ANALYSIS AND DESIGN OF A PYROTECHNICPOWERED SELF-STOPPING ACTUATOR

Vadim Kogytoff

January 10, 1975

Prepared fer US Atmic Enengy Cemmissionundercontract No. W-7405-Eng-48 -

UCRL-51695

ANALYSIS AND DESIGN OF A PYROTECHNICPOWERED SELF-STOPPING ACTUATOR

Vadim Kopytoff
(Ph. D. Thesis)
M.S. date: January 10, 1975

This report was prepared as an account of work sponsored by the United States Guverament. Neither the United Stales nor the United States Energy Research and Development Administration, nor any of theta employees, nor any of their contrasterss, subcontractors, or the is employers, makes any warranty, express of implied, or assumes any legal Wab山ity of rempansibilty for the iecturay, completeness at usefulness of any information, apparatus, product or process disclujed, or represents that its use would not infringe privately owned rights.
"Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Atomic Energy Commission to the exclusion of others that may be suitable."

Analysis and Design of a Pyrotechnic-Powered Self-Stopping Actuator

By
VADIM KOPYTOFF
B.S. (Northwestern University) 1955 M.S. (Northwestern University) 1957

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF ENGINEERING in

Engineering

in the
GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA

Approved:

Committec in Charge

Deposited in the University Library
Date
Librarian

Abstract

Safety and environment considerations necessitate the use of automatic emergency shut-off valves in nuclear power-plants, underground nuclear tests, oil pipelines and even oil wells. Such valves require actuators to move a member (e.g., a gate, a stem or a ball which may weigh hundreds of pounds) in a time that may be as short as a fraction of a second, and which must have some provision for decelerating the maving bady at the end of its stroke to avoid a damaging impact. A device for satisfying these requirements with the high reliability required for such systems is proposed. This device consists of a double-acting piston driven by gas generated by the combustion of a propellant, with the novel feature of using a precisely determined straight hole through the piston to provide a gas cushion for deceleration during the last part of the stroke.

Predicting the perfomance of such an actuator required analysis and calculation of the rate of propellant gas generation, the rate of gas flow into the actuator cylinder, and that of gas flow through the piston hole. Because of the complexity of this analysis, a numerical solution was required. A computer subroutine for carrying out this solution was developed. Its applicabllity was verified by comparison of the predicted and experimentally measured performance of a speific actuator.

A complete program using this subroutine was then written for designing an actuator. This program incorporates a procedure which simultaneously satisfies seven design requirements by minimizing the sum of squares of the differences between calculated and required values of these requirements. The program is interactive with the user, communicating with him to report the progress of the design and to obtain design decisions during execution. Designs produced by the program were found to be efficient and consistent, No knowledge of thermodynamics or of the pyrotechnic gas generator process is required of the user.

TABLE OF CONTENTS

Page

ABSTRACT $i 1$

1. INTRODUCTION 1
2. SYSTEM DESIGN PRINCIPLES 7
3. DYNAMICS OF A GAS-DRIVEN VENTED PISTON ACTUATOR. 18
4. EXPERIMENTAL VERIFICATION OF ACTUATOR ANALYSIS 45
5. THE ACTUATOR DESIGN PROGRAM 55
6. TESTS AND APPLICATIONS OF DESAC 63
7. SUHMARY AND CONCLUSION 73
REFERENCES 74
APPENDIX
I. A Four Parameter Equation for Calculating Gas Enthalpies. 75
8. Determination of Six Gas Generator Constants. 79
IIL. Determfiation of a Realistic Starting Point 83
IV. Listing of Actuator Design Program DESAC 89
V. A Complete History of Test Designs A and B 119
V1. Teletype Printout for Designs A, B, C and D. 135

ACKHOWLEDGEMENTS

My special thanks go to Dr. Warren H. Giedt for his patient guidance, suggestions and continuing interest, and to V. N. Karpenko, NTED Division Leader, for his encouragement, patience and support, without which this work could never have been completed.

The faculty at U.C. Davis, for their sincere interest, and especially for their willing efforts to adopt, and adapt to, the Davis-Livermore T.V.-link, has my deepest gratitude.

My thanks also go to the M.E. Education Staff, for their efforts to make possible my attendance at a university 90 miles away, and all the personnel of Lawrence Livermore Laboratory for the special assistance they provided, especially to Roy Heyden (Assembly Shops) for his prompt response to the many scheduling emergencies, and to Sylvia (Nikki) Falco, for typing ard retyping this manuscript.

1. INTRODUCTION

An automatic control system generally incorporates feedback, that is, a sensor determines whether or not a certain desirable condition exists, and activates a correcting device when required. However, many systems that do not include a feedback loop may also be considered automatic controls. These are referred to as "Open Loop Controls", an important subgroup of which could be called "Emergency Only" systems. These systers are, hopefully, never to be actuated, but must always be ready for an emergency. Examples of such systems are temperature sensors that close fireproof doors and/or activate sprinklers, radiation detectors and pressure sensors that actuate valves to isolate a nuclear reactor in case of contaimment failure, and shut-off valves for the proposed Alaskan Pipeline to minimize oil spills in case of line break.

In general, such systems include:
a) A sensor, to detect the emergency.
b) An energy source, to ensure total independence of the system response from outside power.
c) A means of converting the energy to motion of the emergency controlling device.
d) A means of stopping the motion, once the desired effect has been attained.

In many systems, the time interval between receiving the activation signal and achieving the final state is of no great importance. One such example is a typical warenouse fire-door. It may be acceptable to have this door close in a fraction of a second to several seconds. The velocity of operation can be low, so relatively little energy is required and stopping the door at the end of its travel is not difficult. For low energy systems of this
kind, the choice of energy source is dictated by reliability, cost, and convenience. Stored energy in the form of a raised weight, a compressed mechanical spring, high pressure gas, or electric batteries may be chosen by the designer, depending on available room, ambient conditions, or nearby presence of other energy systems. Similarly, stopping the motion is not, difficult when the system kinetic energy is low or when it is required to just stop the moving mass, in whatever position it may be. Spring or rubber bumpers are cheap and reliable. Crushable bumpers -- like lead, honeycomb, or plastic foam -- can absorb great amounts of energy at very high impact velocities. Friction or hydraulic shock-absorbers are availbable as off-the-shelf items.

With large masses and high velocities design is less flexible. Only high pressure gas allows storage of sufficient energy in a reasonable volume. To stop a heavy, rapidly moving object at a very specific position (as the gate in a sealing valve) requires careful design. Bumpers cause bounce and crushable materials or friction pads may stop the moving mass too soon, failing to give the exact stroke required.

Hydraulic decelerators, while nominally designed to exert a constant retarding force throughout their stroke, are made to give this force at some small but non-zero velocity at the end of their stroke. This results in an impact at the end of the stroke, with about 5\% of the initial energy dissipated in the blow. As a result, if the velocity of arrival is, for some reason, too low, the shock absorber can "float" the mass into final position, rather than bring it to a full stop before this desired final position is reached. For this reason, hydraulic decelerators are the preferred means of stopping moving masses at a definite position. Unfortunately, they are usually designed for high-mass low-velocity applications, such as stopping
a truck or freight-car at a loading dock; for high spead applieations a standard decelerator requires, at the very least, a minor redesign. Furthemore, their cost (especially for high energy ratings) is considerable (e.g., a commercial, off-the-shelf, decelerator, capable of absorbing 180,000 in. $1 b_{f}$ in a distance of two inches, was priced in 1972 at over $\$ 900$.).

The present design study is focused on actuators that would move masses of 20 to 1000 pounds through a distance of 4 to 20 inches in a time of 0.02 to 1.0 seconds. Such actuators are needed for closing contaiment-valves in a nuclear power plant or in underground nuclear testing, or to shield personnel during fabrication of explosives.

The systems under consideration are for use in emergency situations; and because they may be unused, and hence neglected, for long periods of time, reliability of operation is of paramount importance. Foilure to actuate, or failure to actuate properly, may have very serious consequences. Unintentional actuation is also highly undesirable. For these reasons, stored high-pressure gas is not an attractive solution: Leaks are always possible, requiring an inspection routine by skilled personnel versed in high-pressure gas technology. Safety of personnel located in the gas storage area requires gross over-design of the pressure system. Pyrotechnic gas generation avoids these problems, and simplifies remote initiation. Military and space exploration experience has given to pyrotechnic technolagy a very high level of reliability. Capacitor-discharge exploding-bridge-wire (EBW) initiators are now better than 0.9999 reliable at the 90% confidence level. The electrical system used to fire the initiator can be continuously monitored by a weak current, which would trigger an alarm if the circuit is interrupted. At the same time, a permissible no-fire current of over 200 amperes reduces the probability of accidental initiation to a negligible value.

Thus, pyrotechnic-powered piston actuators offer a means of satisfying the reliability requirements of these systems; they can be depended upon to accelerate the mass to be moved to the high velocity required in the short time availahle, and yet not to actuate accidental:y.

