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ABSTRACT  

Subsurface stratigraphy is an indispensable component of geotechnical site characterization and primarily deals with the 

interpretation of geological interfaces from site-specific measurements, such as boreholes. Traditional geological profiling 

methods often rely on engineering judgement for manual drawing or entirely depend on parametric models for 

interpolation. Both approaches face challenges when dealing with limited geo-data. To effectively address the dilemma, 

a new machine learning paradigm is proposed in this study to combine valuable prior geological knowledge and sparse 

site-specific measurements for data-driven predictions of both two-dimensional geological cross-sections and three-

dimensional geological domains. The valuable prior knowledge is quantitatively represented as training images, which 

are compiled and stored in a training image database that is further enriched and augmented by employing deep generative 

models. Subsequently, the optimal training images that are compatible with the available site-specific data are adaptively 

selected for onward stochastic predictions under the framework of non-parametric Bayesian analysis. The method has 

been successfully applied to tackle geological profiling challenges in Hong Kong. The proposed framework is 

demonstrated to be capable of not only predicting the most probable geological patterns but also effectively quantifying 

associated stratigraphic uncertainty. The framework holds great potential of revolutionizing current engineering practices.  
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1. Introduction 

Interpreting subsurface stratigraphy from sparse site-

specific data (e.g., borehole logs) is a must for every 

geotechnical project, and it is also a basic task of 

geotechnical site characterization. Over the past several 

years, the determination and modelling of spatially 

varying geotechnical properties (e.g., Young’s modulus, 

undrained shear strength) have been studied extensively. 

There has been much less attention paid to automatic 

modelling and development of subsurface two-

dimensional (2D) geological cross-sections as well as 

three-dimensional (3D) geological domains from site-

specific data. In engineering practice, hand digitalization 

using linear interpolation techniques to connect the same 

stratigraphic interfaces between adjacent boreholes is 

still the prevalent strategy for subsurface stratigraphy. 

This simplified practice is effective to deal with simple 

geology and may encounter difficulty for challenging 

grounds, such as interbedded soil layers, and inclined-

fold strata. It is also widely acknowledged that the 

delineation and interpretation of complex geological 

structures from limited site-specific data can be 

effectively supplemented by engineering judgement of 

experienced geologists. However, the valuable prior 

geological knowledge has not been quantitatively 

leveraged to predict subsurface stratigraphy due to a lack 

of effective methods to integrate site-specific 

measurements with prior knowledge for data-driven 

predictions of subsurface stratigraphic distributions. It is 

imperative to have an effective tool to explicitly 

incorporate prior geological knowledge for stratigraphic 

modelling and quantification of associated stratigraphic 

uncertainty.   

Although there are several advanced stochastic 

simulation tools dedicated to developing subsurface 

stratigraphy, these methods mainly apply to simple 

stratigraphic patterns, e.g., depositional strata. For 

example, kriging (e.g., Nobre and Sykes 1992), Markov 

random field (MRF) (e.g., Gong et al. 2020, Yan et al. 

2023), and coupled Markov random chains (CMC) (e.g., 

Deng et al. 2020, Elfeki 2005, Li et al. 2019, Qi et al. 

2016) have been developed for stratigraphic modelling. 

These models are parametric and require the explicit 

specification of parametric functions or calibration of 

site-specific parameters. For example, MRF methods 

often require the prior determination of initial 

configuration, and CMC approaches need stationary 

transition probabilities for sequential modelling of 

soil/rock types.  

The recent rapid development in computer vision-

based techniques provides new windows to address the 

classical stratigraphic challenge. There has been a surge 

in the application of machine learning algorithms to 

predict spatial distributions of stratigraphic boundaries. 

For example, deep learning techniques, such as 

generative adversarial networks (GANs) and 

Convolutional Neural Networks (CNN), have gained 

popularity in geological modelling (Mosser et al. 2017, 

Laloy et al. 2018, Zhang et al. 2021, Tang et al. 2021, 

Chen et al. 2023, Wang et al. 2024, Lyu et al. 2024). 



 

 

 

However, the performance of deep learning algorithms 

normally requires a large amount of training images with 

abundant site-specific measurements, which are often 

unavailable in geotechnical site characterization.  

To explicitly solve the abovementioned challenges, 

Shi and Wang (2021a, 2021b) proposed to represent 

valuable prior geological information at the site of 

interest in a single training image and then developed a 

single image-based machine learning algorithm for 

conditional predictions of subsurface stratigraphy based 

on limited site-specific measurements. The proposed 

paradigm effectively leverages prior geological 

knowledge and overcomes the sparse data challenge, 

representing a physics-informed approach for 

stratigraphic modelling. This study comprehensively 

reviews the key components of the developed machine 

learning paradigm for subsurface stratigraphy, including 

theory formulation, compilation of a domain-specific 

training image database, 2D and 3D geological modelling, 

as well as the typical applications to real engineering 

projects. It is worth mentioning that the proposed 

paradigm can not only accurately estimate the most 

probable subsurface geological model but also renders 

the explicit quantification of associated stratigraphic 

uncertainty in a data-driven manner.  

