(Φ)−A0]− νV [Vh(Φ)− V0]− νM [Mh(Φ)−M0]

+
1

2µ
|Ah(Φ)−A0|2 +

1

2µ
|Vh(Φ)− V0|2 +

1

2µ
|Mh(Φ)−M0|2 .

We solve the problem in two stages. First, we follow the augmented Lagrangian method to
find an approximate minimizer consistent with the constraints with a coarse tolerance. Then,
this approximation is refined with the regular Newton-Raphson method on the extended set of
variables (Φ,ν). Since the initial guess for this second stage is very close to a minimizer, the
algorithm never leads to unstable equilibria. The expressions to compute the gradients r̃(Φ,ν)
and r̃A(Φ,ν), as well as the hessians, of the Lagrangian and augmented Lagrangian, respectively,
are given in Appendix A.

All the integrals in Eq. (1) and in its variations, see Appendix A, are approximated with
numerical quadrature based on a background integration grid, as usually done in Galerkin mesh-
free methods (see [26] and references therein). Here, we consider Gaussian quadrature rules sup-
ported on the Delaunay triangulation associated with the set of nodes, although other specialized
techniques are available [74].

4. Numerical Examples

The phase diagram for the equilibrium shapes of vesicles has been extensively studied (see
[4, 75] and references therein). This diagram exhibits a number of equilibrium branches, in-
cluding prolates, oblates, discocytes, or stomatocytes. The equilibrium shape for a given area,
volume, and spontaneous curvature is not unique in general. For instance, upon deflation of
an initially spherical vesicle without spontaneous curvature, the prolate-dumbbell and oblate-
discocyte branches are possible, as illustrated in Figure 5. Mathematically, the shape transitions
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Figure 5: 3D view of discocyte (left) and dumbbell (right) equilibrium shapes.

and the equilibrium branches can be tracked by changing the volume constraint and solving for
constrained minimizers. A number of equilibrium shapes for the oblate equilibrium branch are
plotted in Figure 6. Each shape is an energy minimizer with fixed area and volume, after re-
ducing by 5% the volume of the previous configuration. The computations are carried out with
a uniform grid and a regularization parameter ε = 0.02. In all the calculations, we take C0 = 0
and S0 = 4πR2, with R = 0.4. The relative error in the energy is approximately 2% as compared
to the sharp interface approach.

The accuracy of phase-field solutions relative to the sharp interface model is intrinsically
linked to the regularization parameter ε, which in turn sets bounds on the required resolution
of the computational grid. This motivates us to study two relevant aspects of the proposed ap-
proach: (i) the convergence as the number of points increases for a fixed regularization parameter
ε and uniform grid, and (ii) the convergence to a sharp model as regularization parameter is
decreased (ε→ 0) and the grid of points is adapted.

To answer these questions, we analyze two specific equilibrium shapes, a discocyte and a
dumbbell configuration, both of them with spontaneous curvature C0 = 0. For the S-I model
and the sphere, we have Asphere = 4πR2 = 0.64π, Vsphere = 4

3πR
3 ≈ 0.08533π and Esphere = 2π.

The discocyte and dumbbell configurations are found by minimization of the curvature energy
with constraints A0 = Asphere = 0.64π and V0 = 0.8 Vsphere ≈ 0.06826π, i.e. the volume of
the sphere is reduced by 20%. The energies of the sharp interface model for the discocyte and
dumbbell equilibrium shapes are Ediscocyte = 9.12657 and Edumbbell = 8.71756. These energies
are computed with an overkill B-spline discretization of the S-I Model.

4.1. Convergence for fixed regularization parameter ε and uniform grids of points

Table 1 shows the numerical energies for the discocyte equilibrium shape considering different
values of ε and several grids of points in a computational domain Ω = [0, 1.5] × [0, 2]. The
identification code (O for the oblate-discocyte branch, P for the prolate-dumbbell branch) and
the number of nodes for each grid are indicated in the first and the second column. As the grids
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Figure 6: 3D views of the oblate equilibrium branch: each shape is computed by minimizing the energy and
reducing by 5% the volume of the previous configuration.