The problem of stopping the mass at a definite position is presently handled, in such systems, by hydraulic decelerators. These are not oniy expensive and not readily available items, but are also a potential source of trouble. If they fail to operate properly due to their ficid leaking out or freezing, the traveling mass will reach the end of its travel ai too righ a velocity causing damage to some part of the sealing system. Not only will the operating system fail to seal, but any backup system may become inoperative.

Consideration of these deficiencies of hydraulic decelerators (i.e., nonexistence of high-speed-impact modelis, negative effect on system reil.ability, poo: availability and high price) led the author to consider using the generated gas to decelerate as well as accelerate the moving pass. =. After some evolution, the system illustrated in Fig. 1 took form. it consists basically of a double-acting piston with a vent-hole. When the pyrotechnic gas-generator is fired, high-pressure gas flows into the cylinder head clearance-volume, ascelerating the piston and the mass attached to the piston-rod. At the same time, the gas flows through the vent-hole into the buffer volume back of the piston, building up a gas cushion. If the cylinder voilume, gas quantity, and vent are, are properly proportioned, thre piston will come to a stop just short of hitting the end of the cylinder.* Only a gross

[^0]
$!$

FIGURE 1 .. SCHEMATIC OF PYROTECHNIC-FOWERED SELF-STOPPING ACTUATOR
occlusion of the vent could prevent deceleration of the piston. In addition, drilling a vent-hole or two through the piston is much cheaper than buying a hydraulic decelerator.

Design of such a system involves analysts of the motion of a vented piston, driven by a gas produced by combustion of a suitable propellant. The rate of gas generation will vary with time, as will the temperature and pressure of the gas, subject to an equation of state other than the perfectgas equation. The desired performance must be achieved without exceeding the limitations of the materials and components available. However, overdesign should be avoided in order to make the cost of the system as 10 w as possible. For example, actuation of the system in half the time required "just to be on the safe side" requires four times the energy. Stresses will increase, requiring more material, more expensive material, and more desigi: effort. Costs will go up and reliability could even go down.

A procedure for accomplishing these objectives is presented in the following sections.

2. SYSTEM DESIGN PRINCIPLES

GENERAL DESCRIPTION OF THE PROBLEM

Typically the design of a self-stopping actuator presents itself in the following form: Given M, the mass of a specified element, design an actuator to move it througn a distance of L inches in T seconds and bring it to a stop without damage at the end of that movement.

On the basis of the considerations detailed in Section 1, the general configuration of Fig. 1 will be utilized: i.e., the actuator will be powered by pyrotechnic gas, and will be self-stopping by means of a vent in the piston and a seal around the piston-rod.

The system will be compietely defined when the following quantities have been determined:

1) Propellant charge in a specific pyrotechnic gas generator
2) The diameter and length of the piston vent-hole.*
3) The clearance-volume on the head-side of the piston.
4) The buffer-volume behind the piston.
5) The cylinder diameter.
6) The piston-rod diameter.

The design of the actuator involves, therefore, the determination of six independent variables that will aive the desired values of stroke and time for the system shown in Fig. 1. These values of stroke and time must be realized while satisfying the constraints imposed by the geometry of the system, and such limits as the allowable stress in the piston-rod, and the maximum pressure the system seals can be expected to withstand.

[^1]Table I lists the variables enumerated above, and those defining system performance and constraints, grouping them by type and specifying the units which will be used. The right-hand column gives a mnemonic symbol for each variable for use in the text and also in the Fortran programs to follow.

BASIC DESIGN PROCEDURE

The customary procedure for designing a system starts with selecting a configuration judged capable of the desired performance. An analysis of the system is made to express (analytically or numerically) the system performance as a function of the least possible number of independent variables. Then, intuition or past experience is used to assign a definite value to each of these independent variables, thus identifying a specific system. The performance of this system is now calculated and compared to the performance specified by the problem statement. If the calculated performance is found to be inadequate, the independent variables defining the system are assigned different values by a cut-and-try, or seme other, more rational method, and the performance of the modified system is again evaluated. This procedure is repeated until the desired performance is adequately approximated by the calculated one, or until the designer decides that the problem is insoluble.

The above procedure implies two essential assumptions:
a) The performance of the system can be calculated, once its geometry, components, and dimensions are defined.
b) This performance can be evaluated, i.e., compared qualitatively to the desired performance.

The fundamental relationships involved in describing the performance of a pyrotechnic-powered self-stopping actuator will be outlined in the follow-

TABLE I

List of Variables Involved in the Design of a Pyrotechnic-Powered Self-Stopping Actuator.

Variables

Specifications given in the problem statement:
Mass to be moved
$1 b_{m}$
WLB
Stroke required
Time required for stroke

Independent variables defining system:

Propellant Charge	g	PWGR
Piston vent-hole diameter	in.	HD
Length of cylinder-head clearance volume	in.	HL
Length of cylinder buffer volume	in.	BL
Cylinder diameter	i!:.	CD
Piston-rod diameter	in.	PRD
Piston thickness (vent-hole length)	in.	PT

System constraints:
Allowable final velocity
Allowable piston-rod stress
Allowable gas generator pressure
Allowable cylinder pressure

Calculated system performance:
Time of stroke
Final velocity
Maximum piston-rod stress
Maximum generator pressure
Maximum head-end pressure Maximum buffer-end pressure
$\sec \quad$ TAC

in./sec	VFAL
psi	STAL
psia	GPAL
psia	CPAL

in./sec VFIN psia STMX
psia GPMX
psia HPMX
psia BPMX
ing pages. It will be seen in the next Section that, given the values of the six independent variables listed in Table I, a numerical integration is required to solve the set of relations developed.

The critical remaining problem is to conceive and develop a rational and efficient procedure for determining those particular values of the independent variables which gield the desired system performance. In the present application there is no single variable to be optimized, but rather several requirements to be satisfied. The procedure developed is based on minimizing the sum of the squares of the differences between the desired and the calculated values of the dependent variables.

ANALYTICAL REPRESENTATION OF THE DESIGN PROBLEM

It will be assumed that, in the physical system to be modeled, the length of stroke is fixed by some enclosing structure or sealing requirement. Thus, if the moving element stops short of the full movement required (for example a fire door that must close the opening in the wall), the actuation would be considered a failure.

For this reason, in the numerical solution determining the performance of the model, the iteration by time-increments will be stopped when the stroke is equal to the stroke required; i.e., the calculated stroke must always equal the required stroke. Another factor must be recognized, however: the moving element will arrive at the required stroke with a finite velocity, and hence a finite kinetic energy. This energy must not resuit in damage to the element or to the stopping structure.

Actually, it is advantageous to have some small finai velocity at the end of the required stroke, because the calculated performance of any real system will never give exactly the actual performance, and if some velocity
exists at the required stroke in the analysis, the stroke requirement is more likely to be satisfied by the real actuator. This final velocity is advantageous is another way: it gives a higher average velocity of travel, ald hence permits the satisfaction of the time requirement with a lower maximum velocity. The penalty for these advantages is the possibility of damage to the moving element or to the stopping structure if excessive kinetic energy is present at impact. However, if the maximum allowable impact energy can be specified, or if past experience indicates a safe value for the final velocity, the actual final velocity can be made equal to this desired safe velocity, thus substituting the constraint of final velocity for that of the stroke as a problem requirement.

Introducing this change into the problem statement, the design objective can be represented by the following array of relations:

$$
\begin{align*}
& \text { TAC(PWGR,HD,HL ,BL ,CD,PRD) }=\text { TR } \tag{2-1}\\
& \text { VFIN(PHGR,HD,HL,BL }, C D, P R D) \leq V F A L \tag{2-2}\\
& S T M X(P H G R, H D, H L, B L, C D, P R D) \leq S T A L \tag{2-3}\\
& G P M X(P W G R, H D, H L, B L, C D, P R D) \leq G P A L \tag{2-4}\\
& H P M X(P W G R, H D, H L, B L, C D, P R D) \leq C P A L \tag{2-5}\\
& B P M X(P H G R, H D, H L, B L, C D, P R D) \leq C P A L \tag{2-6}
\end{align*}
$$

with the variables as defined in Table I. Here, for example, Equation 2-1 indicates that the time actually taken (TAC) for the piston stroke is a function of PWGR, HD, HL, BL, CD, and PRD, and is equal to $T R$, the time specified. Equation 2-2 shows that the final velocity (VFIN) is a function of the same independent variables and must be less than or equal to VFFS, the allowable final velocity. Equations (2-3), (2-4), (2-5), and (2-6) have similar interpretations.

USE OF STANDARD COMPONENTS

The configuration shawn in Fig. 1 permits the use of some standard components in the design. This may result in considerable saving in component cost and fabrication. Ability to adopt standard, readily available parts to carry out the functions required by the design is a most powerful weapon in the arsenal of the designer. He should design anything his problem requires, but he should also make use of available components of known reliability and performance.

For the configuration under discussion, it can be seen that the gas generator would require an extensive testing and development program. The pis-ton-rings and piston-rod seals cannot be produced in the average machineshop, and would also require a certain amount of development. The cylinder can be either obtained in some standard diameter and cut to length as required, or machined to the right dimensions from heavy-wall seamless tubing, and the two cylinder ends can be machined from solid material. If the cylinder is of some standard diameter, it and/or its ends can be purchased from a hydraulic-cylinder manufacturer.

