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Summary. Modern component design often takes place in virtual environments, which are
essential for both modeling and optimizing performance. Optimization involves solving complex
Partial Differential Equations (PDEs), and the computational cost can be prohibitive, especially
with many design variables. Gradient-based methods are preferred for their convergence effi-
ciency, and the adjoint method is commonly used to reduce gradient evaluation costs. However,
adjoint-based optimization can still be expensive. To address this, we propose a one-shot accel-
eration technique that solves PDEs and the optimization problem simultaneously in a coupled
iteration. Using a Newton method for the optimality conditions, the inverse design of a nozzle
has been performed and the solution has been achieved in just 6 Newton iterations.

1 INTRODUCTION

In recent decades, numerical simulations and Computer-Aided Design (CAD) software have
become important to design turbomachinery components. Modeling components in a virtual
environment allows for risk reduction and cost-effective testing of various designs through sim-
ulations. These simulations are usually performed by solving Partial Differential Equations
(PDEs). Computational Fluid Dynamics (CFD) offers advanced tools [1, 2] that accurately
model complex fluid phenomena, determining state variables u (e.g., velocity, density, tempera-
ture) for given design variables α.

In a virtual environment, it is possible not only to model and simulate the component but
also to optimize its performance. During the optimization, the design variables α are adjusted
to maximize or minimize an objective function J(u, α). The problem is typically formulated as
follows:

min
u,α

J(u, α) s.t. R(u, α) = 0 (1)
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where R(u, α) represents the PDE constraints. This problem can be applied to shape op-
timization, inverse design, or optimal control. For example, during the aerodynamic shape
optimization, a usual goal may be to find an airfoil shape that minimizes drag while satisfying
the Navier-Stokes equations.

Among the various optimization methods, gradient-based methods are often chosen for prob-
lems with many design parameters [3, 4]. These methods iteratively update the design based on
the sensitivity of the objective function. Using gradient information they converge quickly to a
local optimum [5]. However, computing gradients can become expensive for high-dimensional
design spaces. To reduce the computational cost of the gradient calculation, adjoint techniques
[6, 7] have been developed. They allow the calculation of the derivatives with costs nearly
independent of the number of design variables.

1.1 Adjoint-based optimization

During shape optimization, the optimal geometry is identified by adjusting the design vari-
ables to maximize or minimize a performance index. The system state u is assumed to be a
function of the design variables α, implying that each design variable configuration uniquely
determines a state that satisfies the governing equations R(u(α), α) = 0.

By forming the Lagrangian function associated with this problem, we obtain:

L(u, α, λ) = J(u, α) + λTR(u, α) (2)

Here, λ represents the Lagrange multipliers, also called adjoint variables. A Gradient-based
optimizer aims at finding the optimum of a given function. The optimum can be mathematically
formulated by the following conditions, also known as Karush-Kuhn-Tucker (KKT) conditions:

∂uL = ∂uJ(u, α) + λT∂uR(u, α) = 0

∂αL = ∂αJ(u, α) + λT∂αR(u, α) = 0

∂λL = R(u, α) = 0

(3)

The objective function J depends on u and α. Using the chain rule, the full gradient of J
with respect to α is:

dJ

dα
=

∂J

∂α
+

∂J

∂u

du

dα
(4)

The calculation of the total derivative du
dα involves solving the state equation for each design

parameter. This can become computationally expensive, especially when the number of design
variables is high. However, the gradient can also expressed using the so-called adjoint variable
λ. The residual equation R(u, α) = 0 is linearized, obtaining the term du

dα :

du

dα
= −

(
∂R

∂u

)−1 ∂R

∂α
(5)

The term du
dα is then substituted in equation 4, obtaining equation 6:

dJ

dα
=

∂J

∂α
− ∂J

∂u

(
∂R

∂u

)−1 ∂R

∂α
=

∂J

∂α
+ λT ∂R

∂α
(6)
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This requires the solution of the adjoint system of equations:

∂J

∂u
+ λT ∂R

∂u
= 0 (7)

This linear adjoint system, which depends only on the objective function J , is typically solved
once for every objective function of the problem. This makes the adjoint method efficient,
especially when the design variables outnumber the objective functions. This is normally the
case in aerodynamic shape optimization.

