
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

DATA-DRIVEN ACCELERATION OF STATISTICAL
CONVERGENCE IN TURBULENT FLOWS

N. MASCLANS1 AND L. JOFRE1

1 Department of Fluid Mechanics
Universitat Politècnica de Catalunya · BarcelonaTech (UPC), Barcelona 08019, Spain

e-mails: nuria.masclans@upc.edu, lluis.jofre@upc.edu

Key words: Reinforcement learning, Statistics convergence, Turbulent flows

Summary.
Direct numerical simulations are essential for understanding and modeling turbulent flow

phenomena. However, achieving converged statistics of high-Reynolds-number turbulent flows
typically requires high-resolution DNS experiments over extended time periods, resulting in sig-
nificant computational costs. This work, therefore, introduces an innovative data-driven method-
ology tailored to accelerate statistical convergence of turbulent flows, potentially transforming
the computational study and optimization of turbulent flows by largely reducing compute times.
The strategy involves hastening the convergence of turbulent statistics through controlled “on
the fly” perturbations to the Reynolds stresses within a physics-constrained framework. Rein-
forcement learning is employed to determine the perturbations across the six degrees of freedom
of the tensor, encompassing its magnitude, shape and orientation. To that end, this novel
framework will be comprehensively described and its performance carefully assessed. The tests
will consider the canonical one-dimensional turbulence channel flow at Reτ = 180, analyzing
convergence behavior and speedup factors of first-order turbulent flow statistics.

1 INTRODUCTION

The study, design and optimization of turbulent flow systems by means of direct numerical
simulation (DNS) approaches faces significant challenges due to the long computational times
typically required to converge statistics. The significant computational demands of such high-
fidelity simulations arise from resolving the full range of spatial and temporal scales present in
turbulence, which require high-resolution grids and fine temporal integration to fully capture the
inherent multiscale non-linear flow dynamics. Therefore, although DNS results provide detailed
insight for computational fluid dynamics (CFD) analysis, it is often impractical for design pur-
poses, leading to the use of less accurate methods, such as Reynolds-averaged Navier-Stokes and
large-eddy simulation (LES). Moreover, the carbon footprint associated with DNS computations
is a growing concern as it scales as Re4 for wall-bounded flows [1]. This environmental cost is
compounded by the extended simulation times required to account for the full spectrum of tur-
bulent scales and achieve statistical convergence. For instance, the time integration requirements
for reporting statistical errors of incompressible turbulent flows is on the order of T/Teddy ∼ 104

with Teddy the characteristic time of the largest eddies [2]. This is significantly longer than what
is typically feasible even with substantial computational resources, making the attainment of
converged statistical data a considerable computational, temporal and environmental burden [3].

N. Masclans and L. Jofre

These challenges underscore the need for innovative approaches to reduce the costs and im-
pacts of high-fidelity CFD simulations. In this regard, deep learning (DL) has made significant
advances in accelerating numerical simulations through diverse strategies, including solver accel-
eration for the Poisson equation [4], domain reduction [5], improved accuracy of finite-difference
and finite-volume discretization schemes [6], time parallelization [7], fitting closures to classical
turbulence models [8], pure machine learning (ML) to replace the Navier-Stokes equations with
deep neural network (DNN) approximations [9], and hybrid ML coupled with traditional numer-
ical methods to replace or accelerate iterative solvers [10] and correct errors in under-resolved
simulations [11]. However, these methods still require long simulation times for statistical con-
vergence and, to some degree, need to be adapted to each problem under study. Thus, to the
best of the authors’ knowledge, no strategy has effectively reduced the actual simulation time
required to achieve converged statistics.