Table 1: Energies of the discocyte equilibrium shape for different uniform grids of points and several values of ε.
The size of the computational domain is Ω = [0, 1.5] × [0, 2]. Reference energy from a sharp interface simulation:
Ediscocyte = 9.12657.

ID # nodes h̄ ε = 0.05 ε = 0.04 ε = 0.03 ε = 0.02 ε = 0.01

O1 6124 0.024 9.71279 9.59056 – – –
O2 12271 0.017 9.72137 9.59446 9.43775 – –
O3 24597 0.012 9.72671 9.59553 9.43483 9.29532 –
O4 49145 0.0084 9.73203 9.59786 9.43515 9.28938 –
O5 98388 0.0059 9.73536 9.59901 9.43481 9.28674 9.22082
O6 146545 0.0048 9.73716 9.59948 9.43422 9.28378 9.19139
O7 296344 0.0034 9.73989 9.60053 9.43437 9.28326 9.18627
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Table 2: Energies of the dumbbell equilibrium shape for different uniform grids of points and several values of ε.
Reference energy from a sharp interface simulation: Edumbbell = 8.71756.

ID # nodes h̄ ε = 0.05 ε = 0.04 ε = 0.03 ε = 0.02 ε = 0.01

P1 6124 0.024 9.29504 9.15560 – – –
P2 12271 0.017 9.30167 9.15918 9.00361 – –
P3 24597 0.012 9.30627 9.16106 9.00310 8.87045 –
P4 49145 0.0084 9.31053 9.16315 9.00362 8.86669 –
P5 98388 0.0059 9.31307 9.16407 9.00331 8.86445 8.81432
P6 146545 0.0048 9.31439 9.16421 9.00217 8.86005 8.77677
P7 296344 0.0034 9.31650 9.16512 9.00251 8.86033 8.77359

are not perfectly uniform (see Figure 7, for instance), the value of the average nodal spacing h̄ is
reported in the third column. The remaining columns show the energies computed for different
values of the regularization parameter ε. We report the energies only when the transition profile
is reasonably resolved, as decided by the relation ε > 2h. Note the energy convergence from
above as the number of points increases for each ε (columns). We can also observe how the
value of the energy converges to the sharp interface value Ediscocyte = 9.12657 as the parameter
ε decreases.

In experiments not reported here, we consider the same problem in a slightly smaller domain
Ω1 = [0, 1]×[0, 2]. We find that for the larger values ε, the phase-field interacts with the boundary
of the simulation box, resulting in higher energies. The influence of the domain size on the
results further highlights the need for adaptivity, as local refinement makes it computationally
affordable to increase significantly the size of the simulation box.

Table 2 reports the numerical energies for the dumbbell shape considering different values
of ε and several refinements of the grid of points. We observe that the convergence both for ε
and h̄ presents the same behavior described for the discocyte shape.

4.2. Convergence as ε→ 0 and adapted grids of points

As argued earlier, adaptivity is essential for numerical approaches based on phase-field models
to be competitive. We now describe the node density function considered here to relocate the
nodes following the CVT method. The phase-field is constant in a large part of the domain and
presents a sharp variation in the thin region corresponding to the smeared interface. To capture
this behavior, consider the density function

ρ(x) = 1 + f |∇φ(x)|

where f is an amplification factor. This heuristic density function allows us to obtain a uni-
form nodal distribution where the phase-field is constant, since |∇φ(x)| = 0, and to locally
concentrate in zones where the field changes abruptly. The factor f gives us the flexibility to
increase/decrease the weight of the gradient, which in turn increases/decreases the local con-
centration of nodes.

A possible strategy for adaptivity is to solve the optimization problem with a coarse grid of
points (and thus a large value of ε), apply CVT to redistribute the nodes concentrating them
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Table 3: Energies of the discocyte equilibrium shape for several values of ε and uniform and adapted grids of 6,124
points. See Table B.6 for a description of the grids of points. Reference energy from a sharp interface simulation:
Ediscocyte = 9.12657.

