
16th World Congress in Computational Mechanics (WCCM)
21-26 July 2024, Vancouver, Canada

A. Korobenko, M. Laforest, S. Prudhomme, R. Vaziri (Eds)

COUPLING MULTIPLE RESONANCES FOR ENHANCING SOUND
TRANSMISSION LOSS OF ACOUSTIC METAMATERIALS

G. Sal-Anglada1,2, D. Yago1,2, J. Cante1,2, J. Oliver1,3 and D. Roca1,2,∗
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Abstract. Recent developments in acoustic metamaterials have been focused on broadening the
attenuating bandwidth features towards lower frequency ranges, well below 1000 Hz, as well as
tackling manufacturing issues. In this context, a multi-resonant layered acoustic metamaterial
(MLAM) was proposed as a practical realization for addressing both challenges. The MLAM’s
layered-based design makes it amenable to large-scale manufacturing and the periodic features
of each layer enable the application of computational homogenization models to characterize
the sound transmission loss (STL) response. Combining these models with optimization tech-
niques allows to determine realistic MLAM designs that trigger multiple resonances in broad
frequency ranges. By exploiting coupling mechanisms these resonances translate into multiple
STL peaks that produce a broadband continuous frequency range of attenuation, i.e., with-
out transmission peaks in-between. In this work, the proposed computational homogenization
model is presented and applied to the design of different MLAM configurations. The goal is
to assess the influence of the number of coupled resonating layers in the STL response of the
whole MLAM panel, in terms of increasing the attenuation intensity and the effective frequency
bandwidth. The results demonstrate the STL enhancements features obtained from exploiting
coupling mechanisms, compared to other acoustic metamaterial configurations based on local
resonance phenomena. In this context, the proposed MLAM technology exhibits a great poten-
tial to provide an efficient, easy-to-manufacture solution to the sound insulation problem at low
frequency ranges.
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1 INTRODUCTION

The study of acoustic metamaterials has surged due to their promise of exceptional proper-
ties across various applications, particularly in soundproofing within specific frequency ranges
without increasing mass [1]. These materials leverage internal resonances within their structures
to create frequency band gaps, making them efficient in sound manipulation [2]. Their capa-
bility to trigger resonances at sub-wavelength scales has driven their popularity for applications
below 1000 Hz, where traditional materials require thick or dense configurations.

Early designs combined different material components within unit cells, such as dense inclu-
sions in soft matrices, and membrane-based configurations targeted lower frequencies but with
compromised load-bearing capabilities. More recent designs focus on geometric features to
trigger internal resonances, though challenges in manufacturing scalability remain [3]. Despite
these advancements, many local resonance-based metamaterials are constrained by narrow fre-
quency ranges. Coupled resonances, as introduced by Roca and Hussein [4] and further studied
in Ref. [5], have shown potential for broadband attenuation.

Layered-based acoustic metamaterials, inspired by conventional double-leaf walls, have been
proposed to address manufacturing challenges [6]. These designs incorporate multiple resonat-
ing inclusions to create a series of attenuation peaks in the sound transmission loss (STL) re-
sponse. The main issue in such designs lies in the presence of strong dips between STL peaks,
which can be mitigated by exploiting coupled resonances. A multiresonant layered acoustic
metamaterial (MLAM) capable of a double-peak STL response exploiting the coupled reso-
nance phenomenon was proposed in Ref. [7], and enhanced with a zero-stiffness device to
trigger a third coupled peak [8].

To improve the performance and scalability of the MLAM structure, this article proposes
an extension capable of triggering multiple coupled peaks. We analyze the n-peak coupled
resonance phenomenon, its STL enhancement capabilities, and limitations. Our approach to
designing metamaterial panels based on this concept, referred to as n-MLAM, involves a three-
step strategy: (1) layer-by-layer homogenization to build a database of effective properties, (2)
integration of Neural Networks (NN) for efficient property interpolation, and (3) using a ge-
netic algorithm (GA) to optimize the resulting solution. This method, inspired by Ref. [9], ad-
dresses the computational cost and accuracy limitations of previous interpolation functions [10].
The benefits of ML in optimizing metamaterial structures have been discussed in various stud-
ies [11], highlighting its potential in expanding the design space and finding new optimal solu-
tions for sound insulation applications. The results demonstrate how the n-MLAM concept en-
hances effective attenuation bandwidth and/or level, emphasizing its potential for soundproofing
and noise reduction applications.