2 One-shot methods

Conventional adjoint-based optimization involves a sequential process: first solving the state
equations, then the adjoint equations, and finally using the adjoint solution to compute gradients
for updating design variables.

In contrast, the one-shot method solves the PDEs and optimization problem simultaneously
by iterating on the state, adjoint, and design variables in a single coupled step. With an
appropriate preconditioner, this approach converges efficiently to a stationary point [8].

Ta’asan [9, 10] introduced the one-shot method within a multi-grid structure, executing only
a few iterations of state and adjoint solvers per optimization cycle. This method has since been
adapted for aerodynamic shape optimization [11, 12].

The one-shot method can be applied to any PDE-constrained optimization problem. Walther
et al. [13, 14] extended this approach to include additional equality constraints, while Mungúıa
and Alonso [15] generalized it for both equality and inequality constraints. The method can
be used with either continuous or discrete adjoint formulations, though this work employs the
discrete adjoint [16].

Efforts to develop simultaneous optimization methods, where state and adjoint equations
are not fully converged until optimality conditions are met, are reviewed in [17]. These in-
clude the all-at-once approach [18, 19], Simultaneous Optimization Approach (SOA) [16], and
simultaneous analysis and design (SAND) [20]. SOA and SAND methods form and solve a
nonlinear set of equations approximating the KKT matrix using Newton’s method. Multi-grid
techniques [18] similarly solve large KKT systems as a whole. Biros and Ghattas [21] proposed
a PDE-constrained optimization approach using a space Newton solver with a reduced space
quasi-Newton SQP preconditioner.

2.1 Objective of the research

While adjoint techniques are highly efficient for optimization, conventional adjoint-based
methods can exhibit slow convergence. To address this, we propose a monolithic one-shot
approach to accelerate the optimization process. Existing one-shot methods often use Reduced
quasi-Newton sequential quadratic programming (SQP) to approximate the KKT system, which
can slow the convergence for large-scale problems. Our approach aims to solve the exact KKT
system using a full Newton method, leveraging Automatic Differentiation tools for the exact
calculation of the KKT matrix.

Due to its simplicity, low computational cost, and industrial relevance, we will use the quasi
1-D de Laval nozzle as a test case. The inverse design of the nozzle will be performed and the
convergence of the one-shot solver will be monitored. This test case will validate the proposed

3



Luca Zampini, Vassilis Georgopoulos, Grégory Coussement and Tom Verstraete

method and serve as a proof of concept for the more general 2D and 3D optimization.
The paper is organized as follows: Section 3 covers the numerical schemes and methods sup-

porting the one-shot approach. Section 4 details the proposed method and its implementation.
Results are discussed in Section 5, with conclusions presented in Section 6.

3 PROBLEM DESCRIPTION AND NUMERICAL APPROACH

This section describes the mathematical models and numerical methods used for the inverse
design of the nozzle. Figure 1 shows the geometry of the nozzle, as well as its parameterization.
The geometry is parametrized with a Bezier curve and controlled by the cloud of control points,
represented in red.

Figure 1: Description of the inverse design problem: optimal geometry (purple), initial geometry
(dashed), and geometry parametrization (red dots). Inlet on the left.