ID # nodes ε = 0.04 ε = 0.03 ε = 0.025 ε = 0.02 ε = 0.015 ε = 0.01

O1 6124 9.59056 – – – – –
O11 6124 9.59678 9.44002 – – – –
O12 6124 – 9.43506 9.35810 9.28849 – –
O13 6124 – – 9.35970 9.28701 9.22588 9.18703
O7 296344 9.60053 9.43437 9.35488 9.28326 9.22399 9.18627

around the interface, and compute the phase-field solution with a smaller ε for this new distri-
bution of points. In practice, this strategy cannot be applied at once with a large amplification
factor f . Indeed, the initial coarse grid provides an inaccurate phase-field solution, which in
turn produces an inadequate relocation of the points. This ultimately constraints unphysically
the phase-field solutions. A better strategy is to adapt the grid and reduce ε progressively, with
moderate values of f .

Table 3 reports the bending energies of the discocyte equilibrium shape for uniform and
adapted grids and several regularization parameters. The first and the last rows correspond
to uniform meshes with 6,124 and 296,344 nodes, and are the same as those reported in Table
1. The other rows correspond to adapted grids with 6,124 nodes, obtained in each step of the
progressive adaption of the grid and reduction of ε. The first column of the table gives an
identification code for the grids of points. A description of the features of each grid is given in
Table B.6, and some of the grids are shown in Figure 7. The smooth transition between the
successive grids is apparent in the figure, as the value of ε is slowly decreased in each step, while
f is increased to maintain the relative effect of the phase-field gradient. The minimum allowable
value for the regularization parameter εmin for a given grid is determined by the nodal spacing
distribution, as detailed in Appendix B. As expected, the ability of adapted grids to accurately
support sharp phase-field solutions at an affordable cost is noteworthy. Adapted grids grant the
same accuracy (measured by the optimal energy) as uniform grids with a 50-fold reduction in
the number of degrees of freedom for ε = 0.01.

Figure 7 (bottom) shows the equilibrium phase-field for the grids referred to in Table 3 and
shown in Figure 7 (top, center). It can be noticed that as the value of ε decreases, the thickness
of the diffuse interface shrinks considerably. Figure 8 (a) illustrates the phase-field solution
computed with grid O13 and ε = 0.01; an abrupt transition can be observed between the inner
(φh = 1) and the outer (φh = −1) regions. The superposition of the sharp interface solution
with the zero phase-field level set (φh = 0) is shown in Figure 8 (b). The two curves nearly lie
on top of each other, illustrating numerically the connection between the phase-field and the
sharp interface models.

Figure 8(c-e) shows cross sections of the phase-field solutions depicted in Figure 7 (bottom).
The position of the cross section is indicated in Figure 8 (b) with a dashed-dotted cutline. The
cross section corresponding to ε = 0.005 is computed with an adapted grid of 24,597 nodes,
as explained later. This figure highlights how the variation dimishing property (informally, the
approximation is not more wiggly than the data) of the local, smooth, non-negative maximum-
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Figure 7: Discocyte equilibrium shape. Uniform and adapted grids of 6,124 points (top). From left to rigth:
O1, O11, O12 and O13. Zoom of the areas indicated with black boxes (center). Phase-field (bottom). From left
to rigth, the solutions correspond to ε = 0.04, ε = 0.03, ε = 0.02, and ε = 0.01. The values of energy for each
solution are given in Table 3.
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Figure 8: Phase-field solution for the discocyte equilibrium shape: (a) abrupt transition between inner (φh = 1)
and outer (φh = −1) regions, and (b) superposition of the sharp interface solution and zero phase-field level set
φh = 0. The phase-field solution is obtained with an adapted grid of 6,124 nodes and ε = 0.01. (c) Cross sections
corresponding to the cutline indicated in (b) of the phase-field solutions with different values of ε. This plot,
together with the zooms in (d) and (e), illustrates the absence of oscillations or overshoots near the interface, and
how the interfacial thickness decreases as ε is reduced. The sharp interface solution is shown for comparison.
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Figure 9: Illustration of the uniform aspect ratio of the basis functions, despite the strong non-uniformity of the
nodal spacing (discocyte solution, N=6,124, grid O13).