In regard to the pyrotechnic gas generator (PGG), several are available commercially. They have different propellant loadings, actuation times, dimensions, and initiation schemes. Consideration of these features and general availability led to the selection of a particular type that could be loaded with 10.0 to 34.1 grams of IMR-4227 propel lant with initiation in less than 200 microseconds and full-load pressure equilibrium in less than three milliseconds. These generators are available with reasonable delivery time, offer good flexibility of loading, and give extremely reproducible gas pressures. It is of course, understood that any other PGG could be used,
provided its rate of gas generation is known, or determinable.
Pistan-rings and piston-rod seals are also commercially available. They are made of many materials (e.g., cast iron to silicone rubber). To sustain gas pressures of the order of $30,000 \mathrm{psi}$, and give better sealing than can be expected from automotive-type metallic piston-rings, a hardplastic ring impregnated with molybdenum disulphide was selected for both the piston-rings and the piston-rod seals. These rings are available in the range from one to twelve inches in diameter, in increments of one sixteenth or one eighth inch. Thus, the choice of piston-rings (and hence cylinder diameters) and piston-rod seals (and hence piston-rod diameters) is now constrained to about one hundred discrete values, rather than the theoretically continuous range between zero and some maximum dictated by the system geometry.

The designer is thus restricted to a propellant charge between 10, and 34.1 grams, and to one of about a hundred cylinder and piston-rod diameters. Of course, if he concludes that a charge greater than 34.1 grams is needed two or more gas generators can be used. The same logic applies to the number of cylinders, and to the number of vent-holes per piston. Unless some very unusual problems are encountered, it is desirable to use a minimum number of components (i.e., cylinders, gas generators, vent-holes). To ensure that this philosophy is followed, a preliminary design should be made, with no restriction on cylinder or piston-rod diameters, but with one cylinder, one vent-hole, and as many generators as required to accommodate the propellant needed, and seeking the least propellant weight that would satisfy the design requirements. This new requirement, i.e., minimizing the propellant charge, will snsure that the minimum number of gas generators is used in the design. Thus a new relation is added to the six
relations given by 2-1 to 2-6.
Finally, four of the inequalities can be transfermed into equations by the following rationale:

It is a well established principle in engineering that a system is overdesigned if some component is working at a level below an acceptable limit, such as a maximum stress lower than the allowable stress, or a maximum pressure lower than the allowable pressure. For an efficient design, therefore, an equal sign can be substituted for the "less-than or equal" sign in the relations 2-2, 2-3, 2-5, and 2-6. Note that the same treatment cannot be applied to relation 2-4, since the adoption of a standard gas-generator forces the acceptance of its working at less than maximum efficiency.

The design problem is now reduced to solving the following seven relations:

SOLUTION PROCEDURE

A convenient way of solving this array of nonlinear simultaneous relations is to use the optimizing computer program due to Powell (Ref. 2) which seeks those particular values of the n independent variables that minimize the sum of the squares of m nonlinear functions ($m>n$) of these n variables. For this purpose, the relations 2-7 to 2-13 can be rearranged
to give the following 7 functions:

$$
\begin{array}{lll}
F(1)=\text { PWGR * NOGC }{ }^{\dagger} & 2-14 \\
F(2)=\text { TAC - TR } & 2-15 \\
F(3)=V F I N-V F A L & 2-16 \\
F(4)=\text { STMX - STAL } & 2-17 \\
F(5)=\text { HPMX - CPAL } & 2-18 \\
F(6)=\text { BPMX - CPAL } & 2-19 \\
F(7) \begin{cases}=0 . & \text { if GPMX }<\text { GPAL }\end{cases} \\
=\text { GPMX - GPAL } & \text { if GPMX > GPAL } & 2-20
\end{array}
$$

It can be seen that if a minimum of $F F=\sum_{i=1}^{m} F_{i}{ }^{2}$ can be found, and if the individual values of $F(2)$ through $F(7)$ are sufficiently close to zero, the system of relations 2-14 through 2-20 may be considered as solved.

Once the unrestricted preliminary design is completed, and reported to the designer, he can select the standard piston-rod and cylinder diameters that are reasonably close to those determined in the preliminary design. If necessary, he can decide to use more than one cylinder (if no standard size can do the job by itself), and more than one gas generator per cylinder (if the minimum propellant required per cylinder is more than the maximum usable in one generator). If the vent-hole diameter determined in the preliminary design is more than can be accommodated in the annulus between the piston-rod and the bottom of the piston-ring groove, the designer can call for more than one vent-hole.

[^2]Finally, the designer can weigh the advantages of having the simplicity of a single cylinder, of an awkwardly large diameter, versus the complexity of several cylinders of more conventional proportions. Similarly, a choice may have to be made to accept a higher maximum working stress in the pistonrod (requiring the use of a more expensive material) versus the complication and expense of using two actuating cylinders.

FINAL DESIGN

When all these decisions have been made, a final design-search must be undertaken. The same seven conditions (2-14 to 2-20) must be satisfied (or approximated), but now the number of cylinders, generators per cylinder, and vent-holes per piston is fixed. The cylinder and piston-rod diameters are defined to be some definite, standard value, and the four unknowns to be determined are the propellant charge per generator, the vent-hole diameter, and the head-volume and buffer-volume clearances.

The same seven functions are now determined by four independent variables, and the Powell Least-Squares Program can again be used. Since the two standard values selected for the cylinder and piston-rod diameters are presumably fairly close to the optimum diameters determined in the preliminary design, a final design-search can be initiated from a starting point involving the same head- and buffer-volumes, the same total vent area, and the same total propellant loading. The cylinder and piston-rod diameters are now fixed, as well as the number of cylinders, gas-generators, and ventholes.

The procedure delineated above will determine the dimensions of a selfstopping actuator, and the propellant charge, required to move a given mass through a given distance in a given time, using the minimum number of standard components, and a minimum propellant charge, and not exceeding
allowable values of final velocity, maximum piston-rod stress, and maximum cylinder pressures. The only condition required is that the preliminary design-search be started reasonably close to the desired optimum. Appendix III will describe one method of determining such a starting point.

3. DYNAMICS OF A GAS-DRIVEN VENTEI-PISTON ACTUATOR

The proposed actuator system is shown schematically in Fig. 2, with labels to identify the items that will be used in the calculation of its performance, i.e., in predicting piston position and velocity as a function of time. The basic relation for this is Newton's second law of motion:

$$
F=M \cdot A=M \frac{d U}{d t}
$$

where F is the resultant force on the piston, M is the mass to be moved, A is the acceleratior, U is the velocity, and t is time.

Since the system startis from a known position and state (usually with the gas volumes at atmospheric pressure and ambient temperature, with zero velocity and known initial displacement and with a known initial charge of propellant), the state of the system at any later time can be determined by forward integration with respect to time. However, the force on the piston varies with time in a complex manner, so no analytical integration of Equation 3-1 can be made. But by putting the equation in finite difference form:

$$
F=M \frac{\Delta U}{\Delta t}
$$

it can be solved numerically by stepwise forward integration.

FORCES ACTING ON THE ACTUATOR PISTON

The net force on the piston is primarily due to the gas pressure in the cylinder-head volume V_{H} and the buffer volume V_{B}. Combustion of the

FIG. 2 - SCHEMATIC AND NOMENCLATURE FOR THE ANALYSIS
OF THE PYROTECHNIC-GAS DRIVEN, SELF--STOPPING
ACTUATOR. ACTUATOR.
propellant in the PGG produces gas at temperature T_{G} and pressure P_{G}. This gas flows into volume V_{H} (as indicated in Fig. 2 by the arrows labeled \dot{m}_{G}). The force F_{H}, exerted by the pressure P_{H} of this gas on the net piston area, is given by $F_{H}=\frac{\pi}{4}\left(d_{c}^{2}-d_{V}^{2}\right) \cdot P_{H}$.

As pressure builds-up in V_{H}, a gas flow will be established through the vent in the piston (as indicated by the arrows labeled \dot{m}_{B}). In the buffer volume V_{B}, gas pressure P_{B} will rise, exerting a force F_{B} on the exposed piston area: $F_{B}=\frac{\pi}{4}\left(d_{C}^{2}-d_{V}^{2}-d_{r}^{2}\right) \cdot P_{B}$.

Additional forces acting on the piston include:
F_{G} - the force due to gravity acting on the moving parts, at an angle θ to the actuator axis: $\mathrm{F}_{\mathrm{G}}=\mathrm{M}, \cos \theta$
F_{D} - the force due to the frictional drag of the gas flow on the vent wall: $F_{D}=\frac{\pi}{4} d_{v}{ }^{2}\left(F_{7}-F_{2}\right)$, where F_{7} and F_{2} are thrust functions (Ref. 5, p. 49) evaluated at the inlet and outlet of the vent.
F_{a} - the farce due to atmospheric pressure acting on the piston-rod area: $F_{a}=\frac{\pi}{4} d_{r} \cdot P_{a}$
F_{s} - the force due to friction on the pisten rings and piston-rod seals. This force can be calculated by an empirical equation derived from friction data submitted by the manufacturer (Ref. 12).

$$
F_{s}=d_{s}\left(k_{1}+k_{2}(\Delta P)+k_{3}(\Delta P)^{1 / 4}\right)
$$

where k_{1}, k_{2}, and k_{3} are empirical constants, d_{s} is the nominal seal diameter, and ΔP is the pressure differential across the seal.