Simultaneously, the integration of DNNs with reinforcement learning (RL) techniques - re-
ferred to as deep reinforcement learning (DRL) - has significantly enhanced decision-making
capabilities. By leveraging the advanced feature extraction and high-dimensional data pro-
cessing capabilities of DNN, DRL has garnered significant interest within the fluid mechanics
community. DRL excels at capturing long-term dynamics and learning policies for decision-
making, which is essential for flow control and optimization tasks. Despite its great potential,
DRL applications in computational and experimental fluid dynamics remains relatively under-
explored. Since the pioneering work by Novati and Verma et al. [12, 13], there has been a
notable increase in DRL contributions in turbulence modeling, flow control and optimization
problems. Among these, drag reduction applications have received the most attention, with
numerous studies dedicated to this field [14]. Other significant applications include heat trans-
fer [15], shape optimization [16], and microfluidics [17]. Among the various algorithms available,
proximal policy optimization (PPO) [18] is widely recognized for its superior learning stability
and resilience to hyperparameter changes, making it a widely used method in CFD [19].

This work, thus, proposes a DRL-based approach to reduce simulation times for achieving
converged statistics in turbulent flows. A PPO algorithm is employed to train an agent that
introduces physically realizable perturbations within the Reynolds stresses of the flow. The aim is
to slightly perturb the turbulent flow to undergo a different but quicker instantaneous trajectory,
so that the same converged statistics are reached in less simulation time than the unperturbed
simulation. The paper is organized as follows. First, Section 2 details the DRL framework,
including the one dimensional turbulence (ODT) simulation environment, the perturbation-
based DRL framework, the PPO algorithm employed, and the numerical and training details.
Next, Section 3 evaluates the effectiveness of the proposed framework in accelerating statistical
convergence in an ODT channel flow at Reτ = 180. Finally, Section 4 presents the conclusions
and further work.

2 METHODOLOGY

This section outlines the approach to accelerate statistics convergence in a computational
fluid dynamics environment. The different subsections cover the ODT environment, the formu-
lation of the statistics convergence optimization problem, an introduction to DRL, and the PPO
algorithm. Additionally, computation and training details are provided.

2

N. Masclans and L. Jofre

2.1 Computational One-Dimensional Turbulence environment

The ODT [20] is a computationally efficient method for simulating turbulent flows, specially
boundary-layer problems with a dominant shear direction [21, 22]. It reduces the complexity of
the three-dimensional turbulence to a one-dimensional framework, enabling faster simulations
while retaining essential turbulent characteristics. The choice of ODT as the simulation envi-
ronment sets the stage for addressing the statistics convergence problem in a computationally
affordable manner.

Figure 1 schematically illustrates the channel flow setup for DNS and the ODT model. Un-
like traditional Navier-Stokes-based approaches, which capture large to small flow scales, ODT
resolves fine scales and models large-scale advection through two concurrent processes:

• 1-D unsteady diffusion/reaction flow equations: excludes the advective term, reducing the
Navier-Stokes equations to diffusion equations with source terms.

• Stochastic advection: introduces turbulent advection via stochastic eddy events using a
triple map (Figure 2). This feedback mechanism emulates the effect of a 3-D eddy on
1-D property profiles by capturing compressive strain and rotational folding effects, and
conserves all quantities without causing properties discontinuities.

The two-way coupling between the diffusion mechanism and the advection phenomenological
modeling by eddy events in ODT temporal flow is represented as

∂ρui
∂t

+ Ei(y) =
∂

∂y

(
µ
∂ui
∂y

)
+ Sui , (1)

∂ρϕ

∂t
+ Eϕ(y) =

∂

∂y

(
κϕ
∂ϕ

∂y

)
+ Sϕ, (2)

where y represents the wall-normal coordinate of the simulated ODT 1-D line, E is the eddy
function, ϕ is an arbitrary scalar with diffusion coefficient κϕ and source term Sϕ, and Sui is the
source term of the velocity component ui. For the incompressible Navier-Stokes equations with
a pressure gradient source term

∂ui
∂t

+ Ei(y) = ν
∂2ui
∂y2

− 1

ρ

∂p

∂xi
, (3)

Figure 1: Schematic formulation of DNS
(left) and ODT (right) channel flow simu-
lation.