Table 4: Relative error (%) measured in energy for the discocyte equilibrium shape and several values of the
regularization parameter ε and different uniform (Un) and adapted (Ad) grids. The energy of the shape-interface
model Ediscocyte = 9.12657 is used as reference.

# nodes Grid ε = 0.03 ε = 0.025 ε = 0.02 ε = 0.015 ε = 0.01 ε = 0.007 ε = 0.005

6124 Ad 3.38 2.55 1.76 1.09 0.66 – –
12271 Ad 3.34 2.49 1.69 1.11 0.62 0.57 –
24597 Ad 3.37 2.51 1.69 1.12 0.63 – 0.43
296344 Un 3.37 2.50 1.72 1.07 0.65 – –

entropy approximants results in monotone solutions of the phase-field PDE, devoid of spurious
oscillations even for very sharp transitions. A selection of the basis functions for grid O13 are
shown in Figure 9. The uniform aspect ratio of the interior basis functions is noteworthy, de-
spite the strong non-uniformity of the grid. The monotonicity of the approximants does not
immediately imply that the numerical solutions of the phase-field PDE is free of overshoots
outside of the physically meaningful limits −1 ≤ φ ≤ 1, but the numerical evidence suggests
that this is the case. Further numerical analysis is required to clarify this issue. Again, the
convergence of the phase-field solutions to the sharp interface stepped solution as ε → 0 is ap-
parent. Similar conclusions were drawn from isogeometric simulations of the Cahn-Hilliard and
isothermal Navier-Stokes-Korteweg phase-field equations, where similar smooth non-negative
basis functions, albeit structured in nature, were used [47, 48].

We repeat the refinement experiments reported in Table 3 with grids of 12,271 and 24,597
nodes. The larger number of nodes allows us to resolve the phase-field model with ε = 0.007 for
the grid of 12,271 points, yielding Eε=0.007 = 9.17824, and with ε = 0.005 for the grid of 24,597
points, yielding Eε=0.005 = 9.16539. Table 4 shows the relative errors in energy between the
sharp interface solution and the the adapted phase-field solutions for different number of nodes
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Table 5: Energies of the dumbbell equilibrium shape for several values of ε and uniform and adapted grids of
6,124 points. See Table B.6 for a description of the grids. Reference energy from a sharp interface simulation:
Edumbbell = 8.71756.

ID # nodes ε = 0.04 ε = 0.03 ε = 0.025 ε = 0.02 ε = 0.015 ε = 0.01

P1 6124 9.15559 – – – – –
P11 6124 9.16513 9.01027 8.93545 – – –
P12 6124 – 9.00358 8.92990 8.86381 8.80003 –
P13 6124 – – 8.92452 8.86090 8.80834 8.77909
P7 296344 9.16512 9.00251 8.92706 8.86033 8.80628 8.77359

Figure 10: Distribution of points and phase-field density for adapted grids of 6,124 nodes (dumbbell equilibrium
shape). The values of energy for each solution are indicated in the Table 5.

and several values of ε. It can noticed that, with our criterion to select εmin for a given grid,
the adapted grids resolve the width of the smeared interface, and the error depends basically
on ε. Again, it is clear that the adaptive strategy can deliver very accurate solutions (error in
the energy below 0.5%) for very small values of the regularization parameter ε with a reduced
number of degrees of freedom.

We repeat the experiments for a dumbbell equilibrium shape. We observe the same behavior
as reported in Table 5. Figure 10 illustrates adapted grids of 6,124 points with the corresponding
phase-field solution for the regularization parameters ε = 0.03, ε = 0.02 and ε = 0.01.