INITIAL CONDITIONS IN THE THREE GAS VOLUMES

The state of a body of gas is usually determined by having certain
definite values for its temperature and pressure. However, in the present application it is more convenient to define each gas state by specifying its internai energy and its density, because the processes under inysisigation deal specifically with changes in gas energies, masses, and volumes. Therefore, before determining the change in state over the initial time interval Δt, it is necessary to express the initial system state, specified by its pressures and temperatures, in terms of gas internal energies and densities.

The gas occupying the three volumes V_{G}, V_{H}, and V_{B} at time $t=0$ is atmospheric air. The mass and internal energy are small when compared to those of the propellant gas generated. Negligible error would therefore be introduced by assuming this original gas to be propellant gas. This will eliminate the need to consider, in subsequent calculations, the mixing of air and propellant gas in each volume. For this reason, although the perfect gas equation would be satisfactory for finding the initial yas specific volume, the propellant-gas equation of state will be used.

THE GAS EQUATION OF STATE

The Abel equation of state is commonly used in propellant calculations (Ref. 4, p. 243). It has the advantage of requiring only one more constant than the perfect gas equation of state, it is easily soluble for either P, v, or T, and is more accurate than most of the other approximations made in ballistic calculations. Corner (Ref. 3, p. 101) points out, however, that the virial equation:

$$
P v=R T\left(1+\frac{B}{v}\right)
$$

is, "at each temperature a better representation" of the gas behavior
than the Abel equation (errors of the order of 0.7 per cent vs 2 per cent). Since this improvement does not bring any penalties (same number of constants, same solvability for P, V, or T, the virial equation will be used. Rearranging Equation 3-3 into a quadratic in v and solving for the specific volume:

$$
v=\frac{R T+\sqrt{R^{2} T^{2}+4 P R T B}}{2 P}
$$

where R is the gas constant for the propellant gas and B is an empirical constant derived from pressure-temperature-density measurements.

The gas masses present at time $\mathrm{t}=0$ in each volume can then be calculated as follows:

$$
\begin{aligned}
& m_{G, t=0}=\frac{V_{G}}{V} \\
& m_{H, t=0}=\frac{V_{H}}{v} \\
& m_{B, t=0}=\frac{V_{B}}{v}
\end{aligned}
$$

THE INTERNAL ENERGY OF THE GAS

Gas internal energies are usually calculated from an empirical expression for specific heat capacity. These expressions are available for many gases (Ref. 8 and 9\}, but their form is usually such that each equation is applicable to only a l.mited range of temperature, and extrapolates very badly outside this range. Tais approach serves frairly well for calculating specific heats, but complicates energy calculations, and seriously hinders solving the reverse problem, namely, that of finding the gas temperature corresponding to a certain internal energy, For this
reason, a three parameter, readily integrable relation was developed, to cover the entire expected temperature range. This relation is:

$$
c_{p}=c_{1}+\frac{c_{2}}{T}+c_{3} \frac{\ln T}{T}
$$

where T is the absolute temperature.
This equation is compared, in Appendix I, with the more usual four parameter equation for the specific heat capacity, and is shown to be of comparable accuracy, while requiring a minimum of three experimental measurements (instead of 4) to be completely defined.

At the pressures and temperatures involved, pressure effects on specific heat, capacity are of the order of one per cent (Ref. 7, Appendix). Assuming this to be negligible, gas specific enthalpy at absolute temperature T is given by:

$$
\begin{align*}
h_{T} & =\int c_{p} d T=\int\left(c_{1}+\frac{c_{2}}{T}+c_{3} \frac{\ln T}{T}\right) d T \\
& =c_{1} T+c_{2} \ln T+\frac{c_{3}}{2} \ln ^{2} T+c_{4}
\end{align*}
$$

and the specific internal energy, by:

$$
e_{T}=h_{T}-\frac{R}{J} T
$$

The initial internal energy of the gas in each volume is then:

$$
\begin{align*}
& E_{G, t=0}=m_{G, t=0} \cdot e_{T} \\
& E_{H, t=0}=m_{H, t=0} \cdot e_{T} \\
& E_{B, t=0}=m_{B, t=0} \cdot e_{T}
\end{align*}
$$

CALCULATION OF THE RATES OF CHANGES

Now that the pressures, temperatures, energies, volumes and masses of the gases in the PGG, V_{H}, and V_{B} are known for the initial piston position and starting (i.e., zero) velocity, it is possible to calculate the following four time-rates of change:
a) the rate of propellant combustion m_{p}.
b) the gas flow rate \dot{m}_{G} out of the generator.
c) the gas flow rate \dot{m}_{B} out of the volume V_{H} and into V_{B}.
d) the acceleration of the piston A.

RATE OF GAS GENERATION

The propellant burning rate is calculated by the Vieille Equation (Ref. 4, p. 412), commonly accepted for burning pressures between 10,000 and 50,000 psia (Ref. 3, p. 71).

$$
\dot{m}_{p}=m_{s} K_{B} p^{\alpha}
$$

where K_{B} and α are empirically determined constants characteristic of the propellant, m_{s} is the initial propellant charge, and P the pressure.

Assuming α to be a constant has been found adequate in gun internal ballastics, where maximum pressures do not vary appreciably from gun to gun and from round to round (Ref. 3). In the PGG, however, the charges vary between 10 and 34 grams, and the maximum pressures, between 2000 and 30,000 psia, with correspondingly longer times spent at lower pressures. Assuming that α is a constant made it impossible to reproduce the experimental performance of the PGG.

No data could be found on how to calculate α for any set of conditions, but references 3 ($p, 72$) and 4 ($p .412-414$) agree that α is mostly dependent
on pressure, and that it is usually found to be between 0.8 and 0.9 for gun applications. Reference 3 mentions that the highest value of a ever observed was 1.02, and that aparticular propellant was found to show $a=0.96$ at 22,000 psia, with a steady decrease "to about 0.5 at 1800 psia". This last value theoretically corresponds to single, first-order reaction. and can thus be assumed to extend to atmospheric pressure.

Thus, the following can be sumarized: $a=0.5$ at very low pressures, it rises slowly, being still "about 0.5^{N} at 1800 psia, then increases to about 0.96 at 22,000 psia for a particular propellant, and approaches 1.02 asymptotically at very high pressures. This betavior closely resembles the growth law called "the logistic curve" (Ref. 11, p. 202). This Sshaped curve is defined by spacifying four parameters. Two of these can be the horizontal asymptote $(\alpha=1.02$ for $p=+\infty$) and the value 0.5 at zera pressure. The remaining two parameters were found experinentally (Appendix III).

Thus, before using Equation 3-9, it is necessary to calculate a corresponding to the burning pressure by the equation:

$$
a=b_{1}+\frac{1.02-b_{1}}{1+b_{3} \exp \left(-\left(1.02-b_{1}\right) b_{2} p\right)}
$$

where $b_{3}=\frac{1.02-0.5}{0.5-b_{1}}=\frac{0.52}{0.5-b_{1}}$, and b_{1} and b_{2} are two experimentally determined constants. This value of α is then used in Equation 3-9 to find \dot{m}_{p}. This is only done as long as there is some unburned propellant in the PGG, after which \dot{m}_{p} is set to zero.

RATE OF FLOW INTO HEAD-YOLUME

The mass flow from the PGG to the volume V_{H} is very complex: the flow starts axially in the annualar propellant chamber, continues through eight
radial ports, and flows out of the PGG through the circular central passage (Fig. 3). Flow would be approximated poorly by the constant-area adiabatic flow with friction as defined by the Fanno-Line relationships. Following (Ref. 13) the iSME Fluid Meter Report, it can be represented by a Bernaulli flow, with an average coefficient of discharge to account for frictional losses and effective flow area.

This yields the following expression for the flow rate:

$$
\dot{m}_{G}=K_{f} D^{2} \quad \sqrt{\left(P_{i}-P_{e}\right) \rho_{i}}
$$

where K_{f} is a constant detemined by experiment and uniting the coefficient of discharge with some dimensional constants, D is the diameter of the minimum section, P_{i} and $\rho_{\mathbf{i}}$ are the pressure and density in the combustion region, and P_{e} is either the downstream pressure P_{H} or the critical pressure P_{*} depending on the flow regime. Given the upstream and downstream temperatures and pressures, the applicable flow regime is determined by whether the critical pressure corresponding to the upstream pressure is higher or lower than the downstream pressure. The critical pressure ratio is a function of γ, which is a function of the gas temperature, and hence varies along the length of the flow path. However, the total range of this variation is not great, so an average γ can be calculated iteratively and used to define the critical pressure ratio, and thus determine the value of $P_{\epsilon^{\prime}}$. The steps in determining P_{e} are as follows:
a) assume the flow is choked at some throat location.
b) assume an "almost" Fanno flow from the inlet to the throat. The Fanno relation for the flow temperature is (Ref 5):

fig. 3 - PYROTECHiNIC GAS gEnerator
28.

$$
\frac{T_{1}}{T_{*}}=\frac{\frac{\gamma+1}{2}}{1+\frac{\gamma_{-1}}{2} M^{2}}+\frac{\gamma+1}{2} \text { as } M+0
$$

therefore:

$$
T_{*}=\frac{2}{\bar{\gamma}+1} T_{i} \text { where } \bar{\gamma}=\frac{\gamma_{i}+\gamma_{*}}{2}
$$

c) since γ. is not known, an iterative solution must be used. Convergence is rapid because γ varies slowiy with T.

