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Summary. Multiple factors and scales are at play in the development of the human brain
during gestation and especially in the emergence of cortical folds. Considering the complex
interconnections between microstructure and mechanics can enrich our understanding of the
main factors leading to human brain folding. Computational modeling is a promising way to
explore the brain growth biomechanics. In this work, we investigate the use of anatomical and
diffusion MRI data to inform the 3D computational model. The key contribution of this work
lies in the joint use of a dynamical brain growth computational model and MRI-based features
to simulate cortical folding. Cortical and inner layers are modeled as nearly-incompressible Neo-
Hookean materials. The accurate delineation of the cortical layer is obtained from MRI data
segmentation maps. The tangential cortical growth rate is defined as a spatio-temporal function
of Fractional Anisotropy (FA), taken as a measure of neuronal maturation in the cortex. 3D
brain folding simulations have been applied on realistic brain meshes, generated from segmented
T2w MRI data. FA has been computed from diffusion MRI data using tensor based modeling.
The results show that heterogeneous data-driven growth rate leads to significantly different
folding patterns than using uniform pre-defined growth rate. The presented approach proposes
to couple the mechanical deformation to the microstructural behavior of both cortical and inner
layers via MRI data. It also opens to the use of specific parameters at voxel scale in 3D brain
growth models.
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1 INTRODUCTION

The developing human brain is smooth until the third trimester of pregnancy. At this time,
convolutions begin to emerge on the surface of the cortex. They gradually develop to form a
structured pattern of folds (gyri and sulci), at birth. Mechanical factors, more particularly de-
formations induced by a more intense growth in the cortex than in the inner layers of the brain,
seem to be involved in this phenomenon [1, 2, 3, 4]. However, as highlighted by [5], cellular
mechanisms at work remain uncertain. Computational models enable to explore the origins of
the cortex morphogenesis. Purely mechanical (i.e. macroscopic) models have shown biophysi-
cal parameters such as growth rate, thickness of the cerebral cortex or respective stiffnesses of
the cortex and sub-cortical layers strongly influence the simulated folding pattern [3, 6, 7, 8].
However, in reality, these parameters are neither homogeneous in space nor constant in time.
[9] showed introducing a heterogeneous cortical thickness produces a less regular, more realistic
folding pattern. In [10], the cortex presents a spatio-temporal gradient of expansion from the
frontal/parietal regions which develops at the early ages of gestation (27 to 31 gestational weeks
(GW)), to the parietal zone in the middle ages (31 to 33 GW) and finally to the frontal and tem-
poral regions in late ages (33 to 37 GW). [11] correlated significantly the fractional anisotropy
in four brain regions: the cortex, the corona radiata, the corpus callosum and the basal ganglia
to their specific mechanical stiffness. More advanced models incorporate microstructural infor-
mation, mimicking mechanobiological behaviors (reaction of cells to mechanical stresses) [12,
13], coupling cellular laws with the mechanical laws of the macroscopic continuum (“multi-field”
or “coupled” models) [14, 5, 15]. All the previous examples raise the question whether a het-
erogeneous model informed by microstructural data could better reflect the emergence of brain
folds. In this work, we use fetal MRI data from the developing Human Connectome Project
(dHCP) 1 to inform our mechanical computational model. We simulate cortical folding on a 3D
MRI-based brain geometry, as in [4, 16, 17]. Additionally, two key parameters of our model are
informed with the data: the cortical thickness and the cortical growth ratio. First, we accurately
delineate the cortical layer from MRI data segmentation maps. Second, we propose to consider
Fractional Anisotropy (FA), computed from diffusion MRI data using tensor based modeling,
as a spatio-temporal marker of the state of neuronal maturity in the cortex, and suppose that
the growth rate depends on it. We finally assess the validity of the heterogeneous data-driven
model by analyzing the induced curvature, and with a Spangy [18, 19] frequency band analysis
to monitor the dynamics of the emergence of successive folds in the fetal cerebral cortex.

2 MATHEMATICAL MODEL OF BRAIN CORTEX FOLDING

2.1 Growth-induced irreversible deformations

2.1.1 A bilayer geometry: cortex and sub-layers

Cortex and inner layers are modeled as two distinguished materials with proper mechanical and
growth properties. In particular, the main hypothesis behind biomechanical gyrification models
is that the cortical layer grows more intensely than the inner layers [4].