5. Conclusions

We have proposed an adaptive meshfree Ritz-Galerkin method to numerically approximate
phase-field models of biomembranes. We have shown the ability of the proposed method, based
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on local smooth non-negative approximants, to deal directly with the high-order character of the
equations. Furthermore, adaptivity is very natural for a meshfree method, and proves essential to
resolve the sharp features of the phase-field model at an affordable cost. We have shown that the
adaptive method is able to resolve phase-field models with very small regularization parameter
and numerically converge to the sharp interface limit. The method proposed here combines the
adaptive capabilities of C0 finite elements, which nevertheless require reformulating the fourth-
order PDE as a system of second-order PDEs, hence introducing extra degrees of freedom, with
the simplicity of tensor product methods, which do not require reformulations of the model.

An important issue in the adaptive strategy is to avoid excessive variations of the nodal
spacing. Otherwise, the resulting meshfree basis functions can exhibit irregular features, which
are difficult to integrate. CVT provides us with high quality graded distributions of points
by designing an appropriate heuristic density function, although it can be computationally
expensive. However, as discussed in a companion paper [27], in the proposed Lagrangian method
for the dynamics of biomembranes in a viscous fluid, the CVT grid and its associated quadrature
points and weights must only be computed once at the beginning of the calculation, and has
a negligible cost overall. Furthermore, the strategy to adapt the nodes is not essential to the
proposed method and other algorithms, such as octree methods, are more suitable and efficient
to locally refine grids in 3D.

The calculations presented here are not practical in many situations of interest to assess the
mechanics of vesicles and biomembranes in general, as these display very large and sometimes
abrupt shape changes as the control parameters are changed. Locally refined grids impose
very serious biases on the resolvable solutions, particularly when in a given optimization step,
the system buckles to a distant equilibrium shape. In a companion paper [27] we present
a Lagrangian method to deal with the coupled fluid-membrane overdamped dynamics, which
exploits the virtues of the method presented here as the local refinement follows naturally with
the Lagrangian flow the sharp features of the phase-field. This combination of methods shows
promise for robust, scalable computations of complex membrane systems in three dimensions.
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Appendix A. Derivatives for the optimization problem

In Section 3.2 we introduce a discretization for the continuum phase-field

φ(x) ≈ φh(x,Φ) =

N∑
a=1

pa(x)φa,
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where pa(x) denote the meshfree maximum-entropy approximants and Φ = (φ1, φ2, ..., φN ) the
array containing the N nodal values of the phase-field. The gradient and the hessian of the
phase-field follow as

∇φ(x) ≈ ∇φh(x,Φ) =

N∑
a=1

∇pa(x)φa and Hφ(x) ≈ Hφh(x,Φ) =

N∑
a=1

Hpa(x)φa.

The problem posed in Eq. (1) also requires the calculation of the Laplacian of the phase-field,
whose expression in Cartesian coordinates is ∆φ(x) ≈ ∆φh(x) = tr [Hφh(x,Φ)]. As we consider
axisymmetric solutions, we use cylindrical coordinates, which result in

∆φ(x) ≈ ∆φh(x,Φ) =
1

r

∂φh
∂r

+
∂2φh
∂r2

+
∂2φh
∂z2

.

To compute the gradient of the Lagrangian and the augmented Lagrangian, we need the
derivatives of Eh, Vh, Ah and Mh with respect to the nodal values Φ

[∂ΦEh]a =
∂Eh
∂φa

= fE
k

2ε

∫
Ω

2Wh
∂Wh

∂φa
dΩ,

[∂ΦVh]a =
∂Vh
∂φa

=
1

2

∫
Ω
pa dΩ,

[∂ΦAh]a =
∂Ah
∂φa

= fA

∫
Ω

[
ε∇φh · ∇pa +

1

ε
paφh(φ2

h − 1)

]
dΩ,

[∂ΦMh]a =
∂Mh

∂φa
=

∫
Ω
pa(z − zc) dΩ,

where

Wh = ε∆φh +

(
1

ε
φh + C0

√
2

)(
1− φ2

h

)
,

∂Wh

∂φa
= ε

∂∆φh
∂φa

+
pa
ε
− paφh

(
3

ε
φh + 2C0

√
2

)
,

and
∂∆φh
∂φa

=
1

r

∂pa
∂r

+
∂2pa
∂r2

+
∂2pa
∂z2

.

