
 
1 INTRODUCTION 
 
Orthotropic steel bridge decks (OSBDs) have been used in long-span bridges since the 1920s. 
However, multiple fatigue pathologies have been reported (Villoria 2021) in several typical de-
tails. The present publication focuses solely on the welded rib-deck joints of OSBDs.  
It has been observed that fatigue cracks in RD welded joints (Kainuma 2018; Ocel 2017; Ya 
2011) can initiate: 

• from weld toe into the deck plate (Type I), 
• from weld root into the deck plate (Type II), 
• from the rib weld toe into the rib (Type III), 
• or from the weld root into the weld itself (Type IV) 

 
The Eurocode recommends considering bending stress in the rib as the governing stress for fa-
tigue damage accumulation in welded RD joints. The hot spot stress is also presented as an al-
ternative. However, in the presence of low welding penetration, these standard methods cannot 
capture the stress concentration at weld root that can lead to crack initiation from weld root 
(Types II and IV). Many alternative fatigue prediction models have been proposed but only the 
equivalent structural stress (Dong 2001) has been formally incorporated in ASME standards 
(ASME Div Code).  
 The present paper presents the main aspects of the equivalent structural stress approach and 
the associated equivalent structural strain approach, assuming initially elastic behavior. An algo-
rithm to account for plastic redistribution is discussed and implemented to predict the fatigue 
life of welded RD specimens with insufficient welding penetration considering crack mecha-
nisms Type I to IV. 
 Fatigue tests conducted on RD welded joints specimens with low welding penetration are de-
scribed and used for validation. The accuracy of standard fatigue verification methods is evalu-
ated and compared with the nominal and hot spot stress approaches.  
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ABSTRACT: The present paper studies the fatigue life of welded rib-deck (RD) joints using the 
equivalent structural strain approach derived from the equivalent structural stress method for-
malized in the ASME code. A nodal force-based framework is implemented to analyze welded 
RD joints with insufficient welding penetration. A purely linear elastic analysis yields overly 
conservative fatigue life predictions. The present paper investigates the performance of a plastic 
strain redistribution algorithm adapted from a method proposed by Pei (2019). A general im-
provement in terms of fatigue life estimation is obtained. Because of its simplicity, the Neuber’s 
rule, already incorporated in the ASME Code, constitutes a good alternative to the discussed al-
gorithm. The presented framework is relevant for the fatigue assessment of existing bridges with 
insufficient welding penetration.  



2 EQUIVALENT STRUCTURAL STRAIN 
2.1 Background 
The accuracy of the equivalent structural stress (ESS) method has been documented (Dong 
2005; Dong 2007) by analyzing a large amount of fatigue tests conducted on welded details. 
The ESS approach hinges on the linearization of the through-thickness stress along the consid-
ered crack, including the nonlinear component due to the presence of a weld notch. Dong 
demonstrated that for any through-thickness stress distribution, unique membrane stress 𝜎𝜎𝑚𝑚 and 
bending stress 𝜎𝜎𝑏𝑏 could be determined from equilibrium conditions. The elastic structural struc-
tural stress 𝜎𝜎𝑠𝑠 is then obtained from Equation (1). Figure 1(a) illustrates a stress distribution 
where the structural stress 𝜎𝜎𝑠𝑠 exceeds the yield stress of the material. The corrected stress is the 
result of strain hardening material behavior. 

 𝜎𝜎𝑠𝑠 = 𝜎𝜎𝑏𝑏 + 𝜎𝜎𝑚𝑚 (1) 

The concept of structural strain was introduced (Dong 2014) as an extension of the structural 
stress concept. It is argued by Dong that the introduction of a linear strain distribution 𝜀𝜀𝑠𝑠(𝑦𝑦) is 
consistent with the definition of the structural stress. Like the structural stress, the structural 
strain overcomes the challenges posed by the strain singularity at the considered weld notch. As 
shown in  Figure 1(b), the through-thickness structural strain distribution 𝜀𝜀𝑠𝑠(𝑦𝑦) can be written 
as the sum of a membrane 𝜀𝜀𝑚𝑚 and a bending 𝜀𝜀𝑏𝑏(𝑦𝑦) components but also as a linear gradient as 
summarized in Equation  (2): 

 𝜀𝜀𝑠𝑠(𝑦𝑦) = 𝑘𝑘𝑘𝑘 + 𝑏𝑏 = 𝜀𝜀𝑚𝑚 + 𝜀𝜀𝑏𝑏(𝑦𝑦) (2) 

  
Figure 1.(a) Structural stress with nonlinear material behavior (b) Corresponding structural strain distribu-
tion. 