3.1 Governing Equations

We consider the quasi-one-dimensional Euler equations for inviscid compressible flows, which
describe the conservation of mass, momentum, and energy. In integral form for the region Ω
with boundaries ∂Ω, these are expressed as:

∂

∂t

∫
Ω
udΩ +

∫
∂Ω

F · n̂ dS =

∫
Ω
QdΩ, (8)

where n̂ is the outward unit normal vector. The vectors of conservative variables u, convective
fluxes F , and source terms Q are:

u =

 ρA
ρvxA
ρEA

 , F =

 ρvxA
(ρv2x + p)A

ρvxH

 , Q =

 0

P dA
dx
0

 . (9)

For a calorically perfect gas, the pressure P and total enthalpy H are given by:

P = (γ − 1)ρ

(
E − v2x

2

)
, H = E +

p

ρ
. (10)
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In the quasi-one-dimensional case, the Euler equations are slightly modified to account for
variations in the nozzle cross-sectional area. This introduces a source term Q in the momentum
equation related to the pressure and axial variation of the cross-sectional area A.

To avoid round-off errors due to differing magnitudes of physical quantities, the flow variables
are non-dimensionalized using the inlet total pressure P0,inlet, total temperature T0,inlet, and
nozzle length L. The equations are discretized using the method of lines [22]. Space discretization
employs a cell-centered finite volume scheme, dividing the domain into quasi-one-dimensional
cells (Figure 2).

Figure 2: Discretization of the physical domain

For each cell Ωi, the conservation law 8 is discretized into the semi-discrete form:

Vi
∂ui
∂t

+Ri(u) = 0, ∀i ∈ {1, . . . , Ncells}, (11)

where Ri(u) includes flux balances and source terms and Vi is the volume of each compu-
tational cell. The residual Ri for cell Ωi is given by summing the advective fluxes F and the
volumetric source term:

Ri = Fi+1/2Ai+1/2 + Fi−1/2Ai−1/2 −QiVi. (12)

The numerical flux function F is calculated with the Roe scheme [23], which is chosen for its
robustness. The Roe flux is given by:

Fi+1/2 =
1

2

[
(F (uR) + F (uL)) · n̂−

∣∣∣ÃRoe

∣∣∣ (uR − uL)
]
, (13)

where uR and uL are the left and right states neighboring the face and
∣∣∣ÃRoe

∣∣∣ the matrix of

the Roe state eigenvalues. Harten’s entropy correction is also [24] is used to avoid the carbuncle
phenomenon [25].

The volumetric source term Q is discretized by multiplying the local pressure P with the
area derivative dA

dx . The area derivative is calculated analytically from the Bezier function that
describes the geometry.
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3.2 Boundary Conditions

The Euler equations are discretized on a computational grid that represents only the internal
physical domain. The physical domain is represented in Figure 3.

Figure 3: Geometrical representation of the Nozzle.

For the given problem, boundary conditions at the inlet and outlet are specified using the
characteristic variables [26]. For the nozzle, the considered boundary conditions are:

• Inlet Boundary: Assumed to be connected to a stagnation chamber with zero velocity,
the flow is always assumed subsonic. Total pressure P01 and total temperature T01 are
specified at the inlet.

• Outlet Boundary: Both subsonic and supersonic outflows are considered. For subsonic
flow, only the static back pressure P2 is imposed. For supersonic flow, no requirement on
the boundary is necessary.

The ghost cells approach is used, introducing a fictitious layer of dummy cells at the bound-
aries of the physical domain, as shown in Figure 4.

Figure 4: Ghost cells layer at each boundary of the computational domain.

Boundary conditions and the flow solution within the domain define the stateVB = [ρB, uB, PB]
T

on the boundary, and the Ghost cell values are computed by linear extrapolation.

3.3 Temporal Discretization

Both explicit and implicit time integration schemes are considered for temporal discretization.
The implicit time-marching method is derived from the semi-discrete Euler equations (Equation
11) using the backward Euler method:
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(
V

∆t
+

∂R

∂u

∣∣∣∣
n

)
∆un = −R(un) (14)

The main advantage of the implicit method over the explicit one is its ability to use larger
time steps, which significantly speeds up the convergence for steady-state problems. As ∆t →
∞, Equation 14 approximates a Newton method, which convergences quadratically when the
initialization is sufficiently close to the solution and the considered residual sensitivity is exact.
The local time-stepping technique is also employed to improve the convergence rate of the
solution.