2 ANALYTICAL MODEL FOR MULTIPLE COUPLED RESONANCES

The analytical foundation of our study is demonstrated by the general spring-mass system
depicted in Figure 1. The model contains a collection of n distinct mass-in-mass units inter-
connected with each other through springs of stiffness Kc. Each of these units consists of an
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Figure 1: (a) General spring-mass model for the n-MLAM design used in the analytical analysis. (b) Layers
comprised in a n-MLAM panel structure. The core is composed of a collection of n resonating layers (represented
by mass-in-mass units in the equivalent spring-mass model) interconnected by connecting layers in-between. The
core is enclosed by skin and separating layers at both sides.

external mass, Mi, and an internal mass, mi, attached by a spring of stiffness ki. In turn, the
mass-in-mass chain is attached by springs of stiffness Ks to outer masses, Ms, at both ends. The
first of these is excited by an incident and a reflected acoustic wave, with amplitudes pi and pr,

pin = (pie
iκx + pre

−iκx)e−iωt, (1)

and the latter is subjected to a transmitted wave, with amplitude pt,

pout = pte
i(κx−ωt), (2)

where ω is the frequency, and κ = ω/ca is the corresponding wavenumber (ca = 340 m/s
referring to the speed of sound in air). To impose displacements compatibility, Euler’s equation
is used to relate the acceleration with the pressure gradient

ρaü = −dp

dx
, (3)

where ρa = 1.25 kg/m3 is the air’s density, and u is the displacement (ü refers to the accel-
eration). Denoting uin and uout the displacements of the outer masses, applying Eq. (3) with
Eqs. (1) and (2) in the frequency domain yields

uin =
i

ρacaω
(pie

iκx − pre
−iκx)e−iωt, (4)

uout =
i

ρacaω
pte

i(κx−ωt). (5)
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Figure 2: (a) STL curves (solid blue lines) for the reference spring-mass models of the 2-MLAM (left), 3-MLAM
(centre) and 4-MLAM (right) cases. The STL curves corresponding to the mass law for 15 kg/m2 (dash-dotted
green lines) and to the equivalent spring-mass model without resonators (dashed purple lines) are also shown, as
a reference. (b) Change in the STL dip frequencies (solid orange lines), as a function of the connecting springs’
stiffness. (c) Change in the dip frequencies as a function of the resonators’ mass fraction. Thick orange lines mark
the dip frequencies that determine the bounds of the coupling window. The horizontal dashed black lines indicate
the reference case, for which the corresponding STL is shown in (a).

For a given frequency—and imposing Eqs. (4) and (5) as boundary conditions and Eqs. (1)
and (2) as external forces—the equations of motion for the spring-mass system can be solved
in terms of the amplitude of the incident wave, allowing us to get the transmission coefficient
of the system, T = pt/pi. Then, the sound transmission loss (in decibels) can be obtained as

STL(ω) = −20 log10 |T (ω)|. (6)

To show the effects of increasing the number of resonators in the coupled resonances mech-
anisms, the STL response for cases with n = 2, 3 and 4 resonators has been studied. As a refer-
ence, a total surface mass of Mtot = 15 kg/m2 has been considered. A 20% fraction of the total
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mass has been distributed equally among the outer masses, so Ms = 0.1Mtot, and a 70% fraction
has been distributed equally among the internal resonators, so mi = Mr/n with Mr = 0.7Mtot.
The remaining 10% has been distributed equally among the external masses in the mass-in-mass
units, so Mi = (0.8Mtot − Mr)/n. A stiffness per unit of area of Ks = 1012 N/m3 has been
considered for the outer springs and Kc = 106 N/m3 for the interconnecting springs between
the mass-in-mass units. The stiffness of the interconnecting springs is much smaller to allow
effective coupling. As for the internal resonators’ stiffness, it has been adjusted to trigger res-
onances at evenly spaced frequencies in the 250–750 Hz range for each case. Notice that all
values have been normalized by a unit cross-sectional area, since the one-dimensional nature of
the system makes the STL response to be independent of it. These values have been chosen to
obtain similar STL curves—in terms of frequency range and order of magnitude of the intensity
levels—to those for the actual n-MLAM panels described in the Sections 3 and 4.