1https://gin.g-node.org/kcl_cdb/fetal_brain_mri_atlas
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2.1.2 Growth tensor: cortical, tangential and adaptative

During the morphogenesis of the human brain, neurons first migrate from inner layers to the
cortex and then, neurons maturate in the cortex. Our model aims at representing the second
phase, during which folds appear at the brain surface. In macroscopic computational models,
neural maturation is represented by a growth tensor. We consider growth in cortex exclusively,
which is traduced mathematically by introducing the weighting functions grCortex that cancel
growth in the inner layers, as defined in Fig. 1 a. Additionally, we also introduce grGrowthZones
that cancels growth in the cortical regions shown in Fig. 3, so that only regions of interest grow.
Then we assume cortex grows in the cortical surface plane (i.e. tangentially) [4], so the growth
tensor is decomposed into tangential and radial compounds. Moreover, at each time step of the
simulation, the local orientation of the cortical surface plane, through the normal vector Nt, is
recomputed to get an adaptative growth tensor, as explained in [13]. We finally consider the
growth tensor of Eq. 1.

Fi
g
= (1 + grCortex(Xi) · grGrowthZones(Xi) · dgTAN) · (I – Nti ⊗Nti) + Nti ⊗Nti (1)

We consider a linear variation of the growth such that:

dgTAN = αTAN · dt,∀t (2)

2.1.3 Kinematics

We use multiplicative decomposition of the total deformation gradient. Fg is the irreversible
growth part of the deformation from reference configuration to the intermediate stress-free con-
figuration, Fe is the reversible elastic part of the deformation from the intermediate to the
current configuration ([13]) and u is the unknown displacement field:

F = Fe · Fg ⇒ Fe = F · (Fg)–1 = (Id +∇Xu)(F
g)–1 (3)

2.2 Constitutive law: hyper-elasticity

We model cortex and inner layers as slightly compressible Neo-Hookean non-linear elastic ma-
terials, choosing the following strain energy density function:

Ψ(Ce, Je) =
μ

2
(tr(Ce)Je–2/3 – 3) +

K

2
(Je – 1)2 (4)

The elastic deformation gradient defined previously is used to build the right Cauchy-Green
deformation tensor:

Ce = (Fe)TFe (5)

and one of the principal invariants of Ce tensor (of rank two) of dimension three:

Je = det(Fe) (6)

μ is the shear modulus. K the bulk modulus of the brain, computed from the Poisson ratio ν,

with the Lamé coefficient relation K =
2 μ (1+ν)
3 (1–2ν)

.
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2.3 Problem

2.3.1 Quasistatic approximation of the balance equation of the linear momentum

Strong formulation

As explained in [13], the quasistatic approximation of the motion equation can be assumed. Fetal
brain cortex growth-induced deformations can then be represented by successive mechanical
equilibrii without traction (See 2.3.2). The ODE in its Lagrangian formulation:

–∇ · P = ρtb, ∀X in Ωt (7)

where P is the first Piola-Kirchhoff stress defined as ∂Ψ
∂F , b is the body forces applied to the

domain and Ωt the spatial 3D domain.

Variational formulation

Let v belong to V = H1
0(Ω0), an Hilbert space. Find u ∈ V such as for all v ∈ V:∫
Ωt

P : ∇v dx =

∫
Ωt

ρtb · v dx +
∫
δΩt

Nt · P · v ds (8)

with Nt the unit normal in the updated reference configuration, at the external surface of the
brain (pial surface).

We neglect external body forces: ρtb · v dx = 0. Among all abstract test functions v, we choose
the arbitrary test displacement field ∂u.

2.3.2 Boundaries and boundary conditions∫
δΩt

Nt · P · ∂uds =
∫
Γ
1
c

Nt · P · ∂uds +
∫
Γ
2
c

Nt · P · ∂uds +
∫
Γf

Pn · ∂uds +
∫
Γu

Nt · P(uD) · ∂uds

(9)

as detailed in [20], where Γ1c is the contact boundary on the Left hemisphere; Γ2c the contact
boundary on the Right hemisphere; Γf the boundary where Neumann conditions apply ; Γu the
boundary where Dirichlet conditions apply.

The traction part
∫
Γf

Pn · ∂uds is considered null.