 

2. Machine learning of subsurface 
stratigraphy 

Fig. 1 shows the framework of the proposed machine 

learning paradigm for data-driven predictions of 

subsurface stratigraphy. The framework essentially 

aligns with the essence of nonparametric Bayesian 

analysis, which combines the flexibility of machine 

learning with uncertainty quantification for inference of 

subsurface geological cross-sections. One key recipe for 

the proposed approach is training images, which 

represent prior geological knowledge at the site of 

interest. Qualified training images can either be borrowed 

from nearby sites with similar geological settings or 

synthesized using generative models. Once qualified 

training images are collected, stochastic simulations of 

2D and 3D subsurface stratigraphy can be carried out 

conditioning on sparse site-specific data and training 

images selected from the compiled training image 

database. If multiple qualified training images are 

available, diverse stratigraphic patterns may be extracted 

from multiple training images for ensemble learning of 

subsurface stratigraphy. The framework not only allows 

the estimation of the most probable prediction, but also 

facilitates the quantification of associated stratigraphic 

uncertainty. More specifically, the proposed machine 

learning paradigm explicitly solves the data sparsity 

challenge associated with the application of conventional 

machine learning to geotechnical site characterization. 

On one hand, the proposed image-based machine 

learning methods for 2D and 3D stratigraphic modelling 

require a minimum of one training image for training. On 

the other hand, an iterative and sequential modelling 

approach is implemented, which effectively overcomes 

the challenge associated with limited site-specific data. 

Key components of the proposed machine learning 

paradigm are discussed in detail in the following sections. 

 

  
Figure 1. Framework of the machine learning paradigm  

2.1. Non-parametric Bayesian analysis 

Mathematically speaking, the development of 

subsurface geological cross-sections, X, from sparse data, 

M, and training images, TIs, can be formulated as a 

Bayesian prediction problem, aiming to maximize the 

posterior probability 𝑃(𝑋| 𝑀): 

𝑃(𝑋| 𝑀) = ∑ 𝑃(𝑋| 𝑇𝐼(𝑖), 𝑀) ∙ 𝑃(𝑇𝐼(𝑖)|𝑀)
𝑛𝑠
𝑖=1  (1) 

where 𝑃(𝑋| 𝑇𝐼(𝑖), 𝑀) is the likelihood term representing 

the probability of observing X for a given set of site-

specific data and a single training image 𝑇𝐼(𝑖) , which 

represents the i-th image sample drawn from a compiled 

training image database; 𝑃(𝑇𝐼(𝑖)|𝑀) is the conditional 

probability reflecting the compatibility of the selected 

training image sample with site-specific data; 𝑛𝑠 denotes 

the total number of training images available for a 

particular site. In practice, the likelihood term can be 

estimated using image-based stochastic simulation 

methods, such as multiple point statistics (MPS) and 

Iterative Convolutional eXtreme Gradient Boost (IC-

XGBoost) algorithm (Shi and Wang 2021b). In addition, 

a training image with high occurrence probability 

𝑃(𝑇𝐼(𝑖)|𝑀) should be selected for forward development 

of geological cross-sections. Ideally, a qualified TI 

should be sampled from the underlying data generating 

process 𝑝𝑑𝑎𝑡𝑎 . Unfortunately, the direct approximation of 

𝑝𝑑𝑎𝑡𝑎  is often prohibitive. However, it is possible to 

collect multiple qualified training image samples for 

ensemble learning of subsurface stratigraphy. Eq. (1) 

essentially represents a bagged estimate of the posterior 

probability 𝑃(𝑋| 𝑀)  by combining outputs of multiple 

stratigraphic modelling models, and model average has 

been found to be an effective strategy to minimize 

prediction errors and improve model generalization 

performance (Hastie et al. 2009). 

2.2. Domain-specific Training image database 

The significance of training images has been 

emphasized for the proposed machine learning paradigm. 

