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Summary. This paper presents a deep reinforcement learning (DRL) framework for active flow
control (AFC) to reduce drag in aerodynamic bodies. Tested on a 3D cylinder at Re = 100,
the DRL approach achieved a 9.32% drag reduction and a 78.4% decrease in lift oscillations by
learning advanced actuation strategies. The methodology integrates a CFD solver with a DRL
model using an in-memory database for efficient communication between the two instances,
making it scalable to more complex flows and higher Reynolds numbers.

1 INTRODUCTION

In light of the current climate crisis, the transportation industry faces significant challenges
in reducing fossil fuel emissions to mitigate the adverse effects of climate change. In particular,
the aviation sector already accounts for about 3% of the global CO2 emissions [1]. Reducing
these emissions may be possible by exploring innovative methods to decrease drag. In this
regard, active flow control (AFC) has demonstrated promising results in controlling the flow
around wings [2, 3]. However, conventional AFC methods that rely on fixed actuation laws
are inherently limited as they can only target specific frequencies within the full spectrum
of turbulence scales, leading to a maximum level of drag reduction. Moreover, their fixed-
loop nature prevents them from adjusting to instantaneous flow conditions, restricting their
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applications to dynamical systems that are not continuously evolving. Tunning the actuation
parameters can also be challenging and may require extensive trial-and-error, especially in highly
turbulent flows.

The emergence of machine learning (ML), coupled with advances in computational power,
has revolutionized the state of the art in scientific computing. In the context of AFC, the
use of deep reinforcement learning (DRL) appears particularly well-suited for discovering more
complex actuation strategies and has already shown its potential in the field of flow control
[4]. As far as the author is concerned, the first successful application of DRL to AFC was the
work by Rabault et al. [5], who considered a two-dimensional cylinder at a Reynolds number
of Re = 100 [5], achieving a drag reduction of approximately 8%. The Reynolds number is
defined using the fluid density ρ, the inflow velocity U∞, the cylinder diameter D and the
fluid dynamic viscosity µ as Re = ρU∞D/µ. Based on their previous results, Rabault and
Kuhnle [6] extended their study by implementing a multi-environment approach to explore the
capabilities of parallelization in DRL and hence accelerate the training, making the application
of DRL affordable for more sophisticated fluid mechanics problems. Building on this data
collection parallelization approach, subsequent studies extended the Reynolds number towards
higher values. This is the case of Tang et al. [7], who investigated the regimes of Re = 100,
200, 300, and 400 with drag reductions of 5.7%, 21.6%, 32.7%, and 38.7%, respectively; and
also Varela et al. [8], who extended the Reynolds number up to Re = 2, 000 and achieved a
reduction of 17.7%. The latter authors further applied their DRL set-up to control the wake
of a three-dimensional cylinder for the first time, targeting Re = 100, 200, 300 and 400, and
reducing the drag up to 8.0%, 17.2%, 15.3% and 15.1%, respectively [9]. Other research efforts
also combined DRL and AFC to reduce skin friction in wall-bounded flows at Reτ = 180 [10]
or to control the two-dimensional Rayleigh–Bénard convection [12]. However, all these studies
were confined to canonical problems at low Reynolds numbers, indicating that this methodology
is still in its early stages of development.

ML libraries are generally implemented in high-level programming languages, such as Python,
while high-performance physics solvers typically rely on low-level languages like C++ or For-
tran. This gives rise to the ”two-language” problem, where efficiently linking ML models with
physical simulations becomes a challenge. In DRL applications for fluid dynamics, which require
solving a huge amount of degrees of freedom, the most time-consuming part is the collection of
experience data. Therefore, using a fast solver that leverages GPU accelerators, now present
in modern HPC clusters, is essential for tackling complex fluid environments, such as those
involving intricate geometries or high Reynolds numbers. This study presents an AFC-DRL
framework that effectively addresses the ”two-language” problem with minimal overhead and
employs a GPU-enabled code for computational fluid dynamics (CFD) simulations. This ap-
proach ensures rapid trajectory collection for DRL training, making the framework feasible for
addressing more complex problems. This framework was first implemented and tested to mit-
igate the separation bubble in a boundary layer at Reτ = 180 [11]. In the present work, we
replicate the case conducted by Suárez et al. [9], extending the validation of the framework
to a three-dimensional cylinder at Re = 100 and evaluating its capabilities in controlling flows
around bluff bodies. This represents a significant step towards applying DRL to more realistic
industrial scenarios.
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Figure 1: DRL-CFD setup

2 METHODOLOGY

2.1 DRL set-up

In DRL, two main entities can be identified: (i) The environment and (ii) the agent. In the
current framework, the environment is the CFD simulation that predicts how the flow evolves
with a given actuation and the agent is a neuronal network (NN) that predicts the probability
distribution of possible action given the state of the environment.