2.2 Nodal Force based determination of the structural stress 
A method to derive the structural stress components (Dong 2005) was implemented as part of 
the present work. The method requires that the nodal forces along a free-body cut at an antici-
pated crack plane are extracted and processed as described in the present paragraph.  

Figure 2 (a) illustrates how the nodal forces components (𝐹𝐹𝑥𝑥𝑖𝑖𝑖𝑖, 𝐹𝐹𝑦𝑦𝑖𝑖𝑖𝑖 , 𝐹𝐹𝑧𝑧𝑖𝑖𝑖𝑖) along a type I crack 
mechanism where the indices i and j refer to the Z- and Y-coordinates. Similar procedures are 
followed for the other types of crack mechanisms. 
 

The force resultant in the X-direction at a given position i along the Z-direction is obtained by 
summation of the nodal forces along the Y-direction as expressed in Equation (3). Similar equa-
tions can be derived for the force resultants in the Y- and Z-direction. 

 𝐹𝐹𝑥𝑥𝑥𝑥 = �𝐹𝐹𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗

 (3) 

 
 



  
Figure 2.(a) Nodal forces along the hypothetical crack plane. (b) Line forces along the weld line 

 
 The statically equivalent line forces in the X-direction at each position i along the weld line 

(Z-direction) shown in Figure 2.(b) are obtained from Equation (4). The equivalent line forces in 
the Y- and Z-direction can be obtained from a similar relation. 
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  Following a similar procedure, the equivalent nodal moments (𝑀𝑀𝑥𝑥𝑥𝑥, 𝑀𝑀𝑦𝑦𝑦𝑦, 𝑀𝑀𝑧𝑧𝑧𝑧)  calculated 

at mid-section of the free-body cut can be converted to the equivalent line moments (𝑚𝑚𝑥𝑥𝑥𝑥, 𝑚𝑚𝑦𝑦𝑦𝑦, 
𝑚𝑚𝑧𝑧𝑧𝑧) by inverting the T matrix of Equation (4). 

  Finally, the structural stress in the X-direction at the i-th position along the weld line is 
given in Equation (5). 

 𝜎𝜎𝑠𝑠𝑠𝑠,𝑖𝑖 = 𝜎𝜎𝑚𝑚𝑚𝑚,𝑖𝑖 + 𝜎𝜎𝑏𝑏𝑏𝑏,𝑖𝑖 =
𝑓𝑓𝑥𝑥,𝑖𝑖

𝑡𝑡2
+

6 𝑚𝑚𝑥𝑥,𝑖𝑖

𝑡𝑡2
 (5) 

2.3 Equivalent structural strain 

The limitations of the equivalent structural stress method in the low- to medium-cycle re-
gime were highlighted by Dong. The equivalent structural strain method was primarily formu-
lated for the low-cycle regime to incorporate the effects of plastic redistribution. 

The elastic equivalent structural strain range ∆𝜀𝜀𝑠𝑠𝑒𝑒 can be derived from the elastic structural 
stress ∆𝜎𝜎𝑠𝑠𝑒𝑒 by means of the Hooke’s law. In presence of stresses beyond the material yield limit, 
ASME suggests using the Neuber’s rule, expressed in Equation (6), in combination with a strain 
hardening law to account for plasticity redistribution to evaluate the actual stress ∆𝜎𝜎𝑠𝑠 and strain 
∆𝜀𝜀𝑠𝑠 ranges. 