A training image can be viewed as a prior ensemble of 

local geological knowledge and experience (e.g., 

stratigraphic connectivity between different geological 

domains). More importantly, a training image is a 

numerical representation of believed spatial stratigraphic 



 

 

 

heterogeneities at the site of interest and should reflect 

the major repetitive stratigraphic relationships and 

structures (Mariethoz and Caers 2014). However, the 

acquisition of qualified training images in practice may 

be challenging, particularly for young engineers with 

insufficient prior knowledge of local geology. According 

to Heim (1990), the stratigraphic patterns of different 

natural deposits (e.g., marine deposit and alluvial strata) 

may be categorized based on their geological origins. In 

general, qualified training images for a particular site 

may be readily available from nearby sites with similar 

geological settings or from conceptual models developed 

by experienced geologists. It is also worth mentioning 

that a single training image only represents a possible 

geological scenario or stratigraphic configuration, which 

may not exhaust all the potential stratigraphic features or 

fully characterize the underlying data-generating process 

(i.e., 𝑝𝑑𝑎𝑡𝑎). A combination of multiple qualified training 

images constitutes a wider prior knowledge model and 

enables a comprehensive appraisal of subsurface 

stratigraphy with quantified uncertainty. As pointed out 

in Section 2.1, a training image database is valuable as it 

can serve as effective supplements to overcome the 

intrinsic data sparsity challenge associated with 

subsurface stratigraphy.  

As shown in Figure 2, potential training images can 

be obtained from one of the following four sources (Shi 

and Wang 2023): (a) Geological cross-sections can be 

borrowed from nearby sites or past stages of the current 

project. Those developed cross-sections reflect the 

required level of accuracy for practical engineering 

design. Figure 2a shows a geological cross-section 

collected from a recent reclamation project, and the 

section details key depositional relationships between 

different soil layers; (b) Conceptual geological models 

developed from regional geological maps or experienced 

geologists can also serve as potential training images. 

Figure 2b shows a conceptual weathering profile for 

decomposed granite in tropical and subtropical areas, 

such as Hong Kong and Singapore. There is a general 

trend for the level of decomposition to reduce with the 

increase in depth; (c) Process-based numerical models or 

laboratory tests can be carried out to generate or simulate 

realistic geological patterns that pertain to a particular 

geological setting. Figure 2c shows a simulated alluvial 

fan constructed from 600,000 years of sedimentary 

process using a forward geological modelling method; 

(d) training images can also be synthesized using 

generative models, such as generative adversarial 

networks (GANs). Generative models have been widely 

used in computer science to augment training image 

database by redistribution of image patterns in available 

training data to synthesize diverse image features. 

Recently, Shi and Wang (2024) developed a GAN-based 

model to generate multiple plausible image samples 

conditioning on a single training image sample. From the 

design point of view, geological cross-sections obtained 

from previous projects are considered credible as they 

were directly interpreted from site-specific 

measurements and have been adopted for practical 

engineering design and analysis. Shi and Wang (2023) 

have also developed a training image database for 

weathered granite and tuff slopes in Hong Kong by 

compiling slope stratigraphy from well-documented 

slope projects. The database is categorized based on 

geological origins, locations, and application scenarios. 

Once domain-specific training images are established, it 

is possible to develop 2D geological cross-sections and 

3D geological domains.  

 

 
Figure 2. Potential sources of training images to construct 

domain-specific database.  

2.3. Development of two-dimensional geological 

cross-section using IC-XGBoost2D 

The likelihood term in Eq. (1) can be estimated using 

stochastic simulation tools. Mathematically speaking, the 

estimation of the probability term requires establishing 

the mapping relationship 𝑓(𝒙;  𝜃)  between spatial 

coordinates 𝒙 with corresponding soil categories within 

the target geological cross-section X.  

𝑋 = 𝑓(𝒙;  𝜃) + 𝜀, 𝒙 ∈ ℝ𝟐, 𝒔. 𝒕. 𝑓(𝒙𝑴;  𝜃) = 𝑦𝑀 (2) 

where 𝜃 denotes parameters to be estimated, and 𝜀 is a 

random noise; M = (𝒙𝑴 , 𝑦𝑀 ) represents site-specific 

measurements. Numerical methods are available in 

literature to estimate the mapping relationship, and this 

study adopts a single image-based stochastic simulation 

method called IC-XGBoost2D, which was developed by 

Shi and Wang (2021b). The method is capable of 

developing 2D geological cross-sections from sparse 

site-specific data and a single training image reflecting 

prior geological knowledge. Fig. 3 shows the basic 

architecture of the IC-XGBoost algorithm. The method 

consists of two parts, namely, training and prediction. 

The training part aims to extract 2D stratigraphic patterns 

from the single training image, and the prediction part 

targets to develop a 2D geological cross-section 

conditioning on sparse site-specific data.  