Figure 2: Schematic implementation of a
triple map on an ODT profile segment.

3

N. Masclans and L. Jofre

Figure 3: Comparison of mean streamwise velocity (left) and fluctuating velocity (right) profiles
between DNS and ODT for channel flow at Reτ = 180.

where Px = ∂p/∂x is the applied pressure gradient in the streamwise direction.
The performance of ODT is compared against DNS results for a channel flow at Reτ = 180.

Figure 3 shows a reasonable ODT reconstruction of the mean streamwise velocity profile, while
the fluctuating velocity profiles are less accurate. Consequently, this work focuses on accelerating
the convergence of first-order statistics, specifically the mean streamwise velocity u.

2.2 Formulation of the statistics convergence problem

Building on the ODT model, the optimization problem for accelerating statistics convergence
is formulated with the aim of reducing the extensive computational resources and time tradi-
tionally required. This framework differs from typical optimization problems like those aimed
at drag reduction, as it involves complex iterative processes to enhance temporal convergence
without compromising reliability and accuracy.

The general derivation of the statistics convergence optimization problem for the three-
dimensional incompressible Reynolds-Averaged Navier-Stokes (RANS) equations is presented

∂ ui
∂xi

= 0, (4)

∂ ui
∂t

+ uj
∂ ui
∂xj

= ν
∂2 ui
∂x2j

− 1

ρ

∂ p

∂xi
− ∂ Rij

∂xj
, (5)

where ui = ui + u′i denotes the Reynolds decomposition, Rij = u′i u
′
j is the Reynolds stress

tensor, and k = 1
2Rii is the turbulent kinetic energy. It is well established that the Reynolds

stress tensor, Rij , must satisfy the realizability conditions to remain symmetric and positive
semi-definite, ensuring k is non-negative and real [23]. Satisfying these conditions allows the
eigen-decomposition of the symmetric and trace-free normalized anisotropy tensor, Aij , as

Aij =

(
Rij

Rkk
− 1

3
δij

)
= QinΛnlQjl, (6)

4

N. Masclans and L. Jofre

where Rkk is the trace of Rij , Qin is the orthonormal matrix of eigenvectors, and Λnl is the
diagonal matrix of eigenvalues, ordered such that λ1 ≥ λ2 ≥ λ3. Thus, the Reynolds stress
tensor Rij can be represented in terms of its magnitude, Rkk, shape, Λnl, and orientation, Qin,
as

Rij = Rkk

(
QinΛnlQjl +

1

3
δij

)
. (7)

Consequently, Rij is expressed in terms of six degrees of freedom (d.o.f.) z = (Rkk, θ, ψ, ϕ, x1, x2):
one for the tensor magnitude (Rkk), three for the shape defined by the eigenvectors Euler an-
gles (θ, ψ, ϕ), and two for the orientation specified by the eigenvalues barycentric coordinates
(x1, x2) [24]. This parametrization aids in understanding the contributions of different compo-
nents of Rij to the statistical properties of the flow.

To accelerate statistics convergence, perturbations are introduced to the d.o.f. of the non-
converged and realizable Rij as ∆zpert = (∆Rkk, ∆θ, ∆ψ, ∆ϕ, ∆x1, ∆x2), leading to a non-
converged, perturbed and non-realizable tensor R̂ij = Rij(z+∆zpert) = Rij+∆Rij . This tensor

is then modified to satisfy the realizability conditions, yielding R̃ij = Rij(z +∆zpert +∆zrc) =

Rij+∆R̃ij , where ∆zrc is the minimum perturbation to ensure realizability. The perturbed and

realizable R̃ij is introduced into the RANS momentum equation (5) as

0 = −uj
∂ ui
∂xj

+ ν
∂2 ui
∂x2j

− 1

ρ

∂ p

∂xi
− ∂ Rij

∂xj
+ Fi,pert, with Fi,pert = −

∂∆R̃ij

∂xj
, (8)

using
∂ R̃ij

∂xj
=

∂ Rij

∂xj
+

∂∆R̃ij

∂xj
. Therefore, the goal is to determine the perturbation load Fpert(∆Rij)

along time that accelerates the convergence of statistical measurements relative to the non-
perturbed scenario.