 
 ∆𝜎𝜎𝑠𝑠.∆𝜀𝜀𝑠𝑠 = ∆𝜎𝜎𝑠𝑠𝑒𝑒 .∆𝜀𝜀𝑠𝑠𝑒𝑒 (6) 



ASME standards recommends the cyclic stress-strain relation given Equation (7) to model 
the stress-strain hysteresis loop. The parameters 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐 are material dependent and can 
be found in appendix 3-D.7 of ASME codes. 

 ∆𝜀𝜀𝑠𝑠 =
∆𝜎𝜎𝑠𝑠
𝐸𝐸

+ 2 �
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 (7) 

Finally, an equivalent structural strain range ∆Es can be derived from Equation (8) where the 
parameters m, tess and I(r) are defined in ASME Div Code, while the bending ratio r is defined 
as 𝑟𝑟 = 𝜀𝜀𝑏𝑏/𝜀𝜀𝑠𝑠.   
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1
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 (8) 

A master curve was derived for the structural strain approach where the number N of cycles 
to failure is related to ∆Es by Equation (9). The values of 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 provided in 
Table 1 were derived from the Master E-N curves shown in (Pei 2022). 

 ∆𝐸𝐸𝑠𝑠 = 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−2𝑠𝑠𝑠𝑠𝑠𝑠 .𝑁𝑁−ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   (9) 

 
Table 1. Parameters for Master E-N curve – steel. 

Statistical basis Cstrain hstrain 

Mean curve 0.09089 

0.31950 

Upper 68% prediction interval (mean + 2 standard deviation) 0.13633 

Lower 68% prediction interval (mean – 2 standard deviation) 0.63363 

Upper 95% prediction interval (mean + 3 standard deviation) 0.1636 

Lower 95% prediction interval (mean - 3 standard deviation) 0.05453 

 
 
3 ALGORITHM FOR PLASTIC STRAIN REDISTRIBUTION 
3.1 Stress-strain relation 

Pei suggested an altered Ramberg-Osgood relation (Pei 2019), expressed in Equation (10), al-
lowing a clear distinction between the elastic and plastic strain components, as opposed to the 
original formulation by Ramberg-Osgood in which the plastic contribution is always present. 
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The material parameters α, 𝑚𝑚, 𝜎𝜎0 and 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are obtained by using a least-squares curve fitting 
algorithm to fit the monotonic stress-strain relation provided in Annex 3-D of Asme Div Code. 
The specimens considered in the present study are made of steel grade S355 for which the val-
ues α=10.5, 𝑚𝑚=12.35, 𝜎𝜎0=420 MPa and 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝= 295 MPa yield a satisfying fit with the mono-
tonic stress-strain curve. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Modified Ramberg-Osgood stress-strain relation for steel S355 
 
3.2 Return mapping algorithm 

The linearized membrane 𝜎𝜎𝑚𝑚 and bending stresses 𝜎𝜎𝑏𝑏 are derived from the actual through-
thickness distribution 𝜎𝜎𝑥𝑥(y) by use of the equilibrium conditions expressed in Equa-
tion (11)where t designates the plate thickness: 
 

 𝜎𝜎𝑚𝑚 =  1
𝑡𝑡 ∫ 𝜎𝜎𝑥𝑥(𝑦𝑦).𝑑𝑑𝑑𝑑𝑡𝑡/2

−𝑡𝑡/2      and     𝜎𝜎𝑏𝑏 = 6
𝑡𝑡2

 ∫ 𝜎𝜎𝑥𝑥(𝑦𝑦).𝑦𝑦.𝑑𝑑𝑑𝑑𝑡𝑡/2
−𝑡𝑡/2  (11) 

Using the coordinate system illustrated in Figure 1, the total strain 𝜀𝜀𝑥𝑥,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑦𝑦) can be written 
as the sum of a plastic component 𝜀𝜀𝑥𝑥,𝑝𝑝(𝑦𝑦) and an elastic component 𝜀𝜀𝑥𝑥,𝑒𝑒(𝑦𝑦) but also as a linear 
function of the vertical position y as expressed in Equation (12). 