Unilateral contact of each hemisphere against fictive interhemispheric rigid planes

Two types of collisions appear during the brain folding simulations: self-contact between the
two hemispheres and then, self-contact between the emerging folds themselves. We only model
the contact between the two hemispheres. To do so, two fictive interhemispheric planes are
introduced, against which each hemisphere is going to collide, as shown in Fig. 1 b.
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Figure 1: a. grCortex b. Penalty method to avoid collision between the Left and Right hemispheres, introducing two
interhemispheric planes

For each hemisphere, the contact is avoided using the penalty method [20].
Considering all the previous hypotheses, (8) becomes:∫

Ωt

P(u) : ∇∂udx +

∫
Γ
1
c∪Γ2c

ε < gn > δgn ds =

∫
Γu

Nt · P(uD) · ∂uds (10)

where gn is the normal gap between a surface node of one hemisphere and the plane, δgn the
virtual penetration, detailed in Fig. 1 b. and ε the penalty coefficient. < gn >= gn if gn ≥ 0
(contact) and < gn >= 0 if gn < 0 (separation).

3 CONTRIBUTION OF MRI DATA IN MULTI-SCALE MODELING OF BRAIN
GROWTH

3.1 Fetal MRI atlas data from the dHCP project

The dHCP project notably provides a multi-modal atlas of volumetric fetal magnetic resonance
images from 21 to 36GW. We use T2 weighted (T2w) data; the segmentations providing labels
to different brain regions; the fractional anisotropy (FA) data and the affine transformations
enabling to obtain the mapping between the image space and the world coordinate space. MRI
data are used both to generate the brain geometry and MRI-informed cortex delineation and
growth rate, as shown in Fig.2.

Figure 2: MRI data contribute to both the geometry generation, H0 and αTAN parameters definition.
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3.2 Generation of a realistic brain geometry

The affine transformation is first applied to the T2w data at 21GW, as well as to the associated
parcellation (and FA) maps at 21 GW. We mask the T2w images using the labels of interest to
only keep regions located beneath the cerebral cortex. Then, the cortex contour on the masked
T2w is segmented with 3D Slicer 2, smoothed and a 2D surface brain mesh is generated and
exported (.stl). The quality of the 2D brain mesh is then improved using Meshlab 3. The
3D tetrahedral brain mesh is generated with Netgen 4 and finally, the mesh is converted into
.xmdf/.h5 format and refined near by the surface.

3.3 Delineation of the cortex layer H0 from MRI parcellation

The segmentation labels from the input image (image space) are interpolated over all mesh
nodes (world coordinates space), thanks to the affine transformation. The nearest neighbour
interpolation method is used. We then transform the segmentation labeling from the dHCP into
a binary labeling, allocating 1 to the nodes in the cortex and 0 otherwise, as shown in Fig. 2.

3.4 FA-based tangential growth ratio

3.4.1 Fractional Anisotropy, neuronal maturation in the cortex and cortical folding

FA is an index between 0 and 1, obtained from Diffusion-weighted magnetic resonance imaging
(diffusion MRI), using tensor based modeling (DTI). In the cortex, it reflects the presence of
a privileged orientation of the local neural cortical connections (axons and dendrites). [21, 22]
show the cortical folding phase coincides with a decrease in FA over gestational time; FA is
correlated with curvature [22, 23]. According to [24], during the migration period, the radial
organization persists more under the gyri than under the sulci. On the other hand, radial
organization does not necessarily mean higher FA. Moreover, in more than half of the ferret
brains data analyzed in [22], the FA is higher in the sulci. As well, [25] shows that the density
of the fibers is greater under the gyri. On the FA projections that we made on the dHCP
meshes, we can see at 28GW, FA is weaker around the central sulcus area, where the growth is
supposed to be relatively high, according to [10]. Finally, [23] found correlation between FA and
curvature or between their variations, but not between FA and cortical surface expansion nor
between their variations. In this work, we use modelling to test a potential correlation between
FA and the variation of cortical expansion rate.

3.4.2 FA-based tangential growth ratio αTAN

The FA values at 21GW from the input image (image space) are interpolated over all mesh
nodes (world coordinates space), thanks to the affine transformation, using the linear method.
To get the FA-based cortical growth rate, the FA is first normalized.