For the ODT model, the control problem is derived from the corresponding equation (3)

0 = Ei(y) + ν
∂2 ui
∂y2

− 1

ρ

∂ p

∂xi
− ∂ Riy

∂y
+ Fi,pert, with Fi,pert = −

∂∆R̃iy

∂y
. (9)

Due to the one-dimensional nature of ODT formulation, characterized by ∂(·)/∂xj = 0 for

xj ̸= y, only three out of the nine perturbation terms are introduced, ∆R̃iy, leading to differences

in the perturbed R̃ij compared to the three-dimensional framework.
This work does not impose additional constraints on ∆Riy for statistics convergence. In-

stead, a DRL framework introduces the non-converged Reynolds stress tensor perturbation
∆Rij through a single perturbing agent, adding an instantaneous load Fpert(∆Rij) within an
actuation domain. The following subsections 2.3 and 2.4 detail the methodology for learning
optimal actions to achieve statistics convergence acceleration.

2.3 Deep Reinforcement Learning

To address the control problem, DRL is employed to determine the optimal perturbation
load. DRL combines reinforcement learning with deep learning, enabling agents to learn optimal
policies through interactions with the environment. Its capability to handle high-dimensional
state spaces and learn complex behaviour makes DRL an ideal candidate for optimizing statistics
convergence in turbulent flow simulations.

5

N. Masclans and L. Jofre

The DRL framework describes an agent that iteratively interacts with a dynamic environment
to achieve a target, namely accelerating statistics convergence. The interaction cycle proceeds
as follows: the environment provides a state st, the agent observes the state and selects an
action at, and the environment introduces that action and transitions to the next state st+1,
returning this state and a reward rt to the agent. This cycle, known as an experience (st, at, rt),
occurs over one time-step t, and is repeated until termination, either upon reaching a maximum
time-step t = T or achieving a predefined convergence criterion for the statistics. The sequence
from t = 0 to termination constitutes an episode, during which the collection of experiences
forms a trajectory τ = (s0, a0, r0), (s1, a1, r1), This process is illustrated as a control loop
diagram in Figure 4, particularly within the context of ODT statistics acceleration framework.

DNNs are widely used to approximate primary functions governing agent actions, including
the policy π(at, st) for mapping states to actions, the value V π(s) or Qπ(s, a) for estimating ex-
pected return, and the environment model P (s′|s, a) for predicting state transition probabilities.
Accordingly, DRL algorithms fall into three principal categories: policy-based, value-based, and
model-based methods, each focusing on learning the respective functions. Additionally, DRL
algorithms are also classified into on-policy and off-policy. On-policy algorithms use data gener-
ated by the current policy πt for training and discard the training data after each policy update,
while off-policy algorithms retain and reuse data generated by previous policies, enhancing sam-
ple efficiency at the cost of increased memory requirements.

Formally, the return R(τ) is the discounted sum of rewards in a trajectory

R(τ) =
T∑
t=0

γtrt, (10)

where γ ∈ [0, 1] is the discount factor, and the objective J(τ) is the expected return over many
trajectories

J(τ) = Eτ∼π

[T∑
t=0

γtrt
]
. (11)

The agent aims to maximize this objective by selecting optimal actions, learning through inter-
action with the environment over several epochs. Policy Gradient (PG) method aims at solving
the optimization problem

max
θ
J(πθ) = Eτ∼πθ

[
R(τ)

]
, (12)

where πθ is the policy network. Policy parameters θ are updated by gradient ascent as

θ ← θ + α∇θJ(πθ), (13)

with α the learning rate, and g = ∇θJ(πθ) the policy gradient. PG method estimates g as [18]

