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Summary. Modelling and simulating mine countermeasures (MCM) search missions performed
by autonomous vehicles equipped with a sensor capable of detecting mines at sea is a challenging
endeavour. In this work, we present a novel way to model and account for sand ripples present
on the bottom of the ocean while calculating trajectories for the autonomous vehicles by means
of a stochastic optimal control framework. It is known from the scientific literature that these
ripples impact the sea mine detection capabilities of the autonomous vehicles.

1 INTRODUCTION

Modelling and simulating mine countermeasures (MCM) search missions performed by au-
tonomous vehicles is a challenging endeavour. The goal of these simulations typically consists of
computing trajectories for the autonomous vehicles in a designated zone such that the residual
MCM risk in said zone is below a certain threshold while simultaneously ensuring that the mis-
sion time stays below a certain value. This type of problem is referred to as a Coverage Path
Planning (CPP) problem, see [1, 2, 3, 4, 5, 6, 7, 8]. From the previously cited works, two main
approaches emerge. The first one consists of decomposing the to-be surveyed zone into a grid
made from square or hexagonal cells. This grid is then used to compute a trajectory for the
autonomous vehicle such that each cell is visited at least once. The second approach consists
of computing a trajectory according to a pattern such as, a boustrophedon pattern, a zigzag
search pattern or a weaving pattern. However, a novel third approach is presented in the work
of [9]. There, the CPP problem is formulated as a stochastic optimal control problem. A major
advantage of this approach consists of its extensibility. Meaning that from an implementation
standpoint, it is straightforward for the end-user to add additional autonomous vehicles in the
to-be surveyed zone. The trajectories for the multiple vehicles are then computed simultaneously
resulting in a lower mission time.

From the work of [10], it is known that the characteristics of the ocean floor impact the
detection of mines. The presence of sand ripples, which can be viewed as sand dunes on the
ocean floor, impact the detection capabilities of the autonomous vehicles when arising in the
to-be surveyed zone. In order to be able to detect mines when sand ripples are present, the
autonomous vehicles need to traverse the ripples in a perpendicular way.

In this paper, we start from the work of [9], and implement the MCM search mission formula-
tion in a stochastic optimal control framework, see [11], such that the mission time is minimized
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while ensuring that the residual MCM risk in the to-be surveyed zone is below a certain thresh-
old. The main contribution of this work consists of the novel formulation and implementation
used to account for sand ripples when computing trajectories by means of a stochastic optimal
control framework.

The paper is structured as follows. First we present the methodology, where we introduce the
sensor model, the formulation of the stochastic optimal control problem, and our modelization of
the sand ripples in the stochastic optimal control framework. Second, we present results where
we show how the trajectories are adapted when sand ripples are present in the to-be surveyed
zone. We present results for up to two autonomous vehicles acting in the same zone.

2 METHODOLOGY

In this section, we first present the equations describing the sensor model for a Forward
Looking Sensor (FLS), i.e., a sensor which is only capable of detecting the presence of sea mines
when they are located in front of the autonomous vehicle. Hereafter, we give the equations
pertaining to the stochastic optimal control problem as set forward in [9]. Last, we present
our approach on how to account for sand ripples when using the stochastic optimal control
framework.

2.1 Sensor Model

We briefly introduce the equations pertaining to the modelisation of a FLS. A more detailed
description can be found in [9].

The sensor model is given by

γ (x (t) ,ω) := λ p (x (t) ,ω) Fα (x (t) ,ω) Fε (x (t) ,ω) , (1)

where λ stands for the Poisson scan rate in s−1.
The sensor model of Eq. (1) consists of three parts. The first part consists of p (x (t) ,ω) and

is given by

p (x (t) ,ω) := Φ

(
FOM− 20 log10 (‖ω − x (t)‖+ a ‖ω − x (t)‖)

σ

)
, (2)

where Φ (·) stands for the cumulative density function (CDF) of the normal distribution, FOM
is a parameter related to the sonar characteristics, a is the attenuation coefficient in dB/km,
and x (t) is given in Eq. (10). We give ‖ω − x (t)‖ as