4 ONE-SHOT METHOD

The one-shot method integrates the KKT equations 3, which identify the stationary points
of the Lagrangian function L.

Conventional adjoint-based optimizers solve these equations sequentially: first converging the
state equation, then the adjoint equation, and finally updating the design variables iteratively. In
contrast, the proposed one-shot method solves these equations in a coupled, monolithic process
with a Newton method. The application of a Newton method to the KKT condition of Equation
3 leads to the system of equations of Equation 15.Luu Luα RT

u

Lαu Lαα RT
α

Ru Rα 0

 ·

∆u
∆α
∆λ

 = −

Ju + λTRu

Jα + λTRT
α

R

 (15)

The Right-Hand-Side of Equation 15 is the KKT condition of Equation 3. The subscript
indicates the differentiation operation, used here to shorten the notation. This term is the
residual of the one-shot problem and can also be referred to as the One-Shot Residual, ROS .
The set of variables u, α, and λ are also grouped in a unique vector of one-shot variables
uOS = [u, α, λ]T .

The Left-Hand-Side matrix includes the second derivatives of the Lagrangian function with
respect to the variables uOS . The appearance of these second derivatives is a natural consequence
of the Newton method. While the KKT condition is indeed a first-derivative condition, the
application of the Newton method introduces the derivatives of the objective function. As the
first derivatives are differentiated further, the second derivatives naturally appear in the Newton
matrix.

Solving this system provides the Newton step, updating the state, design, and adjoint vari-
ables all at once. In this work, we adopt a strongly coupled approach that includes all KKT
matrix terms. This full Newton method computes all second-order terms and geometry sensitiv-
ities and the key for the full differentiation required by the Newton Method is a mix of analytical
computation and Automatic Differentiation.

The calculation is divided into two separate steps, highlighted in equation 15. First, the
Right-Hand-Side vector, also known as the One-Shot Residual, is calculated analytically. Then,
the Left-Hand-Side matrix, also known as the KKT Matrix, is calculated with Automatic Dif-
ferentiation tools. In Section 4.1 and 4.2 the calculation of these two components is described
in more detail.
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4.1 One-shot Residual

The one-shot residual is the collection of the adjoint residual, the gradient residual, and the
flow residual, as reported in Equation 15. The calculation of the one-shot residual goes through
the following calculations: flow residual, adjoint residual, and gradient residual. The calculation
of the flow residual R is straightforward, as it just requires the evaluation of the residual using
the solver described in section 3.

The calculation of the adjoint residual requires the evaluation of the term ∂R
∂u . The derivation

of the Roe flux is performed analytically and tested against Automatic Differentiation tools.
The result of the derivation is the sensitivity of the 3 fluxes with respect to the primitive flow
variables (density, velocity, and pressure) of Equation 16. The flux derivatives with respect to
the primitive variables v are then transformed into derivatives with respect to the conservative
variables u (density, momentum, and energy) by means of the chain rule:

∂F

∂v
=


∂F1
∂ρ

∂F1
∂vx

∂F1
∂P

∂F2
∂ρ

∂F2
∂vx

∂F2
∂P

∂F3
∂ρ

∂F3
∂vx

∂F3
∂P

 ,
∂F

∂u
=

∂F

∂v

∂v

∂u
(16)

where F1, F2, and F3 denote the mass, momentum, and energy fluxes, respectively, and ρ vx
and P denote the density, axial velocity, and pressure.

The derivation of the source term Q in Equation 9 involves only the pressure term. The
derivation of this source term is trivial and its derivation is performed analytically as well.