ĝ = Êt

[
∇θ log πθ(at|st)Ât

]
, (14)

where Êt denotes the average over a finite batch of samples, and Ât = Âπ(st, at) is the advantage
function estimator. Finally, gradient descent methods compute estimator ĝ by differentiating
an objective or loss function

LPG(θ) = Êt

[
log πθ(at|st)Ât

]
. (15)

6

N. Masclans and L. Jofre

Figure 4: Reinforcement learning control loop for ODT statistics acceleration framework

2.4 Proximal Policy Optimization

PG algorithms often suffer from performance collapse, where the performance of an agent
deteriorates rapidly due to the compounding effects of training on suboptimal trajectories. Ad-
ditionally, on-policy algorithms are typically sample inefficient as they do not reuse data from
previous experiences. To address these issues, PPO [18] was developed, building upon earlier
PG algorithms like REINFORCE [25], Actor-Critic [26] and Trust Region Policy Optimiza-
tion (TRPO) [27]. PPO is a state-of-the-art on-policy algorithm that optimizes both policy and
value network parameters with respect to the expected return. Unlike traditional PG approaches
that update policies based on individual samples, PPO employs a surrogate objective function to
facilitate robust policy updates through minibatch training. This approach helps prevent perfor-
mance collapse by ensuring monotonic policy improvement, and allows for the reuse of off-policy
data during training, thereby enhancing sample efficiency. Consequently, PPO is particularly
well-suited for environments where sample collection is costly or limited, such as turbulent flow
simulations.

In detail, PPO builds upon the concept of a surrogate objective function [28]

LCPI(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Â
πθold
t

]
= Êt

[
rt(θ)Ât

]
, (16)

where CPI stands for conservative policy iteration, and rt(θ) is the probability ratio. To maintain
stability, PPO introduces a trust-region constrain to the optimization problem. One variant,
the KL-penalized surrogate objective, incorporates a KL divergence penalty:

JKLPEN(θ) = max
θ
Êt

[
rt(θ)Ât − βKL

(
πθ(at|st) ||πθold(at|st)

)]
, (17)

where β is the penalty coefficient. The clipped surrogate objective employs a clipping mechanism

JCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (18)

where ϵ defines the clipping neighborhood. The clipping method is favored for its simplicity,
computational efficiency, and robust performance, making it the choice for this implementation.

7

N. Masclans and L. Jofre

2.5 Numerical Implementation and Training Details

The environment consists of an ODT simulation of incompressible channel flow at Reτ =
uτδ/ν = 180 with parameters uτ = 1m/s, δ = 1m, ν = 0.0056m2/s. The implementation
employs an open-source C++ code with adaptive mesh refinement [29]; detailed code information
is available in Stephens & Lignell [30]. The ODT parameters used are documented in Lignell
et al. [29], with an additional proportional feedback control loop to enforce Reτ = 180. The
characteristic time of the problem based on viscous units is tτ = δ/uτ . Statistics computation
is initiated once turbulence is fully developed, taking around t/tτ ≈ 100 [31]. Therefore, data
collection for statistics calculation starts at this time point, with flow fields used as restart data
for each training epoch. Performance is assessed against converged statistics at t/tτ = 10000.

The simulation’s dominant scale is the viscous time scale tτ = ν/u2τ = 0.005566 s, noted as
δtphy, with agent interactions at δtact = 0.01. Observations are gathered from nprobes = 360
sensors at intervals of ∆y+ = 1 in the wall-normal direction. The observation space consists of
(non-converged) Rij d.o.f. data with dimensions [5, 360], omitting the null and constant x2 due
to the one-dimensional nature of the simulation framework. Additionally, the (non-converged)
mean streamwise velocity at such uniform grid, ut, is captured for the reward calculation as

rt = e−
NRMSE(ut)