‖ω − x (t)‖ :=

√
(ωx − x (t))2 +

√
(ωy − y (t))2, (3)

where ω is defined as ω := (ωx, ωy), and stands for the position of the possible target, i.e., a
sea mine. This second part, Fα (x (t) ,ω), models the detection of the sensor in front of the
autonomous vehicle according to its Field Of View (FOV), and is given as

Fα (x (t) ,ω) :=
1

1 + epα(−αFOV
2

−αb(x(t),ω))
+

1

epα(αb(x(t),ω)−αFOV
2 )
− 1, (4)
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where pα is a parameter used to adjust the slope of the sigmoidal curves, and

αb (x (t) ,ω) := arctan 2
(
dxb (x (t) ,ω) , dyb (x (t) ,ω)

)
dxb (x (t) ,ω) := (ωx − x(t)) cos(ψ(t)) + (ωy − y(t)) sin(ψ(t))

dyb (x (t) ,ω) := − (ωx − x(t)) sin(ψ(t)) + (ωy − y(t)) cos(ψ(t)).

(5)

In Eq. (4), αFOV is the Field Of View angle of the FLS in degrees. In Eq. (5), ψ(t) represents
the angle the autonomous vehicle has with respect to the horizontal axis in degrees, x(t) is the
position along the x-axis and y(t) is the position along the y-axis.

The third part, Fε (x (t) ,ω) accounts for the height h in meters above the ocean floor of the
sensor attached to the autonomous vehicle, and is given by

Fε (x (t) ,ω) :=
1

1 + epε(εDE−
εFOV

2
−εb(x(t),ω))

+
1

epε(ε
b(x(t),ω)−εDE−

εFOV
2 )
− 1, (6)

where pε is a parameter used to adjust the slope of the sigmoidal curves, and

εb (x (t) ,ω) := arctan

(
−h

‖ω − x (t)‖

)
, (7)

where εFOV and εDE respectively stand for the vertical FOV, and the downward elevation angle
such that the sensor can ensonify the sea floor. For a more thorough description we refer to [9].

2.2 Trajectories

In [9], the optimization problem was formulated such that the residual MCM risk is minimized
for a given mission time. The residual MCM risk is defined as the probability that a team of
autonomous vehicles fails to detect the mines in a search area by the end of an MCM operation.
The residual MCM risk is sometimes also referred to as the probability of non-detection.

In this work, however we formulated the optimization problem such that the mission time Tf
needed to survey a designated zone Ω is minimized for a given residual MCM risk,

minTf , (8)

subjected to

E[q (TF )] :=

∫
Ω

e−
∫ TF
0 γ(x(τ),ω) d τφ (ω) dω ≤ residual MCM risk (9)

where φ(·) is the CDF of the distribution against which we integrate. In this case we consider
φ(·) to be the CDF of the Uniform distribution. We note that in our current approach, a Monte
Carlo integration scheme is used to compute the expected value of Eq. (9).

The position of the autonomous vehicle is given by

x (t) := f(x(t), y(t), ψ(t), r(t)), (10)

3
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Figure 1: Schematic view the two-dimensional rectangular function (left) and two dimensional
rectangular function on the domain Ω = [5, 25]2 (right).

with r(t) being the turn rate in degrees per second. The position at time t, see Eq. (10), is
governed by the following differential equations,

d x(t)

d t
= V cos(ψ(t))

d y(t)

d t
= V sin(ψ(t))

dψ(t)

d t
= r(t)

d r(t)

d t
=

1

T
(Kp(t)− r(t)) ,

(11)

where V stands for the speed in m/s, K is the Nomoto gain constant with units s−1, T is the
Nomoto time constant with units s, and p(t) is the rudder deflection angle given in degrees. The
optimization software will control the values for the rudder deflection angle in order to compute
a trajectory satisfying the target function and the constraints.