Summing up all contributions from all faces and all volumes, the full derivative of the flow
residual R with respect to the conservative variables u is obtained. This includes boundary
conditions as well. Given the fact that the sensitivity of the residual ∂R

∂u is calculated exactly,
the calculation of the adjoint residual is obtained by performing the transposed product between
the Jacobian and the adjoint variable and adding to this function sensitivity ∂J

∂u according to
Equation 7.

The calculation of the gradient residual is performed analytically. This involves the prop-
agation of the sensitivities from the control points of the geometry α up until the calculation
of the flow residual R. The chain rule used for this operation is reported in Equation 17 and
each of the aforementioned steps has been performed by hand and validated against Automatic
Differentiation tools.

dR

dα
=

∂R

∂α
+

∂R

∂A

∂A

∂Bezier

∂Bezier

∂α
(17)

4.2 KKT Matrix

The differentiation of the one-shot residual is performed using the complex-step method. This
method, derived from Taylor series expansion, involves replacing real values in the source code
with complex variables [27]. The first derivative can be approximated as:

∂f

∂x
≈ Im(f(x+ ih))

h
(18)
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By adding a small complex perturbation h (e.g., 10−12) and calling the evaluation of the
one-shot residual multiple times, it is possible to construct the KKT matrix column-by-column.

The main steps are the following:

1. Introduce a complex perturbation into u, α, or λ.

2. Calculate the one-shot residual ROS using the perturbed variables.

3. Extract the complex derivatives and place the column of derivatives into the KKT matrix.

Perturbing the i-th variable in the one-shot vector uOS allows for the calculation of the
derivatives with respect to that specific variable, thereby determining the i-th column of the
KKT matrix. This perturbation and column-by-column construction process is repeated for
every variable in the vector uOS , ensuring the complete formation of the KKT matrix.

A key advantage of the full analytical calculation of the one-shot residual is that it enables the
use of automatic differentiation tools. If even one term were calculated numerically, automatic
differentiation would not be possible.

5 RESULTS

To validate the primal solver implementation some test runs were made. Inlet and outlet
areas were set equal to 0.2 while the throat area was set equal to 0.14. Then, simulations with
different pressure ratios Pr = P2/P01 were carried out.

It is known that for an under-expanded pressure ratio Pr = 0.729, sonic conditions are
expected at the throat and a shock is expected near the exit of the nozzle. Figure 5a shows the
Mach-number distribution for a Pressure Ratio Pr = 0.729 and the solver manages to capture
quite well the resulting shock that occurs inside the divergent part of the nozzle.

It is also known that for the critical pressure ratio Pr = Pc = 0.528, the shock is expected
to occur at the exit plane of the nozzle. The computational domain consists of the internal area
of the nozzle and hence the solver should not see any shock. Indeed, in Figure 5b no shock
is observed within the nozzle and the flow is supersonic at the outlet. These two observations
suggest that the implementation of the 1D solver is performed correctly.

(a) (b)

Figure 5: a Underexpanded nozzle, b Adapted nozzle
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5.1 One-shot optimizer

After validating the framework, the optimization problem is solved, and the convergence
of the solution is monitored. Figure 6 shows the comparison between the initial and target
geometries. The dashed line represents the initial geometry, while the solid line represents the
target geometry. The final geometry closely matches the target geometry and the L2 norm of the
error is below 10−12. This proves that the optimizer was indeed able to solve the optimization
problem.

Figure 6: Final configuration after 6 one-shot iterations

The convergence history of the one-shot method is illustrated in Figure 7, where the norms of
the CFD, adjoint, and design residuals are plotted against the iteration number. In this context,
a single iteration refers to solving the KKT conditions once. This should not be confused with
the iteration of the CFD or adjoint solver, as these are implicitly resolved within the one-shot
solver. The residuals converge simultaneously to zero and the convergence rate of the residuals
is quadratic. This fast convergence rate is the key advantage of the proposed one-shot method.
Remarkably, the optimization problem was resolved in just 6 coupled iterations.