The sequence is:

1) Calculate γ_{i} corresponding to T_{i} by finding $c_{p}\left(T_{j}\right)$ from Equation 3-5, then:

$$
c_{v}\left(T_{i}\right)=c_{p}\left(T_{j}\right)=\frac{R}{J}
$$

and γ_{i} can be calculated by

$$
\gamma_{i}=\frac{c_{p}}{c_{v}}
$$

2) Find $T_{\star}=\frac{2}{\gamma_{i}+T} T_{i}$ 3-12c
3) Find γ_{*} corresponding to T_{*}, as in 1)
4) $\operatorname{Set} \bar{\gamma}=\frac{\gamma_{*}+\gamma_{i}}{2}$
5) Find $T_{\star}^{\prime}=\frac{2}{\bar{\gamma}+1} T_{i}$ 3-12e
6) Compare T_{*}^{d} to T_{*}. If a significant difference is seen, set $T_{*}^{\prime}=T_{\star}$, and return to 3) to calculate a new value for γ_{*} and $\bar{\gamma}$. This procedure is repeated until $T_{*} \simeq T_{*}$
d) Calculate P_{\star} corresponding to $\bar{\gamma}$:

$$
P_{*}=P_{i}\left(\frac{2}{\bar{\gamma}+1}\right)^{\frac{\bar{\gamma}}{\bar{\gamma}-1}}
$$

e) If P_{*} is greater than P_{H}, the flow is choked, and $P_{e}=P_{*}$; otherwise, the flow is not choked, and $P_{e}=P_{H}$.

RATE OF FLOW INTO BUFFER VOLUME

The mass flow \dot{m}_{B} through the piston-vent closely approximates an adiabatic, one-dimensional flow with constant area, and can thus be calculated by the Fanno Line relations. These are nonlinear, implicit simultaneous equations in pressures and temperatures of the gas at entrance and exit of the vent, including geometric parameters (such as wall relative roughness and diameter-to-length ratio). This system of equations can be solved numerically, as delineated below.

Given two volumes H and B (Fig. 4) connected by a constant area duct of length L and diameter D (Fig. 4), and given the pressures $P_{H}, P_{B}\left(P_{H}>P_{B}\right)$ and temperature T_{H}, it is required to calculate the flow. As a first approximation, assume a friction factor in the middle of the turbulent range, say $\mathrm{f}=0.02$.

FIG. 4 - NOMENCLATURE FOR PISTON VENT FLOW ANALYSIS

The flow will consist of
(a) An isentropic expansion in Volume H, from rest just outside the duct entrance to a pressure P_{1} just inside the duct with a velocity V_{1} such that a certain Mach number M_{1} exists at that point.
(b) Fanno flow along the length of the duct, with pressure dropping to P_{2} just inside the exit. At this point, two possibilities exist:

1) The flow becomes choked at the end of the duct (i.e., $M_{2}=1$); in this case the flow expands explosively into B. For this to occur, P_{2} must be greater than P_{B}. The flow comes to rest irreversibly in B, and the pressure in B
cannot affect the flow upstream of point 2.
2) The flow does not become choked (i.e., $\mathrm{M}_{2}<1$); in this case there is a smooth variation in pressure between A and B, the flow again coming to rest irreversibly in B.

The essential probelm is to calculate M_{1} and M_{2}, the Mach numbers at tube entrance and exit, and \dot{m}_{B}, the mass flow rate through the tube. However, the two Mach numbers are related through the friction factor, which is itself dependent on the mass flow rate. Furthermore, the temperatures in the system may vary over a wide range (500 to 7000 R), and therefore, gas properties such as γ, the specific heat ratio (which enters into both the isentropic and the Fanno flow formulation) and μ, the viscosity (which enters into the Reynolds number, and hence the friction factor determination) must reflect this temperature variation.

The total variation in γ may be of the order of ten per cent, but the quantity $\frac{\gamma}{\gamma-1}$ (which enters as an exponent into one of the equations) will go through a corresponding variation of over 65 per cent. Gas viscosity over the same temperature range may change by about 15 per cent.

Instead of attempting to calculate the temperatures, and hence the related gas properties γ and μ along the length of the flow, it is convenient to use an average γ_{i} for the isentropic expansion as the arithmetic average of the values of γ at H (determined for T_{H}) and at 1 . Similarly for the Fanno flow between 1 and 2, the average value of γ will be

$$
\gamma_{f}=\frac{\gamma_{1}+\gamma_{2}}{2}
$$

and finally the average value of the viscosi' $y \bar{\mu}$ (to be used to determine the flow Reynolds Number) will be:

$$
\bar{\mu}=\frac{\mu_{1}+\mu_{2}}{2}
$$

Thus, calculation of M_{1}, M_{2}, and \dot{m}_{B} requires the determination of twelve auxiliary parameters:
$Y_{H} \quad$ Specific heat ratio of the gas in Volume H.
$\mathrm{T}_{1}, \gamma_{1}, \mu_{1} \quad$ Gas temperature, and corresponding specific heat ratio and viscosity, just inside the 'tube entrance.
$T_{2}, \gamma_{2}, \mu_{2} \quad$ Same properties evaluated just inside the tube exit.
$\gamma_{i}, \gamma_{f}, \bar{\mu} \quad$ Average values of gas specific heat ratio for the isentropic expansion and for the Fanno flow, and the average flow viscosity.

Re, f Reynolds number for the gas flow, and corresponding friction factor.

This gives a total of fifteen unknowns ;o be determined, and therefore requires a set of fifteen independent equations to be established. The following is one of the possible equation systems:

1) $\gamma_{H}=\frac{c_{p}}{c_{v}}=\frac{c_{p}}{c_{p}-\frac{R}{J}}=\frac{c_{1}+\frac{c_{2}}{T_{H}}+\frac{c_{3} \ln T_{H}}{T_{H}}}{c_{1}+\frac{c_{2}}{T_{H}}+\frac{c_{3} \ln T_{H}}{T_{H}}-\frac{R}{J}}$
2) $M_{1}=\left[\gamma_{f} f \frac{L}{D}+\frac{1}{M_{2}{ }^{2}}+\frac{\gamma_{f}-1}{2} \ln \frac{M_{2}\left(1+\frac{\gamma_{f}-1}{M_{1}\left(1+\frac{\gamma_{f}}{2}-1\right.} M_{1}{ }^{2}\right)}{\left.M_{2}{ }^{2}\right)}\right]^{-1 / 2}$
(from Equation 7.54 Ref. 5)
3) $M_{2}=M_{1} \frac{P_{H}}{P_{B}}\left(1+\frac{\gamma_{i}-1}{2} M_{1}^{2}\right)$

$$
\frac{\gamma_{i}}{\gamma_{j}^{-1}} \sqrt{\frac{1+\frac{\gamma_{f}-1}{2}-M_{i}^{2}}{1+\frac{\gamma_{f}-1}{2} M_{2}^{2}}}
$$

3-16c

This equation was obtained by assuming $P_{2}=P_{B}$ (i.e. unchoked flow) and combining the isentropic and Fanno pressure relations (Ref. 5, Equation 8.44 and 7.49).
4) $T_{1}=\frac{T_{H}}{1+\frac{\gamma_{i}-T}{2} M_{1}{ }^{2}}$
(Ref. 5, Equation 8.43)
3-16d
5) $T_{2}=T_{1} \frac{1+\frac{\gamma_{f}-1}{2} M_{q}^{2}}{1+\frac{\gamma_{f}-1}{2} M_{2}^{2}}$
(Ref. 5, Equation 7.30)

3-16f
7) $\gamma_{2}=\frac{c_{1}+\frac{c_{2}}{T_{2}}+\frac{c_{3} \ln T_{2}}{T_{2}}}{c_{1}+\frac{c_{2}}{T_{2}}+\frac{c_{3} \ln T_{2}}{r_{2}}-\frac{R}{J}}$
(from 3-5)
3-16g
8) $\quad \gamma_{i}=\frac{\gamma_{H}+子_{2}}{2}$
9) $\gamma_{f}=\frac{\gamma_{1}+\gamma_{2}}{2}$
10) $\dot{u}_{B}=A \rho_{A} M_{1} \sqrt{\gamma_{i} g_{C}^{R T}} 1\left(1+\frac{\gamma_{i}-1}{2} M_{1}^{2}\right)^{-\frac{1}{\gamma_{i}-1}}$
(by combining Equations 6.31 and 8.45 of Ref. 5)
11) $u_{i}=\frac{C_{1 i} T^{1.5}}{C_{2 i}+T}$ 3-16k