We have tested various correlation laws and finally assume a relatively low FA value in the
cortex, meaning no privileged orientation of the microstructure, is associated with a rela-
tively fast growth rate. We consider three different tangential growth rate to test in the

2https://www.slicer.org/
3www.meshlab.net
4https://ngsolve.org/
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model: a homogeneous growth rate (4.2); a growth rate correlated spatially with FA, defined by
αTANFA(x) = β/(1+FA(x,T0)) and a growth rate correlated in space and time with FA defined
by αTANFA(x, t) = β/(1 + FA(x,T0)e

–(t–T0)/τ), where τ = 7GW [26], T0 = 21GW and FA the
normalized fractional anisotropy. The coefficient β > 0 enables to keep the growth intensity in
the cortex comparable between the homogeneous model and the FA-based model, such that the
integration over the cortex volume of the FA-based growth rate equals the one of the homoge-
neous growth rate αTANhomogeneous, i.e.

∫
Cortex αTANFA dx =

∫
Cortex αTANhomogeneous dx.

β is computed in each case of a FA-based growth rate as
NCortex · αTANhomogeneous

(
∑NCortex

i αTANFA)
.

4 COMPUTATIONAL MODEL, SIMULATIONS AND RESULTS

4.1 Computational model

We developed the braingrowthFEniCS computational model 5 with the open-source FEniCS
library [27], to simulate cortical folding. The MRI-based brain spatial domain is illustrated in
Fig. 2 1. and discretized by 147917 vertices, 719399 tetrahedral elements and 106112 surface
triangle elements. Brain areas that are not supposed to grow (e.g. the longitudinal fissure, the
ventricles, and the mammilary bodies) are defined. The boundaries entities are marked to then
define the boundary conditions, as shown in Fig. 3. The growing boundary is traction-free.
The non-growing boundaries are fully fixed to prevent rotations and translations to be included
in the problem solution. A band is chosen to define the zone where contact between the two
hemispheres should occur. Then the surface is marked within this contact zone for both the Left
and Right hemispheres. At each iteration, the problem is linearized using a Newton-Raphson
solver with absolute tolerance: 10–9 (N.m–3), relative tolerance: 10–6 and max iterations: 10.
The direct solver mumps is then used (on single processor) to solve the linearized problem.

Figure 3: The four first figures show the grGrowthZones weighting function (red: 1; blue: 0), defined to avoid the blue
regions to grow. The two last the boundaries: Dirichlet boundary conditions where brain is not growing (green), contact
boundaries for the Left hemisphere (yellow) and the Right hemisphere (blue).

4.2 Biophysical model parameters

Model parameters, expressed in the international system unit and based on physical experiments
offer reliable and interpretable simulation results [28, 29]. This also enables to compare simula-
tion results with real data, at the corresponding time point. In this vain, the initial MRI-based
brain geometry was converted into meters. When homogeneous, the cortical thickness H0 was
set at 1.8 · 10–3 m [30, 31]; the shear modulus in cortex μCortex at 450 Pa; the shear modulus in
inner layers μCore at 150 Pa (preserving the stiffnesses ratio from [3, 32]) and the Poisson ratio
at 0.45 [4]. For the homogeneous tangential growth rate, we estimated its value as a variation
of elongation over time variation, computed it from the cortical areas at 21 and 36 GW and

5https://github.com/annekerachni/braingrowthFEniCS/
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obtained αTAN equal to 2.0 · 10–7 (m).s–1; the penalty coefficient was set empirically at ε equal
to 5.0 · 105; initial simulation time T0 at 21 GW; maximum simulation time Tmax at 36 GW
and time-step dt at 43200 seconds.

4.3 Simulations

Brain growth is simulated from 21GW, both considering an homogeneous cortical thickness
(see value in 4.2) and a MRI-based cortical thickness (3.3). Within those two cases, the three
different tangential growth rates detailed in 3.4.2 are tested. One simulation from 21 to 28GW
takes ∼ 15 hours (∼ 2 hours per gestational week) on Intel Xeon mono-cpu.

4.4 Results

About reproducing the consistent folds in the fetal brain across individuals (primary folds)

[33] showed both consistency and variability in the folding pattern of two developing brains. In
particular, the central sulcus and intraparietal sulcus are likely to be commonly located. [34]
proposed a review of gestational times of emergence of sulci, with the first emerging folds: around
22-23 GW, the calcarine sulcus, the posterior and anterior cingulate sulcus; then, around 24-25
GW, the central sulcus, separating the frontal and the parietal lobes, the collateral sulcus and
the superior frontal sulcus.