2.3 Modeling of Ripples

The presence of sand ripples in the domain is taken into account by multiplying the gamma
function, γ (x (τ) ,ω) of Eq. (9), with a set of functions dividing the rectangular domain Ω into
a zone containing ripples and one not containing ripples,

γ (x (t) ,ω)new = γ (x (t) ,ω) Dom (ωx, ωy, ψ(t)) . (12)

The domain function, Dom (x, y, θ), is a combination of the soft rectangular function taken
from [12], see Fig. 1, and the ripple function see Fig. 2. The ripple function presented here,
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Figure 2: The ripple function for ripples at 135o.

models the sand ripples under an angle of 135o. We have chosen that the soft rectangular
function divides the square domain Ω into two triangular zones; one zone where we model sand
ripples and one where we do not model sand ripples. This rectangular function is given as

Rec (x, y) := [(
tanh (30 (x− 5))− tanh (30 (x− 25))

2

) (
tanh (30 (y − x))− tanh (30 (y − 25))

2

)]
+[(

tanh (30 (x− 5))− tanh (30 (x− 25))

2

) (
tanh (30 (y − 25))− tanh (30 (y − x))

2

)]
.

(13)

The ripple function is given as

Ripple (θ) :=
2∑

k=−1

exp

−
(
θ−π/4+πk

0.1

)2

2

 . (14)

The Dom (x, y, θ) function is given as

Dom (x, y, θ) := [
Ripple (θ)

(
tanh (30 (x− 5))− tanh (30 (x− 25))

2

)
(

tanh (30 (y − x))− tanh (30 (y − 25))

2

)]
+[(

tanh (30 (x− 5))− tanh (30 (x− 25))

2

)
(

tanh (30 (y − 25))− tanh (30 (y − x))

2

)]
.

(15)

The approach as described here will force the optimization software to select trajectories that
are perpendicular to the position of the sand ripples. This is because a contribution to the
expected value defined in Eq. (9) will only be made when the autonomous vehicle is travelling
in a perpendicular way to the sand ripples.
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Figure 3: Delimitation of the ripple zone. Sand ripples are present in the upper-left triangle at
135o and depicted by the red dotted line.

3 RESULTS

In this section we present the results when considering one and two autonomous vehicles in
a square domain Ω = [5, 25]2 where sand ripples are present in the upper-left triangle at 135o,
see Fig. 3. We consider three different cases. The first case consists of computing the trajectory
when no ripples are present in the zone. In the second case, we do not recompute the trajectory,
i.e., we use the same trajectory as in case 1, but take into account the presence of sand ripples.
This second case mainly serves to illustrate the impact on the residual MCM risk when not
taking into account the presence of sand ripples when these are present. The third case shows
an updated trajectory which accounts for the presence of the ripples. A brief description of the
cases is also given in Tab. 2. For Case 1 and case 3, we requested a residual MCM risk of 10 %.
All simulations have been performed on a 16 core Intel i7-12850HX processor with 32GB RAM.
The different parameters for our simulations are shown in Tab. 1.

Parameter name Value

αFOV 120.0o

h 20.0m
σ 9.0 [/]
λ 20.0 s−1

a 5.2 dB/km
εFOV 5.0o

εDE −6.0o

FOM 72.0 [/]
pα 25.0 [/]
pε 400.0 [/]
V 2.5m/s
T 0.5 s
K 5.0 s−1

Table 1: Parameters for the simulations.

6



P. Blondeel, F. Van Utterbeeck and B. Lauwens

Case number Description

1 Computation of trajectory with no ripples present
2 Identical trajectory as case 1 but with ripples present
3 Computation of an updated trajectory accounting for the presence of ripples

Table 2: Description of the different cases.

Case Residual MCM risk Mission time Computation time

1 10.00 % 2088.00 seconds 20.67 seconds
2 55.75 % 2088.00 seconds /
3 10.00 % 2778.85 seconds 93.18 seconds

Table 3: Results when considering one autonomous vehicle.