This is the Sutherland Formula, (Ref. 5, Equation 2.2) giving the viscosity of component i of the flowing gas at temperature T. The constants, $C_{1 i}$ and $C_{2 i}$, are readily available for most common gases (e.g., Ref. 5, Table 2.1). For each gas in the flow, the viscosity at T_{1} and T_{2} must be evaluated, then the average viscosity for this component can be found:

$$
\bar{\mu}_{i}=\frac{\mu_{1 i}+\mu_{2 i}}{2}
$$

12) $\bar{\mu}=\sum_{i=1}^{n} \frac{\bar{u}_{j}}{1+\frac{1}{x_{i}}{ }_{\substack{j=1 \\ j=n \\ j \neq i}}^{x_{i} \dot{\Psi}_{i j}}}$
where μ_{i} is the average viscosity of the i-th component, x_{i} is the mole fraction of the i-th component, and $\phi_{i j}$ is given by:
13) $\phi_{i j}=\frac{\left[1+\left(\frac{\mu_{i}}{\mu_{j}}\right)^{1 / 2}\left(\frac{M_{j}}{M_{i}}\right)^{1 / 4}\right]^{2}}{\frac{4}{\sqrt{2}}\left[1+\frac{M_{i}}{M_{j}}\right]^{1 / 2}}$

The Equations 3-16 and 3-16m are due to Wilke (Ref. 10 :
Equations 13 and 14).
14) $R e=\frac{D v g}{\mu}=\frac{4 \dot{m}_{B}}{\mu \pi D}$
15) $f=0.0055\left[1-\left(\frac{20000 E}{D}+\frac{10^{6}}{R e}\right)^{1 / 3}\right]$ (Ref. 5, Equation 2.21) 3-160
where ε is the roughness of the vent wall.
Since some of these fifteen equations are non-linear, an explicit solution is impossible, and iterative methods must be used. One of the simplest is the iterative back-substitution method. This equation system is arranged for this method, and gives a satisfactory convergence if started sufficiently close to the answer.

In this particular application, the equation system is used to find flow rates and Mach numbers in the piston vent. For the first time interval, the pressure differential is small, the flow is unchoked, gas velocities are low, and the flow rate is close to the ideal (frictionless) flow rate. The value of M_{1} can be assumed to be equal to that determined from the ideal flow velocity, and the value of M_{2} can be assumed to be equal to M_{1}. The flow temperature T_{1} and T_{2} can be assumed equal to the temperature of the gas in volume A. Substitution of these quantities as needed, starting with equation 1), and updating each quantity as soon
as it is calculated, gives values for the Mach numbers to three decimal places after three or four iterations. The same equation system is used for choked and unchoked flow, the value of M_{2} being set to 1 whenever a physically impossible value greater than one is obtainer. After evaluating Equation 15), the old (stored) values of $M_{1}, M_{2}, \dot{m}_{B}$, and f are compared to the new values. If the agreement is within a certain desired percentage (.1 percent was used in this solution), the iteration is terminated.

For all succeeding time increments, the iteration is started from values of the variables found in the preceding time increment. Since the time increments are used in a fowward integration, they are necessarily small, and thus each iteration is started very close to the answer, converging usually within two iterations.

PISTON ACCELERATION AND DISPLACEMENT

To calculate piston acceleration at time t, the forces acting on the piston (enumerated at the beginning of the chapter) must be found for time t. They are listed below for convenience:

Force due to gas pressure in the volume y_{H} :

$$
F_{H}=\frac{\pi}{4}\left(d_{c}{ }^{2}-d_{V}{ }^{2}\right) P_{H, t}
$$

Force due to gas pressure in the volume V_{B} :

$$
F_{B}=\frac{\pi}{4}\left(d_{c}{ }^{2}-d_{V}^{2}-d_{r}^{2}\right) P_{B, t}
$$

Force due to gravity:

$$
F_{G}=M \cdot \cos \theta
$$

Force due to drag of the vent flow on the vent walls:

$$
F_{D}=\frac{\pi}{4} d_{v}^{2}\left(F_{1}-F_{2}\right)
$$

where the thrust functions F_{1} and F_{2} are found from the Fanno flow solution, in terms of P_{1}, P_{2}, M_{7}, and M_{2} :

$$
\begin{aligned}
& F_{1}=P_{1}\left(1-\gamma_{f}^{M}{ }_{1}^{2}\right) \\
& F_{2}=P_{2}\left(1-\gamma_{f} M_{2}^{2}\right)
\end{aligned}
$$

Force due to atmospheric pressure acting on the exposed piston-rod area:

$$
F_{a}=\frac{\pi}{4} d_{r}^{2} p_{a}
$$

Force due to piston-ring friction on the cylinder wall:

$$
F_{p r}=d_{c}\left[k_{1}+k_{2} \Delta P_{H B}+k_{3}\left(\Delta P_{H B}\right)^{1 / 4}\right]
$$

Force due to seal friction on the piston-rod:

$$
F_{r s}=d_{r}\left[k_{1}+k_{2} \Delta P_{B a}+k_{3}\left(\Delta P_{B a}\right)^{1 / 4}\right]
$$

The resultant force acting on the piston can now be calculated, using the sign convection of Fig. 2:

$$
F_{t}=F_{H, t}+F_{G}+F_{D, t}-F_{B, t}-F_{a}-F_{p r, t}-F_{r s, t}
$$

This resultant force can be used in equation 3-2 to determine the rate of change of velocity for the piston and its load:*

$$
\frac{\Delta U}{\Delta t}=\frac{F_{t}}{M}
$$

In order to use a simple forward difference procedure for integration, the time-increments Δt must be short enough so that

[^3]the force on the piston (and hence the piston acceleration) remains constant during this time interval. The distance moved by the piston during the time increment Δt is then equal to
$$
\Delta X_{t}=U_{t} \Delta t+\frac{1}{2} \frac{\Delta U}{\Delta t}(\Delta t)^{2}
$$

The new location of the piston is

$$
x_{t+\Delta t}=x_{t}+\Delta x_{t}
$$

and the velocity at the end of the time interval Δt is

$$
U_{t+\Delta t}=U_{t}+\left(\frac{\Delta U}{\Delta t}\right) \Delta t
$$

Now that the piston position for the end of the time increment is known (and hence the individual system volumes as well as the rates of change of energies and masses), the system state for time $t+\Delta t$ can be evaluated:

System Volumes:

$$
V_{H, t+\Delta t}=V_{H, t}+\frac{\pi}{4} d_{c}^{2} \Delta X_{t}
$$

and

$$
v_{B, t+\Delta t}=v_{B, t}-\frac{\pi}{4}\left(d_{c}^{2}-d_{r}^{2}\right) \Delta X_{t}
$$

Gas Masses:

$$
m_{G, t+\Delta t}=m_{G, t}+\dot{m}_{P, t} \Delta t-\dot{m}_{G, t} \Delta t
$$

$$
\begin{align*}
& m_{H, t+\Delta t}=m_{H, t}+\dot{m}_{G, t} \Delta t-\dot{m}_{B, t} \Delta t \\
& m_{B, t+\Delta t}=m_{B, t}+\dot{m}_{B, t} \Delta t
\end{align*}
$$

Gas energies in each volume are found by adding to the internal energy of the gas at time t, the enthalpy of the gas inflow (evaluated at the temperature of its origin), subtracting the enthalpy of the gas outflow and adding (or subtracting) the work done on (or by) the gas due to piston movement.

The enthalpy and internal energy of the gas at each temperature are calculated from Equations 3-6 and 3-7. The internal energy gained by the gas in the PGG due to propellant combustion is determined as

$$
q_{p, t}=\dot{m}_{p, t^{h}} \Delta t
$$

where h is the effective propellant heat of reaction, experimentally determined so as to account for heat losses to the walls.

The work done on the piston by the gas in a volume is equal to the total force exerted by the gas pressure on the exposed piston area, multiplied by the distance the piston moved:

$$
W_{H, t+\Delta t}=\frac{\pi}{4}\left(d_{c}^{2}-d_{v}^{2}\right) P_{H, t} \Delta X_{t}
$$

and

$$
W_{B, t+\Delta t}=\frac{\pi}{r}\left(d_{C}^{2}-d_{r}^{2}-d_{v}^{2}\right) P_{B, t} \Delta X_{t}
$$

The energy of the gas in each volume, at time $t+\Delta t$, is thus equal to:

$$
\begin{align*}
& E_{G, t+\Delta t}=E_{G, t}+Q_{P, t}-\dot{m}_{G, t} h_{G, t} \Delta t \\
& E_{H, t+\Delta t}=E_{H, t}+\dot{m}_{G, t^{h}} h_{G, t} \Delta t-\dot{m}_{B, t^{h} H, t^{\Delta t}-W_{H, t+\Delta t}} \\
& E_{B, t+\Delta t}=E_{B, t}+\dot{m}_{B, t^{h}} H_{H} t^{\Delta t+W_{B, t+\Delta t}}
\end{align*}
$$

Note that the above equations assume the flows take place in the directions shown in Fig. 2, and flow enthalpies are evaluated at the temperature of flow origin. A suitable change must be introduced into the equations if any of the flows change direction.