The calculation of the hessian of the Lagrangian and the augmented Lagrangian also requires
the second derivatives of Eh, Vh, Ah and Mh with respect to Φ

[∂Φ∂ΦEh]ab =
∂2Eh
∂φa∂φb

= fE
k

2ε

∫
Ω

2

(
∂Wh

∂φa

∂Wh

∂φb
+Wh

∂2Wh

∂φa∂φb

)
dΩ,

[∂Φ∂ΦVh]ab =
∂2Vh
∂φa∂φb

= 0,

[∂Φ∂ΦAh]ab =
∂2Ah
∂φa∂φb

= fA

∫
Ω

[
ε∇pa · ∇pb +

1

ε
papb(3φ

2
h − 1)

]
dΩ,

[∂Φ∂ΦMh]ab =
∂2Mh

∂φa∂φb
= 0,
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where
∂2Wh

∂φa∂φb
= −2papb

(
3

ε
φh + C0

√
2

)
.

After defining a new set of variables x̃ = (Φ,ν) = (φ1, φ2, ..., φN , νA, νV , νM ), where ν
denotes the set of Lagrange multipliers, the gradient r̃(x̃) for the Lagrangian is given by

r̃(x̃) = ∂x̃L(x̃) = [∂ΦL(x̃) ∂νL(x̃)]T ,

where
∂ΦL(x̃) = ∂ΦEh(Φ)− νA∂ΦAh(Φ)− νV ∂ΦVh(Φ)− νM∂ΦMh(Φ),

and
∂νL(x̃) = [(Ah(Φ)−A0) (Vh(Φ)− V0) (Mh(Φ)−M0)] .

The hessian J̃(x̃) can be computed as

J̃(x̃) = ∂x̃r̃(x̃) = ∂x̃∂x̃L(x̃) =

[
∂Φ∂ΦL(x̃) ∂Φ∂νL(x̃)
∂ν∂ΦL(x̃) 0

]
,

where

∂Φ∂ΦL(x̃) = ∂Φ∂ΦEh(Φ)− νA∂Φ∂ΦAh(Φ)− νV ∂Φ∂ΦVh(Φ)− νM∂Φ∂ΦMh(Φ),

∂Φ∂νL(x̃) = [∂ΦAh(Φ) ∂ΦVh(Φ) ∂ΦMh(Φ)] ,

and
∂ν∂ΦL(x̃) = [∂Φ∂νL(x̃)]T .

The gradient r̃A(Φ,ν) = ∂ΦLA(Φ,ν) and the hessian J̃A(Φ,ν) = ∂Φ∂ΦLA(Φ,ν) of the aug-
mented Lagrangian with respect to the phase-field nodal values are

r̃A(Φ,ν) = ∂ΦEh(Φ)−
[
νA −

Ah(Φ)−A0

µ

]
∂ΦAh(Φ)

−
[
νV −

Vh(Φ)− V0

µ

]
∂ΦVh(Φ)−

[
νM −

Mh(Φ)−M0

µ

]
∂ΦMh(Φ),

and

J̃A(Φ,ν) = ∂Φ∂ΦEh(Φ) +
1

µ
∂ΦAh(Φ)⊗ ∂ΦAh(Φ) +

1

µ
∂ΦVh(Φ)⊗ ∂ΦVh(Φ)

+
1

µ
∂ΦMh(Φ)⊗ ∂ΦMh(Φ)−

[
νA −

Ah(Φ)−A0

µ

]
∂Φ∂ΦAh(Φ).