 
A general framework to account for nonlinear hardening effects is presented below. 
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The Hooke’s law allows us to write the following relation: 
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After integration of the relations in Eq (11), Eq (13) can be rewritten as Equations (14) and 

(15): 
 



 �
𝜎𝜎𝑚𝑚,𝑥𝑥(𝑦𝑦). 𝑡𝑡
𝜎𝜎𝑚𝑚,𝑦𝑦(𝑦𝑦). 𝑡𝑡
𝜎𝜎𝑚𝑚,𝑧𝑧(𝑦𝑦). 𝑡𝑡

� = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

⎝

⎜
⎜
⎜
⎜
⎛

�
𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
� 𝑡𝑡 −

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡� 𝜀𝜀𝑥𝑥,𝑝𝑝(𝑦𝑦).𝑑𝑑𝑑𝑑

𝑡𝑡/2

−𝑡𝑡/2

� 𝜀𝜀𝑦𝑦,𝑝𝑝(𝑦𝑦).𝑑𝑑𝑑𝑑
𝑡𝑡/2

−𝑡𝑡/2

� 𝜀𝜀𝑧𝑧,𝑝𝑝(𝑦𝑦).𝑑𝑑𝑑𝑑
𝑡𝑡/2

−𝑡𝑡/2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎟
⎟
⎞

 (14) 

 �
𝜎𝜎𝑏𝑏,𝑥𝑥(𝑦𝑦). 𝑡𝑡
𝜎𝜎𝑏𝑏,𝑦𝑦(𝑦𝑦). 𝑡𝑡
𝜎𝜎𝑏𝑏,𝑧𝑧(𝑦𝑦). 𝑡𝑡

� = 𝐻𝐻𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

⎝

⎜
⎜
⎜
⎜
⎛

�
𝑘𝑘1
𝑘𝑘2
𝑘𝑘3
� .
𝑡𝑡3

12
−

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡� 𝜀𝜀𝑥𝑥,𝑝𝑝(𝑦𝑦).𝑦𝑦.𝑑𝑑𝑑𝑑

𝑡𝑡/2

−𝑡𝑡/2

� 𝜀𝜀𝑦𝑦,𝑝𝑝(𝑦𝑦).𝑦𝑦.𝑑𝑑𝑑𝑑
𝑡𝑡/2

−𝑡𝑡/2

� 𝜀𝜀𝑧𝑧,𝑝𝑝(𝑦𝑦).𝑦𝑦. 𝑑𝑑𝑑𝑑
𝑡𝑡/2

−𝑡𝑡/2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎟
⎟
⎞

 (15) 

 
The through-thickness distributions of plastic strain are initially set equal to zero. The linear 

gradient coefficients (𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3) and (𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3)  depend on the current plastic strain tensor 
[𝜀𝜀𝑥𝑥,𝑝𝑝(𝑦𝑦), 𝜀𝜀𝑦𝑦,𝑝𝑝(𝑦𝑦), 𝜀𝜀𝑧𝑧,𝑝𝑝(𝑦𝑦)] accumulated prior to the application of the considered load step and 
can be determined by simple linear algebra operations from Equations (14) and (15). 

The updated total strain components can now be calculated from Equation (12). Subsequently 
trial stresses �𝜎𝜎𝑥𝑥𝑡𝑡𝑡𝑡(𝑦𝑦),𝜎𝜎𝑦𝑦𝑡𝑡𝑡𝑡(𝑦𝑦),𝜎𝜎𝑧𝑧𝑡𝑡𝑡𝑡(𝑦𝑦)� can be computed from Eq (13). The von Mises equivalent 
stress 𝜎𝜎𝑒𝑒𝑒𝑒 given in Equation (16) as a function of the deviatoric stress tensor 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑. 

 𝜎𝜎𝑒𝑒𝑒𝑒 =�3
2
𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑:𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

The von Mises yield function f given by Equation (17) is expressed as a function of the trial 
equivalent von Mises stress and strain.  