With the gas energies known for each volume, the temperature corresponding to each energy can be found by solving the internal energy equation for T . This was done by a Newton-Raphson iteration, starting at the corresponding temperature determined in the last time increment. Convergence (to . 1 R) was usually obtained in two iterations, given T_{G}, T_{H}, and T_{B}.

Knowing the gas masses in each volume, and the extent of this volume, the gas specific volume can be found for each mass. Substitu'ting those, with the gas temperatures, into the gas equation of state, will give the gas pressures at time $t+\Delta t$, the last property to be evaluated for this time increment. Equation 3-3 is easily solved for pressure, giying:

$$
P=\frac{R T}{V}\left(1+\frac{B}{V}\right)
$$

The state of the system at time $t+\Delta t$ is now fully determined, and evaluation of the rates of change for the next time increment can now be undertaken, provided the end of integration is not yet reached.

END OF ACTUATION

The time integration should be stopped when either of two conditions is satisfied by the system:
a) If the new displacement X is greater than the maximum stroke allowed by the physical structure, the miving mass has impacted at a known velocity, and the maximum stresses, pressures, impact-velocity, and time of stroke are now known. It is now possible to make a judgement on how closely the system just analyzed came to satisfy the design requirements; i.e., whether the final velocity is too great, or the maximum cylinder pressure, whether the time is too long, or the piston-rod stress is excessive.
b) If the piston velocity changes sign before reaching the required stroke, the piston has reversed its direction of motion somewhere during the last time increment. During this increment, the velocity of the piston was zero, and a mechanical latch could have been engaged. This would demonstrate the full potential of a properly vented piston, but would be a less reliable design for a required stroke, as discussed in Section 2.

Determination of Constants:
Fourteen system constants were needed in the analysis. They were:

$$
\begin{array}{ll}
k_{1}, k_{2}, k_{3} \quad & \text { used in Equations } 3-22 \text { and }-23 \text { to determine } \\
& \text { seal friction forces. They were derived by } \\
& \text { fitting an arbitrary equation to experimental } \\
& \text { data obtained from the manufacturer. }
\end{array}
$$

E
piston-vent wall roughness, used in Equation 3-160 to calculate flow friction factors. Vent wall roughness was measured by a profilometer and averaged by inspection. ε was found to be equal to 0.0018 in .
$c_{1}, c_{2}, c_{3}, c_{4}$ used in Equations $3-5$ and -6 to calculate gas enthalpies and specific heats. These values were calculated from empirical data as detailed in Appendix I.

The following six constants were determined from experimental data as detailed in Appendix II.

K_{B}, b_{1}, b_{2}	used in Equations 3-9 and -10 to calculate pro- pellant burning rates.
B	the first virial coefficient in the gas equation of state, used in Equations $3-3 a$
	-34 to calculate specific valumes or gas pressures.
K_{f}	the flow coefficient of discharge, used in

The last six constants were determined from experimental data as described in Appendix 11.

4. EXPERIMENTAL VERIFICATION OF ACTUATOR ANALYSIS

PROGRAM STROKE

Following the steps outlined in Chapter 3, a computer program named STROKE was written for determining the position of a pyrotechnically actuated vented piston as a function of time. A listing of STROKE (a subroutine in the complete design program DESAC) is given in Appendix IV.

The input to STROKE consists of:
WLB Mass to be moved
STR Maximum stroke length (in.)

PWGR Propellant charge per cartridge
HD Vent-hole diameter (in.)

HL Length of head clearance-volume (in.)

BL Length of buffer volume (in.)

CD Cylinder diameter (in.)

PRD Piston-rod diameter
The program follows the calculation steps described in Chapter 3, and its output consists of:

TAC Time actually taken by piston to come to rest.

VFIN Final piston velocity (if the full stroke was achieved).
or
DST Length of stroke (if piston stopped short). (in.)
STMX Maximum piston-rod stress.
(ips)

GPMX Maximum generator-gas pressure.
HPMX Maximum gas pressure in head-volume.
BPMX Maximum gas pressure in buffer-volume.

Experimental demonstration of the validity of a complicated computer program is essential to justify its use in the design of an expensive system. Therefore, before incorporating STROKE into a program that would solve the design problem described by Equations 2-14 to 2-20, an experiment was performed to compare the action of a real actuator to that calculated by STROKE. This experimental will now be described.

RESTRICTION ON TEST SCALING

The specific gas generator to be used in this design wās originally intended to give between 1550 and 6500 psi of gas pressure in a 38 cubic inch volume, when loaded with a charge of between 10 and $; 4 \mathrm{~g}$ of propellant. It would be desirable to test experimentally the accurucj of STROXE calculations with an actuator using a similar gas pressure and head-volume. This sets a lower limit to the physical size of the test actuator. It was estimated that designing, fabricating ant assembling such an actuator would entail approximately six months of time, and a cost of the order of ten thousand dollars.

AVAILABLE ACTUATOR

In order u avoid such a long delay and high expense, it. was decided to use an existing (and avallable) 18 inch Fast-Closing Gate Valve shown in Fig. 5. This valve has a 347.5 lb gate which can be moved through a total stroke of 19 inches in a time of 0.030 sec by four three-inch cylinder actuators in parallel sach actuator being pressurized by one generator loaded with 24 g of propellar. After approximately 11 in . of acceleration the botton of the piston in each actuator contacts a pre-packaged quantity of silicone-grease, and extrudes it through a shaped slot in the cylinder wall. This provides a decelerating force that slows down the gate to approximately

FIG. 5 - 18-inch FOUR CYLINDER FAST-CLOSING GATE VALVE. NOTE BACK EDGE OF GATE AT TOP OF OPENING.

FIG. 6 - ASSEMBLY OF THE 18-inch FAST-CLOSING GATE-VALVE.

FIG. 7 - 18-inch GATE-VALVE ASSEMBLED IN THE THOCYLINDER MODE. NOTE ONE GAS-GENERATOR LYING ON THE BODY, AND ONE MOUNTED IN THE LEFT CYLINDER.

FIG. 8 - ACTUATOR AND GAS-GENERATOR ASSEMBLIES, HITH ONE SET OF INTERNAL COMPONENTS. NOTE VENT-HOLE IN TOP OF PISTON.

FIG. 9 - VALVE BODY AFTER ACTUATION, HITH COVER OFF. NOTE PRESSURE TRANSDUCERS ON BOTH ENDS OF LEFT CYLINDER, AND TEAR-BOLT BODY STILL IN THE GATE.
shows the valve body after actuation, with the front cover-plate removed.

INSTRUMENTATION

Pressures in head and buffer volumes were measured by piezzo-electric transducers*. They can be seen on the left-hand cylinder in Fig. 9. The transducer outputs were recorded by two oscilloscopes. Positions of the valve gate versus time were recorded by a high speed camera ${ }^{\dagger}$ aimed to get a view through the valve. The field of view was such that the far edge of the bottom of the gate was visible through the valve before any motion took place (see Fig. 5); thus movement could be measured before the gate entered the vaive opening. To simplify measurement of gate motion after its lower edge had passed the bottom of the valve opening, a line of alternating quarter-inch black and white strips was painted on the face of the gate (Fig. 9). The exact gate position at each time increment was obtained by projecting the film on a film reader with a micrometer adjustment for a set of cross-hairs. The " 0 "-ring groove machined in the front panel of the valve was used to establish a reference for all Fastax frames. Front-edge and back-edge positions were then calculated from the known dimensions of the valve and camera distance.

Synchronization of the various measurements made during actuation was achieved by starting the high-speed camera first. When it reached its operating speed of 4000 frames per second (in about 2 seconds), a signal was sent to trigger the capacitance-discharge-unit (COU) energizing the initiators in the two PGG's, one additional initiator suspended in the camera field of view, and the two oscilloscopes. Thus a zero-time signal was present in each measurement.

FIG. 10 - 18-inch VALVE SET-UP FOR ACTUATION TEST, MOUNTED ON INERTIA BLOCK RESTING ON PLASTIC FOAN PADS. HIGH-SPEED CAMERA IS IN FOREGROUND.

INSTALLATION

The reaction force due to the acceleration of the gate would (with a simplified, linear system) have raised the 3300 lb valve body to a height of approximately 0.836 inches. This was undesirable because the gate would begin to decelerate while the valve body was still in free fall, introducing second-order effects into an already complex system. The gate would come to the end of its travel while the body was still over 0.7 in . off the ground. To limit this effect, the valve was mounted on a 5200 lb block of armor plate (Fig. 10). This reduced the jump to about 0.07 inches. At 0.065 sec (gate end of travel) the body (in free fall) would be about 0.003 in . off the ground, i.e., practicaliy at rest. Thus, any secondary effects due to deceleration forces (and final impact) could not affect gate position by more than 0.07 in . which is close to the resolution limit of the film-reader position reading system.