The training begins with the determination of feature 

extractor or a 3 × 3 grid template with three distant 

columns. The template is then transferred to scan the 

single training image to exhaust the potential 

stratigraphic statistics via convolution with a Laplace 

filter, resulting in a feature map. Grid templates with 

different spacings are adopted to construct multiple 

feature maps corresponding to multi-scale stratigraphic 

patterns. As only cells with non-zero convolved values 

reflect important stratigraphic interfaces, those cells are 

extracted for further processing via a series of operations, 

i.e., non-zero pooling and dropout before feeding into a 



 

 

 

XGBoost algorithm for multi-class classification. The 

pre-trained model is then adopted for forward spatial 

predictions in a multi-scale manner. The spatial 

prediction of the 1st grid involves the prediction of soil 

types in between two adjacent boreholes following a 

random simulation sequence. Soil types predicted in the 

previous grid scale are treated as known site-specific data 

for the next round of spatial prediction. The whole 

process repeats until all the unknown cells are predicted, 

thereby completing a geological cross-section.  

It is also worthwhile to point out that the IC-XGBoost 

algorithm is a stochastic simulation method. The 

uncertainty mainly originates from random simulation 

paths for predictions associated with each grid level as 

well as prediction uncertainty of XGBboost. It is possible 

to quantify the associated stratigraphic uncertainty under 

the framework of Monte Carlo simulation. 

 

 
Figure 3. Basic architecture of  IC-XGBoost algorithm to 

develop 2D geological cross-sections. 

2.4. Construction of three-dimensional 

geological domain using IC-XGBoost3D 

For most geotechnical problems, it is sufficient to 

develop 2D geological cross-sections for conservative 

engineering design and analysis. However, an accurate 

evaluation of engineering risks often requires a thorough 

appreciation of subsurface 3D stratigraphic 

heterogeneities. Figure 4 shows the structure of the 3D 

IC-XGBoost algorithm (Shi and Wang 2022), which is 

an extension of the 2D IC-XGBoost. The essence of the 

IC-XGBoost3D is sequential simulations of 2D 

geological cross-sections using IC-XGBoost2D before 

combining multiple predicted 2D cross-sections, yielding 

a 3D geological domain. To capture the potential spatial 

stratigraphic heterogeneities, a pair of perpendicular 

training images may be required, and each image reflects 

the typical stratigraphic pattens in the respective 

direction. It is also possible to utilize a single training 

image for spatial predictions of subsurface 3D geological 

domains based on the assumption that the geology at the 

site of interest is isotropic and can be learned from a 

representative single training image.  

Figure 4a shows the discretization of target geological 

domain into a series of 2D simulation vertical slices as 

well as the alignment of site-specific boreholes. The next 

step is to determine the simulation sequence. The 

selection of the next simulation slice is based on the 

principle that the current 2D vertical slice to be predicted 

should have the maximum number of site-specific data. 

If more than two candidate vertical slices contain the 

same number of site-specific boreholes, a vertical slice is 

randomly drawn from the collection for forward spatial 

predictions. The delineation of soil stratigraphic patterns 

along a selected simulation slice is carried out using IC-

XGBoost2D conditioning on site-specific data and the 

training image in parallel. Figure 4c shows the sequential 

development of 2D geological cross-sections. Once a 2D 

simulation slice is predicted, it is combined with original 

borehole logs as a new set of site-specific data. The whole 

process repeats until all the 2D vertical slices are 

predicted. Subsequently, all the predicted 2D slices are 

combined to yield a complete 3D geological domain. 

Notably, both the 2D and 3D IC-XGBoost algorithm are 

purely data-driven and do not require the explicit 

specification of distributions of any hyperparameters. 

The 3D IC-XGBoost algorithm inherits two major 

sources of uncertainty, i.e., random 2D simulation paths 

and classification uncertainty, along with the random 

simulation sequence (see Figure 4b). 

 
(a) Training image and site-specific data 

 
(b) Determination of simulation sequence 

 
(c) Sequential prediction of 2D simulation slices 

 
(d) Reconstruction of a 3D geological realization 

Figure 4. Framework for data-driven prediction of 3D 

geological domain  



 

 

 

2.5. Ensemble learning of geological cross-

sections 

The performance of the proposed image-based 

stochastic methods relies on qualified training images 

and site-specific data. When site-specific measurements 

are too limited, the overall prediction is primarily 

governed by training images. On the other hand, when 

sufficient site-specific data are available, the prediction 

performance will be very much dependent on 

measurements rather than training images. Therefore, it 

is imperative to select training images with relatively 

larger occurrence probability 𝑃(𝑇𝐼|𝑀)  for forward 

development of geological cross-sections. There are 

several methods that can be used to select appropriate 

training images for stochastic simulations.  

For a given geological cross-section or image, the 

pixels around stratigraphic interfaces are more 

informative than those within the main bodies of soil 

layers, and it is possible to accurately recognize objects 

in an image with fragments of edges (Shotton et al. 2008). 