2σ2 , (19)

where NRMSE(ut) = ||ut − uC ||2 / ||uC ||2, and σ = 0.1. The action space is five-dimensional
(nact = 5), perturbing Rij as at = (∆Rkk, ∆θ, ∆ψ, ∆ϕ, ∆x1), excluding ∆x2. Perturbations
are applied across a grid of 260 points centered within the channel at intervals of δy+ = 1, and
the actions are bounded and filtered to ensure a smooth transition between the non-perturbed
(viscous and buffer) and perturbed (logarithmic and outer) layers. Additionally, a regulariza-
tion factor ri is included in the ODT momentum equation to prevent numerical instability, by
penalizing large perturbation loads suggested by sub-optimal policies as

∂ui
∂t

+ Ei(y) = ν
∂2ui
∂y2

− 1

ρ

∂p

∂xi
+ ri Fi,pert, (20)

ri = min

(
|rhsi|

|rhsi − Fi,pert + ϵ|
,

|rhsi|
|rhsi + Fi,pert + ϵ|

)
, (21)

rhsi = ν
∂2ui
∂y2

− 1

ρ

∂p

∂xi
. (22)

Effective training of the PPO algorithm relies on adequate network architectures and carefully
tuned hyperparameters, which must balance exploration and exploitation for stable training and
optimal policy convergence. Based on an extensive empirical analysis, key algorithm parameters
are summarized in Table 1.

3 PERFORMANCE ANALYSIS

This section evaluates the performance of the DRL framework within the context of stochastic
ODT simulations of channel flow. Each training episode, or realization, is initialized from the
same developed turbulence state, with varied random seeds for eddy generator and PPO network
initialization to ensure robust training outcomes. Performance assessment involves ensemble

8

N. Masclans and L. Jofre

learning rate 5e− 4
number of steps 64
batch size 64
number of epochs ≤ 50
discount factor γ 0.99
gral. adv. est. factor gaeλ 0.95
clipping range 0.2
entropy coefficient 1e− 3
value coefficient 1e− 1
initial log standard deviation −1.9
eposide termination t+ = 20
training termination NRMSE(u) = 7.5e− 3
features extractor network 1-D CNN [6, 64, 64] + flatten + MLP [256]
policy network MLP [256, 64, 64, 64, 6]
value-function network MLP [256, 64, 64, 1]

Table 1: PPO training parameters and networks architecture

averaging over 10 randomized training runs, consistently achieving the targeted normalized root
mean squared error for the mean streamwise velocity profile, NRMSE(u) = 7.5e − 3, within 1
to 3 epochs. On average, the DRL approach reaches convergenced statistics in approximately
t+C ≈ 49, compared to t+C ≈ 80 required by non-perturbed simulations. This represents an
approximate 40% reduction in convergence time for the mean streamwise velocity, facilitated by
the supervised Rij perturbations-based DRL framework.

Figure 5 illustrates the temporal evolution of NRMSE(u), comparing the non-accelerated
ensemble-averaged reference (gray and black lines) to an individual DRL-based training process
(blue and green lines). The selected training example achieves the targeted convergence tolerance
within a total simulation time of t+ ≈ 30 over 2 realizations, while the non-perturbed simulation,
averaged over the ensemble, requires t+ ≈ 80. Initially, the first RL epoch (blue line) experiences
temporary convergence degradation compared to the reference ensemble result (black line), which
causes episode termination at t+ = 20. Consequently, the simulation is reinitialized into the
second realization (green line), which achieves the targeted convergence tolerance at local t+ ≈ 10
thereby completing the training process. This behaviour suggests effective learning of an optimal
policy by the DRL framework, leading to faster statistical convergence.

Overall, these results underscore the efficacy of the proposed method in accelerating turbulent
statistics convergence in ODT channel flow simulations, demonstrating significant potential for
enhancing computational efficiency and reducing convergence times for key statistical quantities.