For the environment, the CFD solver called SOD2D [13] is employed. This is a Spectral
Element Method (SEM) and GPU-enabled code developed at the Barcelona Supercomputing
Center (BSC). The incompressible Navier-Stokes equations are solved, as shown in Eq. 1 and 2.

∇ · u = 0 (1)

∂u

∂t
+ (u · ∇)u− ν∇2u+∇p = 0 (2)

On the other hand, the agent is built using the Python library TF-Agents [14]. To solve the so-
called ”two-language” problem, a Redis in-memory database is used, which is managed through
the library SmartSim [15], allowing the communication between the CFD model (Fortran) and
the DRL agent (Python) with minimal overhead. This workflow was initially proposed in the
Relexi project [16, 17], and adapted to link with the SOD2D CFD solver in [11]. The framework
is schematized in Figure 1.

The whole idea of the DRL is that the agent receives the state, e.g., some probes located
in the domain, and this returns an action that will be applied back into the environment, e.g.,
the mass flow rate of the jet. However, to correctly decide the best actuation, the DRL agent
needs to be previously trained. To do so, during the training, the agent also receives a reward,
representing the magnitude that aims to be optimized. Then, the environment and the agent
engage in a trial-and-error process structured as episodes. An episode, in this context, denotes a
simulation period wherein the CFD solver and the DRL agent exchange information, including
states, actions, and rewards. Following the completion of an episode, this data is used to refine
the agent through a training step. The proximal policy optimization (PPO) algorithm [18] is
used in this case.

3
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Figure 2: Case configuration

2.2 Case Configuration

The flow past a cylinder at Re = 100 is simulated using SOD2D. The three-dimensional
domain extends Lx = 30, Ly = 15D and Lz = 4D in the streamwise, crosswise and spanwise
directions, respectively. The cylinder is located approximately in the middle of the domain,
i.e., at (x, y) = (7.5D, 7.5D), and is infinitely long along the spanwise direction. Hence, periodic
boundary conditions are applied in this direction. At the inlet, a constant freestream velocity U∞
is imposed. The slip condition is enforced at the top and bottom surfaces, while zero-gradient
conditions with constant pressure are applied at the outlet.

On the cylinder walls, the no-slip condition is applied. When AFC is activated, two sets
of njet = 10 actuators are distributed along the spanwise direction of the cylinder. Each set
contains two jets, one on the top surface of the cylinder (θtop = 90◦) and the other on the bottom
surface (θbot = 270◦). The two actuators are forced to have the opposite mass flow rate, i.e.
Qtop = −Qbot, so that the mass is conserved instantaneously. In the xy-plane, the actuators
have a width of ω = 10◦, while in the spanwise direction they extend a width of Ljet = 0.4D.

Each set of two actuators represents a pseudo-environment. This is schematized in Figure 2.
Thus, the whole domain is divided into ten pseudo-environments with a width of Ljet. Moreover,
four different CFD simulations are run in parallel. This allows the DRL agent to collect several
experiences in parallel, as was previously done in Varela et al. [8], speeding up the training.
In total, 40 trajectories (10 pseudo-environments x 4 CFD simulations) are collected after each
action (batch size). The training is selected to last 50 episodes. The duration of an episode
Tepisode includes six vortex sheddings and in each episode, a total of 120 actions are applied, i.e.,
Taction = Tepisode/120. For the state, each pseudo-environment contains in its z-middle location
a slice of 85 witness points distributed around the cylinder walls. The approximate locations of
these witness points are illustrated in Figure 1. However, the size of the NN input layer is 85
x 3 = 255, as it takes also into account the state of the two neighbouring pseudo-environments.
The NN consists of two hidden layers, each containing 512 neurons.