3.1 One Autonomous Vehicle

We present the results for the different cases when considering only one autonomous vehicle,
in Tab. 3 and Fig. 4. In Fig. 4, the red color represents the zone that has been surveyed by the
sensor, while the blue zone has not been surveyed. The detection probability of a mine by the
sensor in the red zone is 1.0 or 100 % and 0 % in the blue zone. The black line represents the
trajectory of the autonomous vehicle. The coordinates of the starting point for the autonomous
vehicle for all the cases is (14.5, 15.0). For case 1, the residual MCM risk is 10.00 %. The
mission time necessary to achieve this percentage is 2088.00 seconds. For case 2, the residual
MCM risk is 55.75 %, i.e., an increase in risk of 45.75 % point. This result shows the impact on
the residual MCM risk when not taking the ripples into account when these are present. For case
3, the residual MCM risk is again 10.00 % but with a longer mission time, i.e., 2778.85 seconds
instead of 2088.00 seconds when compared to case 1. Accounting for sand ripples thus increases
the mission duration time. The total computation time needed to calculate the trajectory also
increases when accounting for sand ripples, from 20.67 seconds to 93.18 seconds.

3.2 Two Autonomous Vehicles

We now present the results for the different cases when considering two autonomous vehicles,
in Tab. 4 and Fig. 5. In Fig. 5, the red color represents the zone that has been surveyed by the
combined sensors, while the blue zone has not been surveyed. The detection probability of a
mine by the combined sensors in the red zone is 1.0 or 100 % and 0 % in the blue zone. The
black lines represent the trajectories of the autonomous vehicles. The conclusions are similar to
the ones made when considering only one autonomous vehicle. For case 1, the residual MCM
risk is 10.00 %. The mission time necessary to achieve this percentage is 1303.88 seconds. For
case 2, the residual MCM risk is 57.18 %, i.e., an increase in risk of 47.18 % point. For case
3, the residual MCM risk is again 10.00 % but with a longer mission time, i.e., 1548.00 seconds
instead of 1303.88 seconds when compared to case 1. The mission duration time again increases
when considering sand ripples. The total computation time also increases, from 64.22 seconds
for case 1 to 118.25 seconds for case 3.

7
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———Case 1———

Residual MCM risk: 10.00%

———Case 2———

Residual MCM risk: 55.75%

———Case 3———

Residual MCM risk: 10.00%

Figure 4: Trajectories and residual MCM risks, see Tab. 3, for the results of the different cases
as defined in Tab. 2. The red color represents the zone that has been surveyed by the sensor,
while the blue zone has not been surveyed. The detection probability of a mine by the sensor in
the red zone is 1.0 or 100 % and 0 % in the blue zone. The black line represents the trajectory
of the autonomous vehicle.
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———Case 1———

Residual MCM risk: 10.00%

———Case 2———

Residual MCM risk: 57.18%

———Case 3———

Residual MCM risk: 10.00%

Figure 5: Trajectories and residual MCM risks, see Tab. 4, for the results of the different cases
as defined in Tab. 2. The red color represents the zone that has been surveyed by the combined
sensors, while the blue zone has not been surveyed. The detection probability of a mine by
the combined sensors in the red zone is 1.0 or 100 % and 0 % in the blue zone. The black lines
represent the trajectories of the autonomous vehicles.

9
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Case Residual MCM risk Mission time Computation time

1 10.00 % 1303.88 sec 64.22 sec
2 57.18 % 1303.88 sec /
3 10.00 % 1548.00 sec 118.25 sec

Table 4: Results when considering two autonomous vehicles.

4 CONCLUSION

In this work we presented a novel way to account for sand ripples when computing trajectories
for autonomous vehicles by means of a stochastic optimal control approach for mine counter-
measure operations in a two-dimensional space. In order to model the presence of sand ripples in
a given domain, we constructed a function based on the two-dimensional rectangular function,
which we multiplied with the function describing the sensor model. This approach forces the
optimization software to compute trajectories for autonomous vehicles that are perpendicular
to the sand ripples in the zone where ripples are present. We implemented this for up to two
autonomous vehicles in a two dimensional domain Ω = [5, 25]2, and presented results showing
the trajectories for a residual MCM risk of 10 % when considering sand ripples in the domain.
We found that the mission time and computational time are larger when simulating the presence
of sand ripples. Future work will focus on investigating how to compute trajectories in a non-
square domain. Additionally, we plan to investigate if a quasi-Monte Carlo integration scheme
for computing the expected value of the residual MCM risk integral can yield a speed-up.
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