Therefore, it is reasonable to evaluate the similarity 

between a training image and site-specific data by 

comparing stratigraphic statistics on the boundaries 

derived from TI and site-specific data. For example, 

Mood (1940) and Boisvert et al. (2007) proposed to rank 

compatibility of a TI with site-specific data through 

comparison of distribution of runs (Mood 1940) and 

multiple-point density function (MPDF) of wells. These 

methods mainly focused on the 1D vertical borehole logs 

and does not account for the spatial stratigraphic 

variations across multiple boreholes in the horizontal 

direction. Therefore, Shi and Wang (2021c) designed an 

edge orientation detector to extract edge gradients in both 

horizontal and vertical directions for compatibility 

evaluation based on an edge orientation histogram (EOH).  

When the training image database is structured, it is 

also possible to categorize and classify training images 

and site-specific data based on different criteria. Shi and 

Wang (2023) pointed out that geological origins, location 

proximity, and application scenarios are three possible 

criteria. Knowledge of the origin of soil deposits is of 

paramount importance to understand the nature of the 

deposits. Heim (1990) have summarized seven modes of 

origins or 16 typical types of deposits. In addition, 

location proximity is also an important indicator. 

Training images that are in close proximity to site-

specific data are deemed to share similar local 

depositional environments (Earle 2015). Last but not 

least, geological cross-sections are more relevant if they 

are developed for the similar application scenarios (e.g., 

slope stability) as different application scenarios might 

focus on the accurate delineation of different 

stratigraphic patterns. For example, thin weak seams may 

be more crucial for slope stability analysis but can be 

ignored for reclamation projects.  

It is also worth mentioning that each candidate 

training image only represents a specific geological 

configuration under a given geological origin and 

application scenario and can be viewed as a basis feature 

for the subsurface system (Scheidt et al. 2016). The 

combination of multiple training images can be taken as 

an “orthogonal decomposition” of the subsurface system 

and renders a comprehensive appraisal of subsurface 

geological variations. Therefore, it is beneficial to adopt 

multiple training images for subsurface stratigraphy, 

which essentially aligns with the essence of ensemble 

learning. Ensemble learning is a common technique to 

improve prediction performance by making use of 

multiple single models (i.e., prior geological models). By 

ranking the compatibility of candidate training images 

{𝑇𝐼(𝑖)| 𝑖 =1, 2,…, 𝑛𝑡 } with site-specific data M, it is 

possible to evaluate the occurrence probability 𝑃(𝑇𝐼|𝑀) 

and estimate the posterior probability 𝑃(𝑋|𝑀). 

2.6. Uncertainty quantification 

For the 2D and 3D IC-XGBoost algorithm, it is 

possible to generate multiple plausible geological 

realizations or domains by changing the random seed. 

The most probable prediction (MPP) can be derived by 

assigning each spatial point with the soil category of the 

highest occurrence frequency. MPP is taken as the final 

result of stochastic simulations. The number of stochastic 

realizations, Nr, is determined when the percentage 

change in MPP does not vary significantly with every k 

= 10 additional realizations. The threshold for the 

percentage change is taken to be 0.1% by default. As a 

rule of thumb, 100 realizations are often considered 

sufficient to yield a stable prediction result. For ensemble 

learning, the final MPP at each spatial point can be 

derived from all the generated geological realizations that 

are conditioned on 𝑛𝑠  selected training images 

{𝑇𝐼(𝑖)| 𝑖 =1, 2,…, 𝑛𝑠} as follows: 

𝑀𝑃𝑃 =
1

𝑚1+𝑚2+⋯+𝑚𝑛𝑠

𝑚𝑜𝑑𝑒{{𝑍1
𝑇𝐼(1)

, … , 𝑍𝑚1
𝑇𝐼(1)

} ∪ … ∪

{𝑍1
𝑇𝐼(𝑖)

, … , 𝑍𝑚𝑖
𝑇𝐼(𝑖)

} ∪ … ∪ {𝑍1
𝑇𝐼(𝑛𝑠)

, … , 𝑍𝑚𝑛𝑠

𝑇𝐼(𝑛𝑠)
}} (3) 

where 𝑚𝑖  denotes the total number of stochastic 

realizations conditioned on the i-th training image (i.e., 

𝑇𝐼(𝑖)). The value of 𝑚𝑖 can be taken to be proportional to 

the occurrence probability 𝑃(𝑇𝐼|𝑀) in Eq. (1). 