 𝑓𝑓𝑡𝑡𝑡𝑡�𝜎𝜎𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡, 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝,𝑡𝑡𝑡𝑡� = 𝜎𝜎𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 − 𝜎𝜎0 �

𝐸𝐸𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝,𝑡𝑡𝑡𝑡

𝛼𝛼𝜎𝜎0
+ 𝑟𝑟𝑚𝑚� (17) 

The equivalent strain 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
𝑝𝑝  (Dieter 1976) is given by Equation (18) where 𝜀𝜀𝑝𝑝��� designates the 

plastic strain tensor : 

 𝑑𝑑𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 = �2

3
.𝑑𝑑𝜀𝜀𝑝𝑝���:𝑑𝑑𝜀𝜀𝑝𝑝��� (18) 

If the yield function 𝑓𝑓𝑡𝑡𝑡𝑡 given in Equation (17) becomes negative for the trial stress and 
strain values, then a return mapping algorithm is used to determine the equivalent stress 𝜎𝜎𝑒𝑒𝑒𝑒 and 
plastic strain 𝜀𝜀𝑒𝑒𝑒𝑒

𝑝𝑝  that satisfy the so-called consistency condition imposing that the stress value is 
located on the yield surface. The consistency condition is expressed in Equation (19). 

 

 𝑓𝑓�𝜎𝜎𝑒𝑒𝑒𝑒 , 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 � = 𝜎𝜎𝑒𝑒𝑒𝑒 − 𝜎𝜎0 �

𝐸𝐸𝜀𝜀𝑒𝑒
𝑝𝑝

𝛼𝛼𝜎𝜎0
+ �

𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜎𝜎0

�
𝑚𝑚
�

1
𝑚𝑚

= 0 (19) 

Equation (20) provides a relation between the trial equivalent stress and the plastic strain in-
crement. For the purposes of brevity, the proof of this relation is not provided in the present pa-
per. It hinges on the plastic incompressibility of metals, further details can be found in appendix 
A of Pei’s publication (Pei 2019). 

 



 𝜎𝜎𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 − 3𝐺𝐺∆𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  (20) 

Equation (19) can now be rewritten as Equation (21) by substituting 𝜎𝜎𝑒𝑒𝑒𝑒 with the above 
equation. 

 𝑓𝑓�𝜎𝜎𝑒𝑒𝑒𝑒 , 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 � = 𝜎𝜎𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 − 3𝐺𝐺∆𝜀𝜀𝑒𝑒𝑒𝑒

𝑝𝑝 − 𝜎𝜎0 �
𝐸𝐸�𝜀𝜀𝑒𝑒𝑒𝑒

𝑝𝑝,𝑡𝑡𝑡𝑡 + ∆𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 �

𝛼𝛼𝜎𝜎0
+ (

𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜎𝜎0

)𝑚𝑚� = 0 (21) 

 A numerical solver is used to obtain a plastic strain increment ∆𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  that satisfies the modi-

fied consistency condition expressed in Equation (21). The equivalent plastic strain increment 
𝑑𝑑𝜀𝜀𝑒𝑒𝑒𝑒

𝑝𝑝  is normal to the yield surface f as presented in Equation (22), when associated flow rule is 
assumed. The scalar dλ is the scalar plastic multiplier. 

 𝑑𝑑𝜀𝜀𝑝𝑝 = 𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (22) 

The Prandtl-Reus Equations impose, for an isotropic material, proportionality between the 
principal plastic incremental strains 𝑑𝑑𝜀𝜀𝑝𝑝��� and the deviatoric stress tensor 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑, expressed in 
Equation (23). 

 
 𝑑𝑑𝜀𝜀𝑝𝑝��� = 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (23) 

By substituting 𝑑𝑑𝜀𝜀𝑝𝑝��� in Equation (18) and using the von Mises equivalent stress definition 
given in Equation (16) , the following relation for the plastic incremental strain tensor is ob-
tained. 

 ∆𝜀𝜀𝑝𝑝��� =
3
2
𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

𝜎𝜎𝑒𝑒
∆𝜀𝜀𝑒𝑒𝑒𝑒

𝑝𝑝  (24) 

 
The updated plastic strain through-thickness distribution is given by Equation (25). 
 

