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Abstract. Photothermal therapy (PTT) stands as a promising avenue for cancer treatment.
Metallic nanoparticles (NPs) absorb near-infrared light, inducing localized heating for tumor
cell apoptosis. Predicting spatial temperature information in preclinical models is crucial due to
cell death sensitivity to temperature changes. Heat transfer models, rely on the radiative trans-
port equation (RTE), where its approximation is essential for this purpose. Existing models for
the radiative transport equation, such as the Beer-Lambert law, the diffusion approximation, the
discrete ordinates method, and Monte Carlo (MC) simulations, are widely used in the context
of PTT. However, each of them has limitations.

This study focuses on the δP1 model, wich is an extension of the diffusion approximation.
Unlike standard diffusion approximation (SDA), the δP1 model treats forward and scattered
light independently, preserving accuracy over a wider range of optical properties, including me-
dia with plasmonic NPs. The δP1 model equations are discretized and solved by the Finite
Element Method (FEM) . Its numerical results for fluence rate in a heterogeneous geometry
with nanoshells is compared to MC simulations and the standard diffusion approximation. This
study validates and applies the model to the simulation of light transport in photothermal ther-
apy in general two-dimensional geometries. Results demonstrate the δP1 shows a significant
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improvement over the SDA in heat transfer simulations in heterogeneous tissues geometries.
This underscores its potential as a valuable tool for optimizing photothermal therapy preclinical
models.

1 INTRODUCTION

Cancer is one of the diseases with the highest incidence globally. This clinical condition
is the leading cause of death, with a number of 10 million deaths globally in 2020 [1] . Cur-
rent therapeutic approaches for cancer, primarily encompassing chemotherapy, radiotherapy
and surgical intervention, unavoidably exhibit limitations in clinical application [2]. Advance-
ments in oncology have led to the recognition of several alternative cancer therapies, including
photodynamic therapy, and photothermal therapy (PTT) [3]. PTT, in particular, stands out for
its noninvasive and targeted approach.

Photothermal therapy involves the irradiation of electromagnetic waves to a tissue with a car-
cinoma, inducing a localized increase in temperature or hyperthermia, which results in cell death
mediated by the apoptosis mechanism [4, 2]. Metallic nanoparticles, such as gold nanoparti-
cles, are optimal candidates for this treatment due to their intrinsic property, the resonant surface
plasmon. This phenomenon involves the excitation of the nanoparticle at a specific wavelength,
resulting in the generation of electric fields around the nanoparticle and an efficient conversion
of light into thermal energy through electron and phonon interactions [4].

Numerical modeling of PTT is an invaluable tool for predicting tissue response and temper-
ature distribution in a domain where the therapy is being performed. [5]. PTT modeling is a
phenomenon with two components to consider: heat transport and radiative transport [6].It is
well known that the Pennes Bioheat model is a useful tool for predicting temperatures in a liv-
ing tissue. The model integrates biological heat sources, including metabolic activity and blood
perfusion [7].

The heat generated by nanoparticles is a source term in bioheat equation in terms of the ab-
sorption coefficient and the fluence rate. The fluence rate is obtained by solving the radiative
transfer equation (RTE). Previous studies have demonstrated that the selection of the radiative
transport model can significantly impact temperature predictions in agar gels. [8, 9]. Notable
models used in PTT for approximating the RTE include the Beer-Lambert law, Monte Carlo
(MC) simulations, and the standard diffusion approximation (SDA) [10, 11, 12, 9]. SDA has
been used extensively to approximate fluence rate and heat generated by nanoparticles in scat-
tering media such as tissues [13, 9]. Nevertheless, the model loses accuracy when scattering
coefficient is not relatively larger than absorption coefficient [14, 8, 13]. MC method, which
provides a probabilistic estimate of the RTE, is preferred for studying biological tissues due to
its superior accuracy compared to deterministic methods like SDA, especially across a broader
spectrum of optical properties, refractive index variations and heterogeneous tissue geometries
[15]. However, its computational cost prevents its application as a forward model [14]. To
overcome the limitations of SDA while maintaining its computational efficiency, other approx-
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imations has been explored, such as general spherical harmonics expansion with higher-order
terms [16]. Among these models, the δP1 model stands out, as it retains the order of the har-
monic expansion from SDA while providing a more accurate solution across a wider range
of optical properties and refractive index mismatches between tissues. The model was firstly
proposed to be applied to biological tissues by Prahl [17]. Its ability to maintain accuracy in
tissues with high absorption coefficients, such as tissues with embedded nanoparticles, makes
it a promising approximation for modeling heat transfer in photothermal therapy.