The STL responses for the 2, 3, and 4-MLAM cases are shown in Figure 2(a), along with the
mass law curve for 15 kg/m2 and the STL response of an equivalent spring-mass system without
internal resonators. All cases show significant improvements in attenuation level compared to
the mass law, with higher ∆TL as the number of resonators increases. Most enhancement is
due to the coupling mechanism, but internal resonators further improve attenuation, especially
at lower frequencies, extending the effective bandwidth.

To understand the benefits and limitations of multi-coupling resonances, two parametric
studies were performed. The first varied the stiffness of the connecting springs, Kc, from 106

to 109 N/m3. The second varied the mass fraction of resonators from 0% to 80%. Results are
shown in Figures 2(b) and 2(c). The STL dip frequencies, f (d)

i , change with these parameters,
but a coupling window can be identified by f

(d)
n and f

(d)
n+1 frequencies. Reducing spring stiffness

enlarges the coupling window, leading to higher attenuation levels. Concentrating mass in inter-
nal resonators increases STL levels and effective bandwidth. Results show that increasing the
number of resonators generally improve the STL response (both in terms of attenuation levels
achieved and effective bandwidth), but at the expense of requiring more compliant springs—
which might increase layer thickness and reduce load-bearing capabilities.

3 DESIGN STRATEGY OF n-MLAM

The n-MLAM panel comprises various layers with constant cross-sections defined by a spe-
cific pattern repeated periodically across the in-plane directions, as depicted in Figure 1(b).
The coupled resonances are achieved by the resonating and connecting layers forming the core
structure of the n-MLAM panel. The unit cell of the resonating layers includes an external
frame linked to an inner flower-like resonant element, enabling oscillation at a specified reso-
nance frequency. The connecting layers, consisting of an outer frame with thickness h, provide
structural connections and facilitate acoustic coupling. Additional separation and skin layers
are added at both ends to enclose and protect the structure. This layered configuration allows
n-MLAM panels to be fabricated using established techniques, such as lamination, die-cutting,
and final stacking and bonding. These methods are compatible with mass production, reducing
manufacturing costs.
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The n-MLAM panel design strategy is anchored in three pivotal techniques: (1) a one-
dimensional homogenization of individual layers (i.e., layer-by-layer homogenization), yielding
a 1D rod reduced model that represents the macroscopic intricacies of the acoustic insulating
material, (2) the establishment of a surrogate model based on neural networks to predict and
estimate the effective properties derived from homogenization in a continuous expression, and
(3) the optimization of layer topology within the n-MLAM panel via a Genetic Algorithm that
seamlessly integrates the prior two techniques.The approach aims to identify optimal n-MLAM
configurations that enhance sound transmission attenuation by coupling all resonators. This is
achieved through the synergy of homogenization and neural networks, enabling efficient esti-
mation of the acoustic response from geometric parameters. With this objective in mind, layer
databases are created to train deep-learning surrogate models, which are then used in the opti-
mization algorithm. The general design strategy is depicted in Figure 3.

Figure 3-a provides a detailed breakdown of the geometrical parameters. A standard polyamide
material (density ρ = 1050 kg/m3, Young’s modulus E = 1650 MPa, Poisson’s ratio ν = 0.4)
is used for the skin, separating, and resonating layers, while a rubber-like material (density
ρ = 1060 kg/m3, Young’s modulus E = 0.15 MPa, Poisson’s ratio ν = 0.47) is used for the
connecting layers.