4 CONCLUSIONS

This work presents a novel Rij perturbation-based framework to accelerate the statistics con-
vergence in turbulent flow simulations using deep reinforcement learning. Specifically, the appli-
cation of a proximal policy optimization algorithm demonstrated accelerated statistics conver-
gence for one-dimensional turbulence channel flow simulations at Reτ = 180. The framework’s
general formulation enables straightforward adaptation to diverse complex turbulent flow prob-
lems, computational solvers, and DRL algorithms. The novelty of the proposed approach lies

9

N. Masclans and L. Jofre

Figure 5: Normalized root mean squared error evolution of non-converged streamwise velocity
profile, NRMSE(u), comparing non-perturbed reference and DRL-based perturbed simulations.

in addressing the direct reduction of statistics convergence simulation time through controlled
perturbations, a methodology that has not been previously explored compared to the exten-
sive research on enhancing numerical and computational performance. Therefore, this approach
offers a promising strategy for addressing computational challenges and achieving high-fidelity
turbulence data, potentially decreasing the time and resources required for such analysis.

Future research will focus on several key areas to build upon the initial success of this frame-
work. A primary area of interest is deepening the understanding of the perturbation actions
influence on the overall statistics convergence. This investigation will employ cluster-based inter-
pretation methods to extract representative states from observations and explore the relationship
between control inputs and corresponding actions. Secondly, the framework will be extended
to three-dimensional turbulent channel flow simulations, providing a comprehensive evaluation
of the framework’s capabilities and identifying potential challenges in higher-dimensional flow
simulations. Additionally, further exploration will involve training with low Reτ simulation data
to accelerate statistics convergence at high-Reτ , extending applicability to a broader range of
turbulent flow conditions. Lastly, ongoing work includes developing an unsupervised reward
formulation independent of the converged statistics baseline. This advancement would enable
the framework to operate effectively without prior information on converged statistics, making
it suitable for very computationally expensive simulations.

ACKNOWLEDGMENTS

This work is funded by the European Union (ERC, SCRAMBLE, 101040379). Views and
opinions expressed are however those of the authors only and do not necessarily reflect those
of the European Union or the European Research Council. Neither the European Union nor
the granting authority can be held responsible for them. The authors also acknowledge support
from the SGR (2021-SGR-01045) program of the Generalitat de Catalunya (Spain).

10

N. Masclans and L. Jofre

REFERENCES

[1] Xiang I A Yang, Wen Zhang, Mahdi Abkar, and William Anderson. Computational fluid
dynamics: its carbon footprint and role in carbon emission reduction, 2024.

[2] Y. Shirian, J. A. K. Horwitz, and A. Mani. On the convergence of statistics in simulations
of stationary incompressible turbulent flows. Comput. Fluids, 266:106046, 2023.

[3] P. Schlatter and R. Örlü. Assessment of direct numerical simulation data of turbulent
boundary layers. J. Fluid Mech., 659:116–126, 2010.

[4] A. Chikitkin and F. Noskov. Accelerating explicit method for poisson’s equation using
machine learning techniques. AIP Conference Proceedings, 2312(1):020002, 2020.

[5] K. Fukami, K. Fukagata, and K. Taira. Super-resolution reconstruction of turbulent flows
with machine learning. J. Fluid Mech., 870:106–120, 2019.

[6] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner. Learning data-driven discretizations
for partial differential equations. Proc. Natl. Acad. Sci. U.S.A., 116(31):15344–15349, 2019.

[7] Q. Wang, S. A. Gomez, P. J. Blonigan, A. L. Gregory, and E. Y. Qian. Towards scalable
parallel-in-time turbulent flow simulations. Phys. Fluids, 25(11):110818, 2013.

[8] A. Beck, D. Flad, and C. D. Munz. Deep neural networks for data-driven les closure models.
J. Comput. Phys., 398:108910, 2019.

[9] Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun., 9:1–
10, 2018.

[10] O. Obiols-Sales, A. Vishnu, N. Malaya, and A. Chandramowliswharan. CFDNet: A deep
learning-based accelerator for fluid simulations. 2020.

[11] J. Sirignano, J. F. MacArt, and J. B. Freund. Dpm: A deep learning pde augmentation
method with application to large-eddy simulation. J. Comp. Phys., 423:109811, 2020.