With the above expressions, the Newton-Raphson iterations follow directly,

Φn+1 = Φn −
[
J̃A(Φn,νn)

]−1
r̃A(Φn,νn)

in the first stage described in Section 3.2, and

x̃n+1 = x̃n −
[
J̃(x̃n)

]−1
r̃(x̃n)

in the second stage.
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Table B.6: Description of the uniform and adapted grids used in the calculations.

ID Grid # nodes Features

O1 Uniform 6124 h̄ = 0.024
O11 Adapted 6124 CVT starting from grid O1, with f = 10, and Φ for ε = 0.04
O12 Adapted 6124 CVT starting from grid O11, with f = 100, and Φ for ε = 0.03
O13 Adapted 6124 CVT starting from grid O12, with f = 1000, and Φ for ε = 0.025
O2 Uniform 12271 h̄ = 0.017
O21 Adapted 12271 CVT starting from grid O2, with f = 10, and Φ for ε = 0.03
O22 Adapted 12271 CVT starting from grid O21, with f = 100, and Φ for ε = 0.025
O23 Adapted 12271 CVT starting from grid O22, with f = 1000, and Φ for ε = 0.015
O3 Uniform 24597 h̄ = 0.012
O31 Adapted 24597 CVT starting from grid O3, with f = 10, and Φ for ε = 0.03
O32 Adapted 24597 CVT starting from grid O31, with f = 100, and Φ for ε = 0.015
O7 Uniform 296344 h̄ = 0.0034

P1 Uniform 6124 h̄ = 0.024
P11 Adapted 6124 CVT starting from grid P1, with f = 10, and Φ for ε = 0.04
P12 Adapted 6124 CVT starting from grid P11, with f = 100, and Φ for ε = 0.03
P13 Adapted 6124 CVT starting from grid P12, with f = 1000, and Φ for ε = 0.025
P7 Uniform 296344 h̄ = 0.0034

Appendix B. Progressive refinement of the grid

Table B.6 provides details about the progressive refinement of the grids presented in the pa-
per. The adaptive process produces non-uniform nodal distributions. We use the nodal spacing
as figure to measure the non-uniformity of a grid. The nodal spacing ha can be understood as
the average distance from a specific node xa to the first ring of nearest neighbors xb, and it can
be easily estimated with the information provided by the CVT. Indeed, as for a specific Voronoi
cell Ωa (associated to a node xa) we know all its adjacent Voronoi cells Ωb (and thus the first
ring of nodes xb), a good estimation of ha can be obtained by computing the average distance
among the node xa and all its neighbors xb. The nodal spacing is also required to compute the
basis functions (see Section 3.1) and to determine the transition parameter εmin, as we explain
later.

In Figure B.11 we illustrate the histograms for the nodal spacing distribution of uniform and
adapted grids of 6,124 points corresponding to the discocyte equilibrium shape (see Table B.6 for
the features of each grid). To facilitate the comparison between the different grids, we substract
the nodal spacing of the uniform grid, i.e. h̄ = 0.024, to the nodal spacing of all the histograms.
The top-left histogram corresponds to O1, and is strongly concentrated around zero because the
grid is almost perfectly uniform. The other three histograms show the nodal spacing distribution
for the adapted grids O11, O12 and O13. Note that the distributions exhibit two peaks, one
associated to the smallest nodal spacing and the other to the largest one. The location and
amplitude of these peaks change as the adaptivity algorithm concentrates further the nodes in
a thin region near the interface (see Figure 7). The peak of the left increases its magnitude and
becomes narrower, which means that the smallest nodal spacing decreases and a larger fraction
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Figure B.11: Histograms of the nodal spacing distribution for different grids of 6124 points (discocyte equilibrium
shape). The histograms are centered in h̄ = 0.024 and correspond to grids O1 (top-left), O11 (top-right), O12
(bottom-left) and O13 (bottom-right).

of the nodes is in the refined region. The peak of the right decreases its magnitude and becomes
widespread, as fewer nodes suffice to describe the coarse region. The value of εmin that a given
grid can resolve is computed from the criterion εmin ≥ 2hmin, where hmin is the nodal spacing
of the left peak.
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