To the best of the author’s knowledge, the implementation of the δP1 model in two-dimensional
heterogeneous geometries has not yet carried out in detail. This article specifically focuses on
implementing the model in arbitrary domains as described in the literature, while also compar-
ing its accuracy against SDA and MC methods.

2 MATHEMATICAL MODELLING

2.1 LIGHT TRANSPORT

The transport of visible or infrared photons through a turbid medium, such as tissue, is
described by the Radiative Transfer Equation (RTE). Solving this equation involves the use of
an approximation of the RTE in conjunction with a set of optical properties of the material,
which vary with wavelength. These properties include the absorption coefficient, scattering
coefficient, and the angular distribution of scattering, also known as the phase function [18].
Approximating the RTE with spherical harmonics leads to a first-order approximation, the P1

model, also known as the SDA. The delta Eddington approximation to the phase function yields
the δP1 model. The models’ equations are presented in the following sections.

2.1.1 STANDARD DIFFUSION MODEL

In SDA, the fluence rate is described by Eq. 1 [19], where, ϕ is the fluence rate (Wm−2)
and µa is the absorption coefficient (m−1). The diffusion coefficient D is given by Eq. 2 [19],
where the reduced scattering coefficient µ∗

s is given by Eq. 3, where g is the anisotropy factor.

−D∇2ϕ+ µaϕ = S (1)

D =
1

3 (µa + µ∗
s)

(2)

µ∗
s = (1− g)µs (3)

Laser in the SDA is modelled as a dirichlet boundary condition, given by

ϕ|∂Ω1
= P0 (4)

Where P0 is the laser irradiance (Wm−2) on the irradiated surface (∂Ω1) In boundaries where
the tissue is not being irradiated (∂ Ω2), an extrapolated boundary is imposed, represented by

3



Roberto C. Gomez, Carlos A. Bustamante, Raul A. Valencia and Whady F. Florez

−D
∂ϕ

∂n⃗

∣∣∣∣
∂Ω2

= 2ξϕ (5)

Where ξ represents the boundary mismatch between the air and the domain [9].

2.1.2 δP1 MODEL

In the δP1 approximation, the phase function, which describes the angle at which light is
bent in a scattering event, is represented with a delta function. It describes collimated and
diffuse radiations. This function applied to the RTE allows its reduction to a diffusion equation
[17]. Expanding diffusive radiance of the RTE with Legendre polynomials leads to Eq. 6.

∇2ϕd − µ2
effϕd = −3µ∗

s (µtr + µ∗
tg

∗)ϕc (6)

Where ϕd and ϕc represent the diffuse and collimated components of the fluence rate (Wm−2).
The effective attenuation coefficient is defined as µeff =

√
3µaµtr. The isotropic scattering co-

efficient is given by µ′
s = µa + µs (1− g), while the reduced scattering coefficient is denoted

by µ∗
s, defined in Eq. 3. The transport coefficient is µtr = µa + µ′

s, and µ∗
t = µa + µ∗

s, all with
units of (m−1).

According to Prahl, ϕc can be obtained by numericlally solving [17]

∂ϕc

∂ŝ0
= −µ∗

t (x⃗)ϕc (7)

Where ŝ0 represents the direction of the collimated radiation.
Recalling that the phase function splitted radiation into collimated and diffuse component, it

is proposed that the first two moments of the phase function are function of the fraction of light
scattered forward. Where the first moment g is defined as the square of the fraction, and the
second is given by [16]

g∗ =
g

1 + g
(8)

When diffuse light is incident on a slab with different refraction index, it is required conser-
vation of the diffuse flux component normal to the surface, which is given by [16].(

ϕd − Ah
∂ϕd

∂n⃗

)∣∣∣∣
∂Ω

= −3Ahg∗µ∗
sϕc (9)

Where h is given by Eq. 10, and A is a coefficient that describes radiation reflected due to
Fresnel reflection [16]. Calculating this coefficient, leads to the approximation of the Fresnel
reflection moments R1 and R2. By evaluating through numerical integration on a normal slab,
the coefficient has been fitted to a cubic polynomial, given by Eq. 11 [17].
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h =
2

3µtr

(10)

A = −0.13755n3 + 43390n2 − 4.09466n+ 168960 (11)

Where n is the ratio between air and tissue refraction index.
By solving equations 7 and 6 subject to Eq. 9, ϕc and ϕd are summed to compute the total

fluence rate, which is then inserted to the bioheat equation as a source term.