As the output, the DRL agent is responsible for predicting the optimal mass flow rate Q
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to maximize the reward. This is then used to compute the velocity profile that is applied
as the boundary condition along the jet surfaces, as described in Eq. 3; with the velocity
perpendicular to the cylinder wall. The minimum and maximum allowable mass flow rates are
set to Qmin,max = [−0.176, 0.176].

[ujet, vjet, wjet] = Q
π

ρDω
cos(

π

ω
(θ − θ0))[cosθ, sinθ, 0] (3)

The reward to train the model is described in Eq. 4; the first part rewarding the reduction
of the drag coefficient Cd = d/(1/2ρU2

∞S) with respect to the baseline scenario Cd,b, and the
second penalizing the increase of the lift Cl = l/(1/2ρU2

∞S), with α being a weighting factor
to adjust the importance of each term. In this case, the reference surface S is defined in terms
of the cylinder diameter D and the spanwise length of the jet (or pseudo-environment) Ljet

as S = LjetD, and the drag d and lift l forces correspond to the resulting components of the
aerodynamic force in the streamwise and cross-stream directions relative to the freestream U∞.
Finally, the reward applied to the model is computed accounting for the rewards obtained in
the other pseudo-environments as shown in Eq. 5, with β being a weighting factor to adjust the
importance of the local reward ri versus the mean rewards of all pseudo-environments

∑njets

j=1 rj .
The weighting factors in Eq. 4 and Eq. 5 are set to α = 0.3 and β = 0.8, respectively.

ri = (Cd,b − Cd)− α|Cl| (4)

Ri = βri + (1− β)/njets

njets∑
j=1

rj (5)

Note that, to validate the results and compare with previous studies, the set-up presented
here mainly mimics the configuration used by Suárez et al. [9].

3 RESULTS AND DISCUSSION

3.1 Training mode

Figure 3: Evolution of the averaged reward ri across the 40 pseudo-environments during the
training
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During the training, the DRL agent adjusts the weights and biases of the NN to maximize the
reward described in Eq. 4 and Eq. 5. Thus, as can be observed from these equations, the DRL
control aims at reducing the drag coefficient and also reducing the lift oscillations. The curves
showing how the reward evolves along the different training episodes are depicted in Figure 3,
where the contribution of the lift and drag terms are plotted separately as well. This figure
shows the mean reward ri described in Eq. 4 among the forty pseudo-environments. It can
be observed that the agent successfully learns a strategy that reduces the drag coefficient and
also the oscillations of the lift coefficient. At the beginning of the training, a considerable drag
reduction is achieved. As the episodes continue, the lift contribution to the reward progressively
increases, while the drag contribution slightly decreases. Overall, the total reward increases. To
adjust which is the final objective of the training, e.g., only minimize the drag, the α factor
in Eq. 4 could be tuned. To evaluate the learnt actuation law, the model has to be run in
deterministic mode and hence apply the learnt policy without any further exploration.

3.2 Deterministic mode

(a) (b)

Figure 4: Lift Cl (a) and drag Cd (b) coefficients before and after the DRL control is applied

Once the DRL agent is run in deterministic mode, the obtained lift and drag coefficients
are shown in Figure 4. Note that the actuation is activated at tU∞/D = 50, which allows to
compare the baseline case (tU∞/D < 50) against the DRL control (tU∞/D > 50). After the
actuation is applied, the drag coefficient starts to decrease considerably, as well as the amplitude
of the lift coefficient. The simulation is run until the control converges into a periodic behaviour.
In Table 1, the mean lift and drag coefficients, with the pressure and viscous contributions, are
reported. This table also shows the Strouhal number StCl

and the standard deviation σCl
of the

lift coefficient signal. The results indicate that the DRL control achieves a 9.32% reduction in
the drag coefficient and a 78.4% decrease in the standard deviation of the lift coefficient. This
drag reduction is in close agreement with the 9.4% reduction reported by Suárez et al. [9]. It is
important to note that all statistics reported here are computed after the control has reached a
statistically steady state.

The applied actuation by the DRL agent can be visualized in Figure 5. After the initial
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Table 1: Lift and drag coefficients statistics

Cl σCl
StCl

Cd Cd,press. Cd,visc.