Figure 7: Simultaneous convergence of Flow, Adjoint and Gradient equations
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6 CONCLUSIONS

A novel one-shot acceleration technique has been applied to the inverse design of a quasi-1D
nozzle, demonstrating remarkable effectiveness in reducing the number of iterations required to
achieve the optimal solution.

Initially, a quasi-1D implicit flow solver was developed and validated against established
solutions. Subsequently, a coupled one-shot method was formulated for the nozzle geometry.
This method leverages a full-Newton approach applied to the optimality conditions, commonly
referred to as the one-shot residual. The one-shot residual was derived analytically, enabling
its differentiation using automatic tools. The complex-step method was successfully employed
to compute the derivatives of the one-shot residual, forming the Newton matrix necessary for
the simultaneous update of the flow, adjoint variable, and geometry. During the optimization
phase, the method exhibited significant convergence advantages. The final nozzle geometry
closely matched the target configuration, indicating the method’s effectiveness in minimizing
discrepancies in the pressure distribution. The observed quadratic convergence of the residuals
further underscores the efficiency of the one-shot method, with the optimum achieved in just 6
Newton iterations.

In summary, the coupled one-shot acceleration technique presents a promising approach to
solving optimization problems in computational fluid dynamics, offering both rapid convergence
and precise solutions.
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and recent algorithmic developments”. In: Jan. 2014. isbn: 978-1-62410-256-1. doi: 10.
2514/6.2014-0080.

[2] E.M. Lee-Rausch et al. “Application of the FUN3D solver to the 4th AIAA drag prediction
workshop”. In: Journal of Aircraft 51 (July 2014), pp. 1149–1160. doi: 10.2514/1.
C032558.

[3] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. 2e. New York, NY, USA:
Springer, 2006.

[4] Jacques-Louis Lions. “Optimal Control of Systems Governed by Partial Differential Equa-
tions”. In: 1971.

[5] Ji-chao Li and Mengqi Zhang. “Data-based approach for wing shape design optimization”.
In: Aerospace Science and Technology 112 (2021).

[6] O. Pironneau. “On optimum profiles in Stokes flow”. In: Journal of Fluid Mechanics 59.1
(1973). doi: 10.1017/S002211207300145X.

[7] Antony Jameson. “Aerodynamic design via control theory”. In: Journal of Scientific Com-
puting 3.3 (Sept. 1988). issn: 1573-7691. doi: 10.1007/BF01061285.

[8] Adel Hamdi and Andreas Griewank. “Properties of an augmented Lagrangian for design
optimization”. In: Optimization Methods and Software 25 (2010).

[9] Shlomo Ta’asan. “One shot methods for optimal control of distributed parameter systems
1: Finite dimensional control”. In: 1991.

[10] Shlomo Ta’asan, G. Kuruvila, and M. Salas. “Aerodynamic design and optimization in
one shot”. In: 30th Aerospace Sciences Meeting and Exhibit. doi: 10.2514/6.1992-25.

11

https://doi.org/10.2514/6.2014-0080
https://doi.org/10.2514/6.2014-0080
https://doi.org/10.2514/1.C032558
https://doi.org/10.2514/1.C032558
https://doi.org/10.1017/S002211207300145X
https://doi.org/10.1007/BF01061285
https://doi.org/10.2514/6.1992-25


Luca Zampini, Vassilis Georgopoulos, Grégory Coussement and Tom Verstraete

[11] Nicolas R. Gauger et al. “Automated Extension of Fixed Point PDE Solvers for Optimal
Design with Bounded Retardation”. In: Constrained Optimization and Optimal Control
for Partial Differential Equations. 2012.

[12] Angelo Carnarius et al. “Optimal Control of Unsteady Flows Using a Discrete and a
Continuous Adjoint Approach”. In: System Modeling and Optimization. Ed. by Dietmar
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