3.1 Layer-by-layer homogenization

To accurately assess the STL response of the n-MLAM during the optimization process,
the homogenization model proposed in Sal-Anglada et al. [9] is employed. The foundation
of this model lies on a general multiscale homogenization framework that capitalizes on the
assumption of distinct scales in the material structure [12]. These scales correspond to the
macroscale, where apparent wave-propagating behavior occurs, and the microscale, where the
internal structure triggers local resonance effects. To link both scales, the following kinematic
relation is imposed at each layer j in the MLAM structure:

u(j)
µ =


u
(j)
µ

v
(j)
µ

w
(j)
µ

 =


1
0
0

 ū(j) +

x′(j) − x
′(j)
0

0
0

 ε(j) +


ũ
(j)
µ

ṽ
(j)
µ

w̃
(j)
µ

 (7)

where u
(j)
µ = (u

(j)
µ , v

(j)
µ , w

(j)
µ ) are the displacement field components in the microscale (re-

ferred to by the sub-index µ), ū(j) is an effective uniform (rigid body) translation of the layer
in the x-direction, ε(j) is a uniform stretch of the layer in the x-direction, x′(j)

0 is the middle
x-coordinate of the layer thickness, and ũµ = (ũ

(j)
µ , ṽ

(j)
µ , w̃

(j)
µ ) are the microfluctuations field

components. The microfluctuation field vanishes at the interface between layers—to guaran-
tee displacement compatibility conditions—and satisfies periodic boundary conditions in the
in-plane directions—to simulate an infinite extension of the layer’s unit cell pattern.

The reaction to the uniform displacement and stretch imposed by Eq. (7) yield effective
values of an inertial force density and a normal stress—in the thickness direction of the layer—
from which a set of macroscopic properties can be derived. In particular, effective density ρ

(j)
eff
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and elastic modulus E
(j)
eff are obtained as measures of the mass and stiffness of the layer. The

local resonance effects triggered in the resonating layers are also captured by the homogeniza-
tion model by means of the derivation of an equivalent internal mass, m̃(j), and stiffness, k̃(j),
obtained from the corresponding structural mode, associated to the resonance frequency ω̃(j).
Specific details on the derivation of these effective properties are given in Ref. [9]. As a result of
this homogenization process applied to each layer, one is capable of representing the response
of the layer to waves propagating in the normal direction through an equivalent structural rod
model—with a spring-mass system attached, in the case of the resonating layers—with the
aforementioned effective properties, as depicted in Figure 3-a. This simplified one-dimensional
model can then be used to accurately evaluate the STL response of a n-MLAM structure, re-
gardless of the number of layers involved, extremely fast.

3.2 Neural Networks

Integrating machine learning into acoustic metamaterial design significantly advances over
conventional techniques, particularly in database creation and computational costs [9]. Neural
network-based models efficiently map the design space using random sampling strategies (e.g.,
Latin Hypercube Sampling, Sobol sequence), eliminating the need for rigid grid approaches and
reducing the number of data samples required. Consequently, NN-based models handle more
design variables without increasing computational costs, enabling exploration of more complex
topologies and potentially yielding superior optimal outcomes.

A neural network-based surrogate model is created for each layer type within the n-MLAM
panel to map topological designs to effective properties in the 1D homogenized model (Figure 3-
a). A comprehensive database is built through homogenization, assessing effective properties
for various topological configurations. The surrogate models are divided into two sets: (a) skin,
separating, and connecting layers, and (b) resonating layers. For the first group, the design
relies on layer thickness h, while resonating layers are characterized by h, wa, da, and w2. The
design space is sampled using a Sobol sequence, with 40 samples for simpler layers and 7500
for resonating layers. Relevant variables range as follows: h(skin), h(separating) ∈ [0.5, 10] mm;
h(connecting) ∈ [0.5, 25] mm; h(res) ∈ [1, 10] mm; w(res)

a ∈ [1, 8] mm; d(res)
a ∈ [5, 30] mm; w(res)

2 ∈
[1, 12] mm; with other parameters set to a = 60 mm, w1 = 1 mm, wf = 1.5 mm, and wc =
1mm.