[12] Synchronisation through learning for two self-propelled swimmers. Bioinspir. Biomim.,
12(3):036001, 2017.

[13] S. Verma, G. Novati, and P. Koumoutsakos. Efficient collective swimming by harnessing
vortices through deep reinforcement learning. Proc. Natl. Acad. Sci. U.S.A., 115(23):5849–
5854, 2018.

[14] P. Garnier, J. Viquerat, J. Rabault, A. Larcher, A. Kuhnle, and E. Hachem. A review on
deep reinforcement learning for fluid mechanics. Computers Fluids, 225:104973, 2021.

[15] E. Hachem, H. Ghraieb, J. Viquerat, A. Larcher, and P. Meliga. Deep reinforcement learning
for the control of conjugate heat transfer. J. Comput. Phys., 436:110317, 2021.

[16] S. Qin, S. Wang, L. Wang, C. Wang, G. Sun, and Y. Zhong. Multi-objective optimization
of cascade blade profile based on reinforcement learning. Appl. Sci., 11(1), 2021.

11

N. Masclans and L. Jofre

[17] X. Y. Lee, A. Balu, D. Stoecklein, B. Ganapathysubramanian, and S. Sarkar. A case study
of deep reinforcement learning for engineering design: Application to microfluidic devices
for flow sculpting. J. Mech. Des., 141(11):111401, 2019.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy opti-
mization algorithms, 2017. arXiv preprint arXiv:1707.06347.

[19] J. Viquerat, P. Meliga, A. Larcher, and E. Hachem. A review on deep reinforcement learning
for fluid mechanics: An update. Phys. Fluids, 34(11), 2022.

[20] A. R. Kerstein. One-dimensional turbulence: model formulation and application to homo-
geneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech., 392:277–334,
1999.

[21] A. R. Kerstein, Wm. T. Ashurst, S. Wunsch, and V. Nilsen. One-dimensional turbulence:
Vector formulation and application to free shear flows. J. Fluid Mech., 447:85–109, 2001.

[22] Falko Meiselbach. Application of ODT to turbulent flow problems. PhD thesis, 06 2015.

[23] U. Schumann. Realizability of Reynolds-stress turbulence models. Phys. Fluids, 20(5):721–
725, 1977.

[24] Llúıs Jofre, Stefan P. Domino, and Gianluca Iaccarino. Eigensensitivity analysis of subgrid-
scale stresses in large-eddy simulation of a turbulent axisymmetric jet. International Journal
of Heat and Fluid Flow, 77:314–335, 2019.

[25] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256, 1992.

[26] V. R. Konda and J. N. Tsitsiklis. On actor-critic algorithms. SIAM J. Control Optim.,
42(4):1143–1166, 2003.

[27] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimiza-
tion. In Proceedings of the 32nd International Conference on Machine Learning, volume 37,
pages 1889–1897, 2015.

[28] S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning.
In Proceedings of the 19th International Conference on Machine Learning, volume 2, pages
267–274, 2002.

[29] D. O. Lignell, A. R. Kerstein, G. Sun, and E. E. Monson. Mesh adaption for efficient
multiscale implementation of one- dimensional turbulence. Theor. Comput. Fluid Dyn.,
27(3-4):273–295, 2013.

[30] V. B. Stephens and D. O. Lignell. One-dimensional turbulence (ODT): Computationally
efficient modeling and simulation of turbulent flows. SoftwareX, 13:100641, 2021.

[31] F. Schwertfirm and M. Manhart. Dns of passive scalar transport in turbulent channel flow
at high schmidt numbers. Int. J. Heat Fl. Flow, 28(6):1204–1214, 2007.

12

	INTRODUCTION
	METHODOLOGY
	Computational One-Dimensional Turbulence environment
	Formulation of the statistics convergence problem
	Deep Reinforcement Learning
	Proximal Policy Optimization
	Numerical Implementation and Training Details

	PERFORMANCE ANALYSIS
	CONCLUSIONS