It is also worthwhile to quantify the deviation of 

multiple geological realizations from the most probable 

prediction. More specifically, the stratigraphic 

uncertainty associated with MPP can be quantified using 

the theory of information entropy, and the entropy H at 

each spatial coordinate of a geological domain can be 

estimated as follows:  

𝐻 =  − ∑ 𝑝𝑖 ∙ 𝑙𝑜𝑔𝑝𝑖
𝑁𝑐
𝑖=1     (4) 

where 𝑁𝑐 denotes the number of soil types at the site of 

interest; 𝑝𝑖  is the occurrence probability of the i-th soil 

type among 𝑁𝑟  stochastic realizations. In the following 

illustrative example, where the ground truth geological 

model 𝑍𝑔𝑡  is available, it is straightforward to measure 

the prediction accuracy Acc by comparing  𝑍𝑔𝑡 with MPP: 

𝐴𝑐𝑐 =  
∑ 𝐼(𝑍𝑔𝑡

𝑗
=𝑀𝑃𝑃𝑗)𝑗

𝑁𝑝
    (5) 

where 𝑁𝑝 denotes the total number of discretized points 

in a geological cross-section or geological domain; I is an 

indicator function that has a value of one when the 

condition within the parenthesis is true, or zero otherwise; 



 

 

 

𝑍𝑔𝑡
𝑗

 and 𝑀𝑃𝑃𝑗  represent the ground truth and MPP soil 

type at the j-th spatial point within a 2D geological cross-

section or a 3D geological domain.  

In practice, the ground truth geological model is often 

unavailable. The accuracy measure in Eq. (5) only 

applies to simulated examples and is used for validation 

purposes. Alternatively, it may be possible to calculate 

the prediction accuracy using leave-one-out cross-section 

(LOOCV), which is a commonly used strategy in 

statistics to measure the prediction performance of a 

statistical model. In this study, each one of available 

borehole logs 𝑁𝐵  may be iteratively removed from the 

training dataset and reserved for validation, and the final 

prediction performance is taken as the average of 𝑁𝐵 

predictions: 

𝐴𝑐𝑐𝐶𝑉 =
1

𝑁𝐵
∑ 𝐴𝑐𝑐𝑘𝑁𝐵

𝑘=1     (6) 

where 𝐴𝑐𝑐𝑘 represents the prediction accuracy when the 

k-th borehole is held out for validation.  

 

3. Illustrative example 

 

 
Figure 5. Location plan of the reclamation site in Hong Kong  

In this study, site-specific measurements and 

geological cross-sections collected from a recent 

reclamation project in Hong Kong are used to 

demonstrate the performance of the proposed machine 

learning paradigm. Fig. 5 shows the location plan of the 

site of interest. The artificial island lies to the east of the 

existing Hong Kong International Airport and was 

reclaimed from the sea. The tunnelling site locates in the 

northeast corner of the artificial island. A comprehensive 

site investigation campaign was carried out to delineate 

subsurface geology. In total, more than 100 in-situ 

measurements, i.e., Cone Penetration Tests (CPTs) and 

boreholes, were conducted at different construction 

stages to decipher subsurface stratigraphic distributions 

and monitor the consolidation process of the fine-grained 

materials. The spatial distribution of those interbedded 

fine-grained materials has a significant influence on the 

long-term ground settlement as well as the serviceability 

of future superstructures. The study site has a plan 

dimension of 100m (long) × 75 m (width). Figure 6 

shows a perspective view of 37 line measurements (i.e., 

CPTs and boreholes) at the site of interest. From the 

revealed geology, the site mainly comprises six soil types, 

namely, Fill, Disturbed Marine Deposit (DMD), Alluvial 

Sand (Alls), Alluvial Clay (Allc), and Completely 

Decomposed Granite (CDG) or better. 
  

 
Figure 6. Site-specific measurements within the study area  

In practice, it is typical to develop 2D geological 

cross-sections for engineering design and analysis. The 

interpretation of subsurface stratigraphic distribution 

from sparse measurements has still largely relied on 

personal experience and judgement of engineers. To 

facilitate subsequent tunnelling design, several crucial 

2D cross-sections were developed. Figure 7 shows three 

selected geological cross-sections along A-A’, B-B’, and 

C-C’ in Figure 5. Note that the stratigraphic boundary of 

Fill, DMD, and MD are predominantly horizontal, and it 

is relatively straightforward to determine their 

boundaries using conventional line interpolation practice 

or parametric models. The key challenge lies in the 

delineation of stratigraphic relationships of interbedded 

Alls and Allc. 