A fully connected feedforward neural network (FFNN) is proposed for each layer group to
estimate the effective properties for acoustic characterization. Two independent neural networks
model the properties of resonating layers: (a) unit cell properties (ρeff and Eeff), and (b) internal
resonator properties (k̃, m̃, and ω̃). Hyperparameters, including hidden layers and neurons,
are determined through Bayesian optimization, resulting in architectures N 5[58, 31, 30, 12, 12]
for external parameters and N 5[60, 33, 7, 30, 16] for internal parameters. Simpler layers use
a constant 4-layer architecture with 30 neurons each (i.e., N 4[30, 30, 30, 30]). Each hidden
layer uses a hyperbolic tangent sigmoid activation function, and the output layer uses a linear
activation function. The models are trained in Matlab using a Bayesian regularization algorithm,
with the database split into training (70%), testing (15%), and validation (15%) sets.
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Figure 3: (a) Schematic of the ML model for predicting the effective properties of each layer within the n-MLAM
panel, involving a comprehensive database of geometric parameters and corresponding effective properties derived
from the homogenization framework. A surrogate DNN model is trained on this dataset, with the design space
systematically mapped using a Sobol’s sequence. (b) The optimization algorithm uses a genetic algorithm to ex-
plore optimal geometrical values, represented by the parameter set Ψ, leveraging the surrogate model for efficient
STL computation, providing almost immediately the objective function J for each configuration. (c) Example
STL response for a 3-MLAM. It compares the n-MLAM with a homogeneous material solution, using the same
connecting layers for a fair comparison, and also presents the mass law as a reference. Optimization focuses on
maximizing the area A∗

∆TL (shaded in blue) inside the attenuation window (outlined by the bold black line), defined
by a target bandwidth ∆f∗ and STL improvement ∆TL.

This surrogate Deep Neural Network (DNN) model accurately estimates effective properties
with a computational cost nearly independent of the number of n-MLAM panel layers. This
cost reduction facilitates seamless integration with optimization techniques, enabling efficient
assessment of optimal n-MLAM panel designs compared to resource-intensive 3D analyses.
This reduction is crucial for the optimization strategy, as conventional parametric-based ap-
proaches would be unaffordable, narrowing the design space and limiting potential solutions.
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3.3 Optimization with Genetic Algorithm

The optimization problem aims to identify the optimal geometrical parameters for each layer
within the n-MLAM panel to maximize sound attenuation across a specified frequency range,
relative to a homogeneous material of equivalent mass. The parameter set Ψ includes layer
thicknesses (for connecting and resonating layers) and resonating layer parameters (wa, da, and
w2) (Figure 3-a). A genetic algorithm (Figure 3-b) integrates the previously discussed tech-
niques, efficiently obtaining optimized solutions by leveraging pre-trained NN-based surrogate
models and homogenization of the n-MLAM panel. Despite the increase in parameters with
more resonating layers (4n + (n − 1) design variables), the use of surrogate models and 1D
homogenization expedites STL evaluation, minimizing the impact on computational cost.

In general, the main objective is to maximize the sound attenuation window A∆TL in the
interval [fL, fU], while also optimizing the total attenuation bandwidth ∆f (Figure 3-c). The
STL increase is considered relative to an n-layered homogeneous configuration to focus on
the effects of adding resonating elements. The objective function J , based on geometrical
parameters Ψ, is:

J (Ψ) =
A∆TL(Ψ)

A∗
∆TL

+ ζ log

(
∆f(Ψ)

∆f ∗

)
(8)

where A∗
∆TL is the target attenuation area, and ∆f ∗ is the target frequency range. The pa-

rameter ζ ≥ 0 balances the influence of attenuation bandwidth. Additional constraints ensure
resonant peak coupling, impose upper bounds on thickness and surface density, address man-
ufacturability and integrity, and optimize within the surrogate model’s design space. The size
optimization is implemented in Matlab using the ga function with a population of 300, heuristic-
type crossover ratio of 1.5, and a crossover fraction of 0.6. A constrained optimization using
the fmincon function is then performed to refine the solution.

4 RESULTS

In the following, a size optimization is performed for various n-MLAM panels using the
strategy outlined in the preceding section. The analysis particularly targets optimizations for
panels featuring 2, 3, and 4 resonating layers, resulting in optimized topologies exhibiting up
to 4 coupled peaks in the STL response. The optimization scenarios, guided by the objective
function (8), involve either (1) maximizing the attenuation bandwidth for a specified target
attenuation level relative to the homogeneous insulating material (e.g., ∆TL = 20 dB), or (2)
maximizing the attenuation level within a limited attenuation bandwidth. The choice between
these criteria profoundly influences the optimal configuration, contingent on the specific target
application.