 �
𝜀𝜀𝑥𝑥,𝑝𝑝(𝑦𝑦)
𝜀𝜀𝑦𝑦,𝑝𝑝(𝑦𝑦)
𝜀𝜀𝑧𝑧,𝑝𝑝(𝑦𝑦)

�

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

= �
𝜀𝜀𝑥𝑥,𝑝𝑝(𝑦𝑦)
𝜀𝜀𝑦𝑦,𝑝𝑝(𝑦𝑦)
𝜀𝜀𝑧𝑧,𝑝𝑝(𝑦𝑦)

�

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

+
3
2
∆𝜀𝜀𝑒𝑒𝑒𝑒

𝑝𝑝

𝜎𝜎𝑒𝑒

⎢
⎢
⎢
⎢
⎢
⎡
1
3

(2𝜎𝜎1𝑡𝑡𝑡𝑡 − 𝜎𝜎2𝑡𝑡𝑡𝑡 − 𝜎𝜎3𝑡𝑡𝑡𝑡)
1
3

(2𝜎𝜎1𝑡𝑡𝑡𝑡 − 𝜎𝜎2𝑡𝑡𝑡𝑡 − 𝜎𝜎3𝑡𝑡𝑡𝑡)
1
3

(2𝜎𝜎1𝑡𝑡𝑡𝑡 − 𝜎𝜎2𝑡𝑡𝑡𝑡 − 𝜎𝜎3𝑡𝑡𝑡𝑡)⎥
⎥
⎥
⎥
⎥
⎤

 (25) 

The updated plastic strain distribution is then used to determine new linear strain gradient 
coefficients from Equations (14) and (15). New trial strain and stress distributions are then de-
rived from Equations (12) and (13). 

 
4 FATIGUE TEST DATA 
 
Fatigue tests (Janss 1988) on 36 RD welded joints that were purposely designed with an insuffi-
cient penetration rate and limited edge preparation are considered for validation of the algorithm 
discussed in section 3. The specimens were constrained on either side of the trapezoidal stiffen-
ers by rollers. The loads simulating the effect of traffic loading were applied unsymmetrically, 
therefore only the welded joints closest to the point of load application are considered. The test 
setup is shown in Figure 4. The dimension p characterizing the lack of weld penetration varies 
between 1.0 and 4.7 mm, while the gap e varies between 0.0 and 2.0 mm. 

The tests aimed to explore the consequences of poor weld quality on fatigue life. They also 
provide a unique test series with significantly higher levels of plastic deformation than expected 
in typical RD joints. The test series is used to illustrate the performance of the structural strain 
method in presence of moderate levels of plasticity. 
 



 
Figure 4. RD welded joint fatigue test setup and weld geometry. 
 
 
5 RESULTS 
5.1 Modelling 
The general-purpose software Abaqus was used to model the different specimens. The submod-
elling technique was used to obtain the refined mesh required by the nodal force-based proce-
dure described in section 2.2. Solid elements of type C3D8 are used. As shown in Figure 5, the 
four potential crack mechanisms expected at RD welded joints were considered in the present 
analysis. 
 
 

Figure 5. Abaqus model and submodel showing the four cracking mechanisms. 
 

5.2 Return mapping algorithm 
The return mapping algorithm described in section 3.2 was implemented to analyze the fatigue 
tests reported by Janss. As shown in Figure 6, the largest strains are expected in the direction 
normal to the considered crack mechanism. Nonetheless, the other strain components cannot be 
neglected. This observation is consistent with the proposed algorithm where all three strain 
components are considered. 
 



 
Figure 6. Strain distribution along the four crack planes for specimen-1. 

The return mapping algorithm described in section 3.2, implemented in a Python script. 
A stable hysteresis loop forms after only one load cycle for all the specimens studied in the 
CRIF experiments as shown in Figure 7. 

 
Figure 7. Formation of a stable hysteresis loop for specimen-25 of the CRIF test series 

An equivalent strain range can be defined based on the Miner’s linear damage accumulation 
rule expressed in Equation (26) where 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 is equal to 1 and refers to the first cycle, 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is 
the total of cycles to failure. 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1 and 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 denote the expected number of cycles to failure 
corresponding respectively to the first cycle of the strain range and the stabilized strain range. 

 

 
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1

+
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
= 1 (26) 

Using Equation (9) and rearranging Equation (26), 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is given in Equation (27). 