Two scenarios are specifically considered in this 

study. The first scenario (i.e., case A) involves the 

prediction of a 3D geological domain based on the site-

specific data in Figure 6 and training images (i.e., Section 

A-A’ and the left half of Section C-C’) collected from the 

adjacent construction site in Figure. 5. In addition, 

another scenario (i.e., case B) is dedicated to 

investigating the ensemble learning performance of the 

proposed method. More specifically, Section A-A’ is 

taken as the training image, and six line measurements 



 

 

 

are extracted from the longitudinal cross-section C-C’ as 

site-specific data. The aim is to predict the longitudinal 

geological cross-section based on a small single training 

image and sparse site-specific data.  

 

 
(a) Transverse geological cross-section A-A’ 

 
(b) Transverse geological cross-section B-B’ 

 
(c) Longitudinal geological cross-section C-C’ 

 
(d) Site-specific data extracted from section C-C’ 

Figure 7. Geological cross-sections developed by experienced 

geologists. 

 

4. Results from the proposed method 

4.1. Case A: data-driven prediction of 3D 

geological domain 

Following the simulation procedures in Section 2.4, 

3D stochastic simulations were carried out. The only 

input required is site-specific measurements and a pair of 

training images reflecting the potential spatial 

stratigraphic anisotropy at the site of interest. The target 

geological domain has a dimension of X = 100, Y = 100, 

and Z = 50. The time required to generate a 3D geological 

domain was about 40min using a laptop with Intel Core 

i7-4790 CPU @ 3.6 GHz and 8.00 GB RAM. In total, 

100 geological realizations were generated. Figure 8 

shows the most probable 3D geological domain derived 

from 100 realizations. Note that the stratigraphic 

connectivity and sequence can reasonably be captured. 

The stratigraphic boundaries of Fill, DMD, and MD are 

relatively simple and smooth as they are predominantly 

horizontal. In comparison, the stratigraphic interfaces of 

interbedded Alls/Allc are more complicated.  

Figure 9 shows the stratigraphic uncertainty 

corresponding to the most probable geological domain. 

Areas with high entropy values mainly cluster around the 

predicted soil layer boundaries, indicating high 

stratigraphic uncertainty. The entropy values diminish to 

zero within the main body of each soil layer. Bands with 

large entropy values mainly concentrate around Alls/Allc. 

In other words, more site-specific data are required to 

have an in-depth understanding of stratigraphic 

connectivity between Alls and Allc. It is also worthwhile 

to point out that land reclamation is a man-made process, 

multiple rounds of site investigation campaigns are 

normally required in order to accurately monitor the 

consolidation status for construction planning. The 

method proposed in this study provides a data-driven tool 

to automatically build and update 3D geological domains 

from sparse data and prior training images. 

  

 
Figure 8. Predicted most probable geological domain. 

 

It is also worthwhile to compare the predictions of 2D 

geological cross-sections with those interpreted by 

practicing engineers. Figure 8 also shows the 2D 

geological cross-section predicted by the proposed IC-

XGBoost algorithm at Y = 50m. Similarly, it is 

straightforward to determine the stratigraphic boundaries 

of Fill, MD, and CDG or better. Despite the large 

stratigraphic variations of Alls/Allc, the overall 



 

 

 

prediction accuracy is about 83.6%. This is encouraging 

as the ground truth 2D geological cross-sections is 

normally interpreted by projecting adjacent line 

measurements onto the target 2D cross-section for 

stratigraphic modelling, requiring a significant number of 

measurements. Figure 9 also shows the entropy colormap 

corresponding to the 2D MPP in Figure 8. The 

stratigraphic uncertainty rapidly reduces to zero at 

locations close to the borehole (i.e., Y = 50m).  

 

 
Figure 9. Stratigraphic uncertainty associated with the most 

probable geological domain. 

   

 
Figure 10. Scatter plot of prediction errors. 

LOOCV was further performed to demonstrate the 

prediction performance of the proposed algorithm. Each 

one of the 37 site-specific measurements was iteratively 

removed from the training dataset and served as 

validation dataset. In total, 37 rounds of LOOCV were 

carried out. Figure 10 shows the scatter plot of prediction 

errors. The center of each bubble denotes the location of 

the reserved measurement. Bubbles with a larger 

diameter denote a higher prediction error. The prediction 

error ranges between 0% and 35% with the average of 

23%. The points with largest prediction errors mainly 

locate close to the boundary. This is expected as the 

interpretation of stratigraphic profiles for points close to 

boundaries normally involves extrapolation, which is 

prone to prediction errors.  