2.2 HEAT TRANSPORT MODEL

The linear bioheat equation is given by [7]

ρCp
∂T

∂t
= k∇2T +Qm +Qb + µaϕ (12)

Where CP is the specific heat of the tissue, Qm is heat generated by metabolic processes, Qb

is the blood perfusion term and µaϕ is heat generated by nanoparticles, where ϕ is the fluence
rate calculated in light transport model.

When a tissue is exposed to ambient temperature, a heat flux is generated due to the temper-
ature differences at the interface. This flux is represented as a Robin boundary condition, given
by [20]

−k
∂T

∂n⃗

∣∣∣∣
∂Ω

= h (T − Tref ) (13)

3 MATERIALS AND METHODS

3.1 GEOMETRY AND MESH

Lopes et al. proposed an experimental geometric setup to test the implementation of MC and
SDA model [9]. This setup involves a cube enclosing an inner cylinder containing GNPs. As
the localized heating and temperature measurements are away from the boundaries, in which
no effect from boundaries should be observed, a modified geometry is proposed, including an
outer cylinder with the embedded GNP region, shown in Fig. 1a. Taking advantage of the axis
symmetry of the proposed geometry, a axisymmetric mesh was generated using GMSH [21],
taking a wedge of the original case . Regions and elements are highlighted in Fig. 1.

3.2 MONTE CARLO SIMULATIONS

Monte Carlo method was implemented using MCX from Monte Carlo Studio [22]. The
Geometry was loaded using basic shapes in volume designer with the dimensions of validation
case. A voxel size of 0.125 mm was used for the simulations with 108 photons for the validation
case. For the light source, a gaussian beam was configured with a waist radius of 7 mm [9].
Fluence rate was integrated and scaled in a time span of 1 s to get the steady state behavior for
the fluence. Results were interpolated to degrees of freedom (DOF) in the heat transport model
mesh using linear interpolation.

5



Roberto C. Gomez, Carlos A. Bustamante, Raul A. Valencia and Whady F. Florez

(a) (b)

Figure 1: Mesh and geometry. (a) Modified case geometry from Lopes et. al [9]. (b) 2D mesh.

3.3 SDA SIMULATIONS

Equation 1 was expressed in cylindrical coordinates, discretized and solved by the Finite
Element Method (FEM) using the open source framework FEniCSx, composed by DOLFINX,
basix and UFL [23, 24, 25]. A variational form from the equation was formulated using Galerkin
method with a Lagrange first order function space for the mesh shown in Fig 1. Laser BC was
modelled using Eq. 4, with an equivalent beam radius of 11 mm [9]. The resulting linear
system was solved using Portable, Extensible Toolkit for Scientific Computation (PETSc) LU
decomposition direct solver [26].

3.4 δP1 MODEL

Equation 7 was solved for every DOF of a DOLFINx function defined in the mesh using
4th order Runge Kutta method provided by Scipy Solve ivp function [27]. Taking and initial
value of fluence rate at the corresponding surface point of each DOF. Fluence rate at surface
was taken as a gaussian distribution of full width half maximum (FWHM) corresponding to the
MC simulation. The resulting function was taken as the source term in the solution of the Eq.
6, with the same method as SDA for discretizing the domain and solving the linear system.

3.5 HEAT TRANSPORT SIMULATION

For obtaining transient behavior of temperature given by Eq. 12, the model was expressed in
cylindrical coordinates and discretized spatially using FEniCSx [23, 24, 25]. A backward im-
plicit euler algorithm was implemented for time stepping, with a dt of 0.1 s. The corresponding
linear system for each time step was solved using PETSc BigSTAB iterative solver [26].
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Table 1: Optical properties measured in subdomains from Lopes et. al [9].