 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1 + �
𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∆𝐸𝐸𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

�

1
ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�1 − �
∆𝐸𝐸𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�

1
ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� (27) 

The equivalent structural strain range ∆𝐸𝐸𝑠𝑠,𝑒𝑒𝑒𝑒 is then obtained by Equation (28). 
 ∆𝐸𝐸𝑠𝑠,𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (28) 

5.3 Neuber’s rule 

The ASME Code suggests that the Neuber’s rule given in Equation (6) can be used to correct 
the elastic stress obtained from a linear elastic analysis. As illustrated in Figure 8, the corrected 
stress is obtained by determining the intersection between the Neuber’s curve passing by the 
elastic stress and the considered stress-strain curve. The modified Ramberg Osgood curve de-
scribed in section 3.1 is here used as stress-strain curve. 

 

 
Figure 8. Stress correction by Neuber’s rule (ASME) – specimen 25 from CRIF series. 
 

5.4 Standard methods 
As shown in Figure 9, the nominal stress and hot spot stress methods yield nonconservative fa-
tigue life predictions. The nominal stress in RD welded joints is defined as the bending stress in 
the rib (Eurocode) which entails that the method overlooks the stress concentration at the weld 
root resulting from insufficient penetration. Similarly, the hot spot stress is determined through 
a stress extrapolation procedure along the deck and rib surfaces, leading to the same conclusion. 

 
Figure 9. Experimental fatigue lives versus fatigue lives calculated by (a) nominal stress (b) Hot spot 

approach. 



 
5.5 Comparison and discussion 

As shown on Figure 10 (a and b), the proposed strain hardening algorithm (corresponding to the 
points labelled R-O Strain Hardening) yields a better fatigue prediction than the initial linear 
ESE approach. The performance of the Neuber’s rule is satisfactory even though it gives gener-
ally more conservative fatigue life estimations than the return mapping algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. (a) ESE ranges from linear elastic approach, nonlinear strain-hardening algorithm and Neu-
ber’s rule (b) Expected number of cycles to failure 
 

The relative error index, for the linear ESE method and the discussed algorithm to account for 
strain hardening effects, is calculated as defined in Equation (29) where 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the ex-
perimental number of cycles to failure and 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the number of cycles to failure calcu-
lated by the considered method. 

 

 I =
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  −  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
∙ 100 

(29) 

 

The histogram of the frequency count of the relative error index between the calculated and 
experimental fatigue lives is shown for both methods in Figure 11 where the improved fatigue 
life prediction by the discussed strain hardening algorithm is noticeable. 

 

 
Figure 11. Error index – Comparison of predicted and experimental lives. 



Figure 9 shows that the nominal stress and hot spot stress approaches lead to nonconserva-
tive fatigue life predictions. The ESE method, assuming purely linear behavior, yields only con-
servative fatigue life predictions. The algorithm, described in section 3, to incorporate strain 
hardening effects for the ESE approach, provides notably improved fatigue life predictions. Im-
plementing Neuber’s rule in combination with a cyclic stress-strain curve, as suggested by 
ASME Div Code improves fatigue life predictions in comparison with the linear analysis but 
displays a lower level of performance than the discussed algorithm. 
 
6 CONCLUSIONS 

 
The present paper presents a framework for the evaluation of rib-deck (RD) welded joints with 
insufficient weld penetration. The method hinges on the concept of equivalent structural strain 
in a nodal force-based formulation. By incorporating the effect of plastic strain redistribution, 
the algorithm provides more accurate fatigue life predictions than standard methods, addressing 
the limitations of purely elastic analyses which tend to be overly conservative.  

 Fatigue tests on RD welded joints with insufficient weld penetration are used to validate the 
accuracy of the algorithm. The use of the Neuber’s rule, as recommended by ASME standards, 
offers a simpler yet effective alternative although it gives more conservative fatigue life estima-
tions.  

This study suggests that the equivalent structural strain method, combined with an algorithm 
for plastic strain redistribution, can constitute a valuable tool for assessing the fatigue life of ex-
isting bridges where low weld penetration might be a concern.  
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