Baseline 0.012 0.250 0.170 1.409 1.051 0.358
DRL control 0.029 0.054 0.161 1.278 0.946 0.331

transient, the DRL actuation converges to a periodic signal with a frequency of St = 0.161.
This is approximately the 95% of the baseline vortex-shedding frequency, delaying the vortex-
shedding of the controlled scenario (see StCl

in Table 1). The minimum and maximum actions
applied by the DRL agent are Q ∈ [−0.01, 0.01]. Nevertheless, the predicted action is not
a perfect sinusoidal signal and, at the beginning of each period, a little hump is detected.
This is also manifested in the spectral domain, where a second harmonic at St = 0.320 is
obtained. Compared to a classical periodic control, where a simple sinusoidal actuation would
be considered, in this case the agent has learned a double-lobed signal, hence demonstrating
that DRL can help to learn more complex control actions that allow to push the limits of drag
reduction using AFC. It is worth pointing out that, despite being a three-dimensional domain,
the wake of the cylinder at this low Re is essentially two-dimensional. Thus, the applied Q in
all the pseudo-domains is exactly the same, as well as the obtained Cl and Cd.

Figure 5: Applied mass flow rate Q

As observed in Figure 6, the DRL control increases the streamwise length of the wake recir-
culation bubble, reducing the intensity of the shear layers developed on the cylinder top and
bottom surfaces and hence reducing the vortex-shedding frequencies. As depicted in Figure 7,
this increases the pressure coefficient Cp on the rear part of the cylinder (θ > 50◦), finally leading
to the drag and lift reductions described before.

4 CONCLUSIONS

This study extends the application of the DRL framework initially implemented in Font et
al. [11], where an in-memory database enables the linking of the CFD solver SOD2D with
a Python-based DRL model with minimal overhead. In this work, we apply a DRL control
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(a)

(b)

Figure 6: Velocity streamlines of the baseline (a) and controlled (b) cases

Figure 7: Pressure coefficient Cp along the cylinder wall

strategy to the flow around a three-dimensional cylinder at Re = 100, following the set-up by
Suárez et al. [9]. This previous work serves as a benchmark to validate the current framework.

According to the results, the methodology demonstrates its capability to control the flow
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around a bluff body. The cylinder drag is reduced by approximately 9.32% and the lift oscilla-
tions by 78.4%. This is consistent with the drag reduction reported by Suárez et al. [9]. This
improvement is accomplished by controlling the intensity of the shear layers formed around the
cylinder top and bottom regions, thereby delaying the onset of instabilities.

Despite the relative simplicity of this case, the results highlight the potential of DRL to find
more advanced actuation strategies compared to traditional periodic controls. Additionally,
integrating the DRL model with the GPU-accelerated SOD2D CFD code allows for the rapid
collection of a larger volume of experiences, making the framework scalable and feasible for more
challenging cases involving higher Reynolds numbers and/or complex geometries.

REFERENCES

[1] Liu, Z., Deng, Z., Davis, S. and Ciais, P. ”Monitoring global carbon emissions in 2022”.
Nat. Rev. Earth Environ. (2023) 4:205–206. https://doi.org/10.1038/s43017-023-00406-z

[2] Rodriguez, I., Lehmkuhl, O. and Borrell, R. ”Effects of the actuation on the boundary layer
of an airfoil at Reynolds number Re = 60,000”. Flow Turbul. Combust. (2020) 105:607–626.
https://doi.org/10.1007/s10494-020-00160-y

[3] Atzori, M., Vinuesa, R., Stroh, A., Gatti, D., Frohnapfel, B. and Schlatter, P. ”Uniform
blowing and suction applied to nonuniform adverse-pressure-gradient wing boundary lay-
ers”. Phys. Rev. Fluids (2021) 6:113904. https://doi.org/10.1103/PhysRevFluids.6.113904

[4] Garnier, P., Viquerat, J., Rabault, J., Larcher, A., Kuhnle, A. and Hachem, E. ”A review
on deep reinforcement learning for fluid mechanics”. Comput. Fluids (2021) 225:104973.
https://doi.org/10.1016/j.compfluid.2021.104973
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