Folds emergence on simulation and on the dHCP data

Figure 4: Dynamics of cortical folding from 21 to 28 GW for the dHCP data (a.) and for simulation with growth rate
αTANFA(x, t) = β/(1+FA(x,T0)e–(t–T0)/τ) and H0 from MRI segmentation (b.). Shape index computed for initial smooth
dHCP mesh at 21GW (c.) and both dHCP mesh (d.) and simulation (e.) at 28GW.

Fig. 4 a. and b. show our simulations can reproduce folding, but do not reproduce the emergence
of one of the first fold, namely the central sulcus. This can be due to the initial smooth mesh
which probably already presents irregularities emphasized during the growth. The impact of
the model parameters also needs to be explored further. Additionally, the simulation volumes
are less inflated than the real data ones, and some hypothesis, like growth in the inner layers,
could be added to the model.

Frequency band analysis (Spangy)

We want to know to what extend the simulation results obtained with the braingrowthFEniCS
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model are able to represent the emergence of the primary folds. To do so, we carry out a spectral
analysis by band with the Spangy method 6 to compare the folding dynamics of the simulations
with those shown by the dHCP data.
Spangy decomposes a folding proxy (e.g. curvature, shape index) defined on the cerebral cortex
surface mesh on the basis of modes of the Laplace-Beltrami operator, and decomposes the
spectrum into spatial frequency bands. The spectral density and relative spectral density (to
the total spectral density) are computed for each frequency band. Depending on the local value
of the proxy, the cortical surface is associated with a dominant band of spatial frequencies (B–6

to B6). As spatial frequency bands B4, B5 and B6 could be associated respectively with the
primary, secondary and tertiary folds appearing successively during brain development, this
metric is used to characterize and compare the folding dynamics of both the simulations and
the dHCP data [18, 19]. The shape index, a decomposition of the curvature [35] between -1 and
1, is the proxy chosen (See shape index computed for dHCP and simulation meshes in Fig. 4 c.,
d. and e.). It characterizes the local shape of a surface. As mentioned in [36], it is independent
to the brain mesh size, unlike curvature.

Figure 5: Evolution of the spectral density associated with frequency bands B4 and B5 for simulations with H0 constant
and the three tangential growth rates, and for the dHCP data. Relative Band Power is the spectral power normalized to
total spectral power.

6https://github.com/gauzias/slam/blob/master/slam/spangy.py
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Figure 6: Evolution of the spectral density associated with frequency bands B4 and B5 for the simulations with H0 from
MRI segmentation and the three tangential growth rates, and for the dHCP data.

Fig. 5 and 6 show the spectrum associated to shape index of the cortical surface are relatively
more regular for simulations than for the dHCP data. Then, from 25GW when the first folds
emerge, B4 frequencies are slightly less represented in all the simulations compared to the real
data (this observation can be nuanced when considering B4 relative band power that is com-
parable between simulations and dHCP), while B5 frequencies seem too represented, meaning
our model probably favors high frequency folds at the expense of primary ones. It can be also
seen qualitatively on the folded meshes from the simulations. The simulations with MRI-based
segmentation appear, in our case, further from the real data fold shape spectrum.
In terms of the impact of using a FA-based growth rate, the simulations with a constant tan-
gential growth rate seem to globally better approximate the dHCP data for B4 frequencies from
25GW (H0 homogeneous), while the simulations with a growth rate spatially correlated with
FA are closer to the real data for relative B5 frequencies.

5 CONCLUSION

We use fetal MRI data to incorporate heterogeneity into the parameters of our brain growth
model. In particular, we propose to correlate the fractional anisotropy data with the cortical
growth rate and to quantify the impact on the type of folds obtained, via a frequency band
analysis based on the shape index proxy. Our simulations with a FA-based growth rate, com-
pared to the one with an homogeneous one, show the growth law responsible for the emergence
of primary folds (B4) does not seem to be the same as the one for secondary folds (B5). This
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work allows to consider incorporating data from medical imaging to investigate the link between
macroscopic deformation and the microstructural behavior and the impact of their entanglement
onto the human cortical folding pattern. A further calibration of the model is to be done to
better approximate the morphology of the real data and a growth law may be defined from the
longitudinal FA maps.
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