For the numerical examples, the optimization of n-MLAM panels with varying numbers of
resonating layers is undertaken while adhering to a consistent surface density of 15 kg/m2 and a
maximum panel thickness of 40 mm. Additionally, an extra numerical constraint is introduced
to ensure that the dip closer to the first resonance frequency is obtained at around 200 Hz.
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Figure 4: STL response and outcomes for different n-MLAM panel configurations under two optimization sce-
narios: (a) bandwidth maximization (see Section 4.1), and (b) attenuation level maximization (see Section 4.2).
Each column corresponds to cases with 2, 3, and 4 peaks. All solutions depicted in the figure maintain the same
surface density of 15 kg/m2. The figure depicts the optimal n-MLAM interpolated with neural networks (solid blue
lines), the STL obtained for the same configuration validated by a direct numerical simulation (black ’o’ shaped
marks), the equivalent n-layered homogeneous case (dashed purple lines), and the mass law (dash-dotted green
lines). Shaded areas highlight the optimized attenuation windows in each case.

While this constraint does not guarantee a direct comparison between n-MLAM panels with
different numbers of resonating layers, it establishes a reference STL response for panels with
the same number of resonating layers, thereby facilitating comparative analysis across different
scenarios.

The following discussion delves into the results of the topology optimizations in both sce-
narios (shown in Figure 4), comparing STL responses of the optimized n-MLAM panels with
those obtained from direct numerical simulations. These show good agreement, validating both
the homogenization model employed and the DNN-based interpolation. Furthermore, the STL
responses of the mass law for the reference surface density and that for the homogeneous acous-
tic insulating material are presented. This latter configuration exhibits a STL response with n
dips, allowing the tuning of the last dip frequency to 200 Hz.
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4.1 Maximize attenuation bandwidth

The objective in this scenario is to maximize the attenuation bandwidth ∆f in the STL
response, achieving a 20 dB improvement compared to homogeneous n-layered material within
the 250 Hz to 900 Hz range (ζ = 0.4). Results, displayed in Figure 4(a) for 2, 3, and 4
resonating layers, reveal a notable increase in attenuation levels as the number of resonating
layers increases, reaching up to 200 dB for panels with 4 layers. Transitioning from a 2-MLAM
panel to a 3-MLAM panel shows a bandwidth increase of over 100 Hz with a slight rise in
attenuation level. However, adding an additional resonating layer results primarily in enhanced
attenuation, likely due to the challenge of achieving an STL response with 4 coupled peaks
while meeting other optimization constraints. Relaxing certain constraints, such as surface
density or maximum panel thickness, may allow for further improvements.

4.2 Maximize attenuation level

In this scenario, the focus is on maximizing the attenuation level ∆TL within a specific fre-
quency range. The frequencies fL and fU are set to 550 Hz and 750 Hz, respectively, with a min-
imum bandwidth ∆f of approximately 100 Hz. The penalty factor ζ is reduced to 0.2, reducing
the weight of the second term in the objective function. Results, shown in Figure 4(b), indi-
cate an increase in attenuation level with more resonating layers. Unlike the previous scenario,
the optimization strategy consistently finds n-MLAM configurations that enhance attenuation
compared to the n-layered homogeneous material. Specifically, n-MLAM panels with 2, 3, and
4 resonating layers achieve attenuation levels of 28 dB, 34 dB, and 44 dB, respectively. This
increase is achieved while maintaining a constant surface density and a minimum bandwidth of
approximately 100 Hz, highlighting the advantage of more resonators.

5 CONCLUSIONS

This study demonstrates the benefits of enhancing sound transmission loss (STL) by coupling
multiple peaks through local resonance effects. Combining conventional acoustic metamaterial
structures with compliant mechanisms improves STL, extending attenuation bandwidth to lower
frequencies and increasing attenuation levels. However, it also requires more stringent stiffness
properties, potentially needing softer materials or increased panel thickness.

The proposed n-MLAM panel design effectively realizes multiple coupled resonances with
a layered structure suitable for large-scale manufacturing. Computational homogenization and
machine learning techniques enhance the design strategy, making the optimization process more
efficient and broadening the range of potential solutions. n-MLAM panels offer a promising ap-
proach to address challenges in existing acoustic metamaterial technologies for sound insulation
applications.
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