Property Gel GNP
µa (m−1) 2 31
µs (m−1) 176 289

3.6 VALIDATION CASE

Experimental case proposed by Lopes et. al is modelled using the modified geometry shown
in Fig. 1a [9]. The authors made an agar gel phantom with embedded gold nanoparticles in a
cylindrical shaped subdomain. The gel was irradiated with a gaussian beam with FWHM and
power of 7 mm and 1.1 W respectively [9]. The top surface of the domain was modelled with a
robin boundary condition given by Ec. 13, taking a convection coefficient of 5 WK−1m−2. The
other boundaries were taken as zero flux condition [9]. Optical properties of the domains were
determined by the authors, shown in table 1. Other properties such as index refraction, specific
heat, density and thermal conductivity were considered equal to water properties reported in
literature [28]. The gel phantom was irradiated 706 s.

4 RESULTS AND DISCUSSION

4.1 VALIDATION

(a) (b)
(c)

Figure 2: Fluence rate (a), temperature field (b) in MC validation case and temperature over
time (b) measured in r = 0mm, z = 4mm simulated and reported by Lopes et. al [9]

Lopes et. al experimental configuration is particularly useful for numerically implementing
photothermal therapy (PPT), as tumor irradiation often targets deep tissues. This approach
ensures that therapy is applied while minimizing its invasive effect [29].

To confirm that the current model is being applied correctly, the results of Lopes et al. were
used as reference values for validation purposes. [9]. Results and experimental data obtained
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from the authors are shown in Fig. 2. Fluence rate generated by the gaussian beam calculated
from MC method is shown in Fig. 2a, showing the absorption and scattering effects of the
phantom. A temperature field at 706 s is obtained in Fig. 2b. At r = 0, 4 mm below the surface,
the authors measured the temperature during irradiation time [9]. As shown in Fig. 2c, the
agreement between the experimental results and the proposed models indicates the reliability
of the δP1 model since temperatures are close o reported measurements and MC results. How-
ever, several differences in the MC curve may be attributed to voxel resolution and uncertainty
regarding the MC boundary conditions.

4.2 MODELS COMPARISON

(a)

(b) (c)

Figure 3: Models comparison at t = 706 s simulation time. (a) Temperature over the laser axis.
(b) SDA local error. (c) δP1 local error.

δP1 model was applied to the validation case to compare its approximation in contrast to
SDA and MC. Figure 3 presents a comparison based on two criteria. Fig 3a shows the tem-
perature over the cylinder axis. A temperature maximum value is evident at the depth where
the GNPs are located, indicating the presence of absorption heterogeneity. This result is con-
sistent with the reported by Lopes et. al [9]. When the δP1 is compared to SDA, a notable
increase in the maximum temperature is observed, representing an enhancement of the SDA in
approximately 80%.

In PPT, it is crucial to consider not only the maximum temperature in the tumor but also
the temperature in the surrounding tissue [30]. Figures 3c and 3b shows local error at 706
s with respect to the temperature filed shown in Fig. 2b. As previosuly reported by several
authors, SDA greatly underestimate temperatures in the GNP region [13]. On the other hand,
δP1 model performs well both within and outside the GNP region. The highest temperature
difference observed was 0.6 °C, which outperformed the SDA. This is explained as the δP1
threads forward and scatters light independently, allowing for greater generalization on forward
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scattering media such as tissues. This, in turn, results in a wider range of optical properties,
where the model maintains its accuracy. [31].

5 CONCLUSIONS

δP1 model is assessed as comprehensive radiative transport model to be applied to study
laser-induced thermal effects in a gel phantom mimicking a deep tissue configuration with em-
bedded gold nanoparticles (GNPs) subjected to PTT. The simulation workflow encompassed
geometric modeling, mesh generation, and solving radiative and heat transport equations. The
δP1 model demonstrated remarkable agreement with Monte Carlo (MC) simulations in pre-
dicting laser-induced thermal behavior within the gel phantom containing gold nanoparticles
(GNPs). This agreement underscores the efficacy and accuracy of the δP1 model in capturing
the essential physics of photon absorption and subsequent heat generation within the tissue.
The successful alignment between the δP1 model and MC simulations highlights its potential
as a practical tool for researchers in the field of biomedical optics. This validation paves the
way for broader utilization of the model in photothermal therapy, where precise heat deposition
predictions are crucial for optimizing treatment outcomes.
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