4.2. Case B: ensemble learning of 2D geological 

cross-section 

The two perpendicular training images in case A were 

directly taken from a nearby site with the similar 

geological settings. For case B, the geological cross-

section along A-A’ in Figure 5 was taken as the training 

image, and six boreholes extracted from the long 

longitudinal geological cross-section C-C’ were taken as 

site-specific data. Although the execution of the proposed 

machine learning algorithm does not require the training 

image to have the same size as that of the target cross-

section, the training cross-section has a total horizontal 

length of 75m, which is much shorter than that of the 

longitudinal cross-section in Figure 7d. As a result, the 

short-range stratigraphic patterns reflected in Figure 7b 

may not be representative of those in the target cross-

section, which is primarily governed by long-range 

stratigraphic connectivity. However, it is possible to 

construct a domain-specific training image database 

based on a single training image using generative 

adversarial networks (GANs). The details of GAN for 

generating multiple plausible training images can refer to 

Lyu et al. (2024) and Shi and Wang (2024). In total, 50 

elongated random image samples were synthesized. Each 

of the 50 training image samples was iteratively 

combined with site-specific measurements for 

development of subsurface geological cross-sections. 

The compatibility of training images with site-specific 

data can be ranked using the edge orientation histogram 

(EOH) proposed by Shi and Wang (2023) or computed 

total entropy values using Eq. (4). Figure 11 shows two 

elongated random image samples generated by GAN. As 

a first approximation, top 5 image samples that are most 

compatible with site-specific data are selected for 

ensemble learning. The conditional probability 𝑃(𝑇𝐼|𝑀) 

can be taken to be proportional to the EOH or the total 

entropy values. Results indicate that there is minimal 

difference in the conditional probability for this 

particular example and may be considered to share 

approximately the same weight. 

 

 
Figure 11. Random image samples generated by GAN. 

Figure 12a shows the developed 2D geological cross-

section conditioning on the original single training image 



 

 

 

in Figure 7a and site-specific data. Although the training 

image mainly reflects short-range stratigraphic patterns, 

the predicted stratigraphic boundaries reasonably 

replicate the key spatial connectivity in Figure 7c with a 

prediction accuracy of 84.3%. The key difference 

between the predicted cross-section and that interpreted 

by engineers lies within the boundary of DMD. The 

predicted stratigraphic boundaries of DMD in Figure 11a 

is discontinuous and lack horizonal connectivity. In 

comparison, Figure 12c shows the ensemble learning 

results following Eq. (3). The prediction accuracy 

improves slightly from 84.3% to 86.7%. Although the 

increment is not so significant, the stratigraphic 

connectivity has significantly strengthened. For example, 

DMD is no longer isolated and extents continuously in 

the horizontal direction. In addition, the stratigraphic 

boundaries become smoother with much less patchy 

patterns compared to that in Figure 12a. This can be 

explained by the fact that the newly generated random 

image samples have enhanced horizontal stratigraphic 

connectivity compared to the original training image, 

thereby leading to enhanced prediction performance and 

informative stratigraphic uncertainty (e.g., concentrated 

entropy bands in Figure 12d). 

 

 
Figure 12. Ensemble learning results: (a) Most probable 

prediction associated with a single training image; (b) 

Stratigraphic uncertainty associated with the prediction from a 

single training image; (c) Most probable prediction derived 

from multiple training images; (d) Stratigraphic uncertainty 

associated with the prediction from multiple training images. 

5. Summary and conclusion 

Delineation of subsurface stratigraphic distributions 

is a key task of geotechnical site characterization. 

Traditional stratigraphic modelling methods either rely 

on oversimplified linear interpolation practice or 

complicated parametric models for subsurface 

stratigraphy. Both strategies may encounter significant 

challenges when only limited site-specific data are 

available. On the other hand, valuable prior geological 

knowledge has been implicitly embedded in the 

traditional stochastic simulation methods but has not 

been explicitly quantified and leveraged. In this study, a 

machine learning paradigm is proposed to automatically 

build and update subsurface stratigraphy from sparse 

site-specific data. The framework leverages valuable 

prior geological knowledge and quantitatively represent 

it as training images. Subsequently, image-based 

machine learning algorithms modified from conventional 

CNN structures are developed to predict subsurface 2D 

geological cross-sections and 3D geological domains 

from sparse data and one or two training images. As a 

single training image only reflects a specific scenario or 

configuration for a particular geological setting, it is 

possible to construct and build a domain-specific training 

image database to exhaust potential stratigraphic 

connectivity. The collected or generated training images 

can be adaptively ranked and selected for ensemble 

learning of subsurface stratigraphic distributions. The 

performance of the proposed machine learning 

framework is demonstrated via real examples collected 

from a recent reclamation project in Hong Kong. Results 

indicate that the proposed image-based stochastic 

methods can not only accurately predict 2D and 3D 

subsurface stratigraphic distributions from limited site-

specific data but also allow the quantitative evaluation of 

associated stratigraphic uncertainty. It is also found that 

ensemble learning can help enhance prediction 

performance of the proposed stochastic simulation 

methods.  
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