To shield operating personnel from the exposed gas generators, and any fragments that could have resulted if the gate hit the body with excessive energy, the valve (mounted on its ballast block) was installed in a pit (Fig. 10). All control and data-acquisition wires were led out of the pit to the instruments on the ground floor. Lighting was arranged to illuminate the bolt-circle and " 0 "-ring groove region of the front panel of the valve, and the white cardboard placed behind the valve to faciliate observation of gate motion.

RESULTS

Figure 11 shows experimentally measured valve positons on a plot of calculated positions versus time.

Maximum pressures measured and calculated are compared in Table II.

fig. 11-CLOSURE test on 18-inch two-Cylinder gate valve,

TABLE II

	Measured	Calculated
Maximum Pressure in Head Volume (HPMAX)	1406 psia	1438 psia
Time of Occurrence of HPMAX	8.27 msec	8.30 msec
Buffer Pressure at 0.062 sec (i.e. just before transducer port occlusion)	3364 psia	3262 psia

It can be seen total travel time was calculated to within 1.5% and the time to reach maximum head-pressure within 0.4%. The calculated value of the maximum head pressure was within 2.3% of the value measured, and that of the maximum buffer pressure, within 3.1\%. This agreement was considered good enough to justify using STROKE to predict the performance of any similar actuator.

5. THE ACTUATOR DESIGN PROGRAM

APPLICABILITY OF STROKE

It was shown in the last section that, given the seven parameters defining a self-stopping actuator (i.e. the propellant charge, piston vent-hole diameter and length, head-volume and buffer-volume length, cylinder and piston-rod diameters) and the weight to be moved through a specified distance, STROKE can calculate the piston position as a function of time (and hence velocity and acceleration) with a maximum error of 1.5% on the time of arrival.

Maximum piston-rod stress is easily derived from the maximum acceleration (or deceleration) value observed. Gas pressures in the generator, head-volume and buffer-volume are all calculated for each time increment, and their maximum values can be readily recorded. As shown in Table II, pressures are calculated with accuracies of the order of two or three per cent.

The next step is to utilize POWSQ to determine those values of the seven independent variables that define the actuator whose performance (calculated by STROKE) is sufficiently close to the performance desired.

OTHER CONDITIONS TO BE MET

Since a specific PGG is to be used in all actuators to be designed, the loading limit of the PGG (i.e. to 34 g) must not be exceeded. At the same time, two generators with 15 grams each should not be used when a single generator can be loaded with 30 grams, unless it is required to
use two cylinders (with one generator each) to comply with geometry limitations on cylinder diameters.

The same design philosophy indicates the need for the least number of piston vents per piston; but if a vent length-to-diameter ratio of ten or fifteen (needed to form a well established Fanno flow) requires an unreasonably thick piston, then more than one vent (of smaller diameter) may be used.

All such decisions are very difficult to program in advance; yet they are routine'ly made by a designer. To facilitate these design decisions, it became clear that an interactive computer progran was needed with an opportunity for the designer to make these decisions and introduce them into the design, as they berome evident to him.

The actuator design program DESAC was written to do this. Its basic logic is shown in the flow-chart on Fig. 12, where the various options available to the designer can be readily followed.

GENERALIZED DESIGN OF AN ACTUATOR

The path used in designing a new actuator (with no information or limitations from past design) will now be shown step-by-step, with references to key points on the flow chart shown in Fig. 12.

The first step the designer takes is to give the program the three numbers defining the required systen performance (wLB, $S T R$, and $T R$) and the four system constraints (VFAL, STAL, GPAL, and CPAL). The program then asks the designer whether this is a redesign of an existing actuator

whose dimensions and propellant loading would give a good point to start the POWSQ search (Point A in Fig. 12). Upon receiving a "NO" from the designer, DESAC uses the linearization detailed in Appendix III to calculate a feasible starting point. At this time the objective is to design a "prototype" actuator, that would merely satisfy the performance design requirements, ignoring for the time being such geometrical details as maximum usable cylinder diameters, and whether there is room for the piston vent-hole between the piston-rod and the piston-seal grooves. Therefore, it is assumed that there will be one cylinder, and one vent-hole. Since a specific gas generator will be used, the required total propellant charge will determine the number of gas generators supplying the one cylinder. To ensure a fully established Fanno flow through the vent-hole, a piston thickness of fifteen venthole diameters is assumed. DESAC is now at Point B in Fig. 12, and has the specifications of a feasible actuator that will come fairly close to some design requirements (as close as 1% on final velocity) but be badly off on others (30 to 50% on maximum buffer pressure).

The seven functions whose sum of squares is to be minimized are:

$F(1)=(\text { PWGR-10. })^{* N O G C *}$ WT	Weighted propellant excess over minimum charge	$5-1$
$F(2)=($ VFIN-VFAL $) /$ VFAL	Normalized final velocity deviation	$5-2$
$F(3)=($ STMX-STAL $) / S T A L$	Normalized maximum stress deviation	$5-3$

$F(4)=(T A C-T R) / T R$	Normalized actuation time deviation	5-4
$F(5)=($ HPMX-CPAL $) /$ CPAL	Normalized maximum head pressure deviation	5-5
$F(6)=(B P M X-C P A L) / C P A L$	Nomalized maximum buffer pressure deviation	5-6
$=\begin{gathered} =(\text { GPMX -GPAL }) / G P A L \\ (\text { if GPMX GGPAL }) \end{gathered}$	Norma- ized maximum generator pressure excess	
$F(7)$ or		5-7
$1=0$ (if GPMX<GPAL)	Zero if generator does not exceed rated pressure	

Two possibilities now exist:
a) The propellant charge in the one or more gas generators is between 10 and 34 grams. The problem is to determine the six unknowns: HD, HL, BL, CD, PRD, and PWGR (since PT has been set to fifteen times HD). N, the number of unknowns is set at 6 and POWSQ receives the dimensions and loading of the linearized actuator, and proceeds with its search for the desired performance (Point C in Fig. 12). After 100 function evaluations (corresponding to 14 to 19 iterations), POWSQ has determined the five dimensions and the loading of a "prototype" actuator that will satisfy (to less than 10\%) all seven design requirements (Point D).
b) The propellant charge is less tian the ten gram minimum ioading for the gas generator. The generator will be loaded with the minimum charge, and the propellant weight is no longer a variable to be manipulated by POWSQ. This is accomplished by setting $N=5$, and

POWSQ is allowed to reduce the themodynamic efficiency of the system by allowing the generator gas to expand into an oversize head-volume, while still seeking the five independent variables that would define the desired "prototype" actuator. Note that, during this search, POWSQ may switch back and forth between the two modes a) and b). Eventually, however, a definite "prototype" actuator will be specified, with definite values for $H D$, HL, $B L, C D, P R D$, and PWGR.

The program DESAC now proceeds to report to the designer (via teletype) the performance and specifications of the "prototype" actuator. Having the total propellant ioading the performance seems to require, DESAC reports to the designer the possible permutations on the number of generators that can handle the required propellant loading, and the resulting number and diameters of the cylinders and piston-rods that are required to satisfy the allowable stress and pressure constraints (Points E to F in Fig. 12).

DESIGNER'S DECISIONS

Now DESAC enters the interactive mode, requesting the designer to give some preferred (i.e, standard) cylinder and piston-rod diameters, with the number of cylinders required to give the same approximate total piston area as was arrived at in the "prototype" design.

The annulus between cylinder and piston-rod is next given to the designer, as well as the diameter of the single vent-hole. The designer can now check the manufacturer's specifications on required diameters
.of piston-ring grooves and report to DESAC the maximum acceptable venthole diameter. One last design decision must be made by the designer, and that is to balance an acceptable piston thickness (which determines the length of the vent-hole) against a vent length-to-diameter ratio that would justify the assumption of Fanno flow in STROKE. The program allows the designer to repeat this decision until the designer signals his satisfaction by typing OK.

FINAL DESIGN SEARCH

The final design search will start with an actuator that will have essentially the same total propellant charge, total cylinder head- and buffer-volume, total vent-hole area, total approximate piston-rod and piston area, and a piston thickness and vent-hole diameter that will give a well-established Fanno flow through the vent-hole (Points F to G, Fig. 12).

The same two possibilities exist with respect to propellant charge, i.e. it can be greater than the minimum of ten grams, or less than ten grams.

The cylinder diameter and piston-rod diameter have now been definitely selected by the designer, and hence are no longer to be varied by POWSQ. If the propellart charge is greater than 10 g per generator, N is set to 4 , and POWSQ begins the search for the final design by varying the remaining variables: $H D, H L, B L$, and PWGR. Otherwise, N is set to 3 , and POWSQ adjusts the three variables HD, HL and BL, with PWGR set to the minimum ten-gram charge (Points G to H, Fig. 12).

POWSQ now has another 100 function evaluations (approximately 14 to

19 iterations), to determine the values of $\mathrm{HD}, \mathrm{HL}, \mathrm{BL}$, and PWGR (for the specified values of CD and PRD) that minimize the same seven functions representing the design deviation from desired performance.

Upon completion of the final design search, the program reports to the designer the performance and specifications of the final design (Points H to I in Fig. 12).

Finaliy, the designer is given the choice of accepting the final design, or of returning to the stage immediately after Point E in Fig. 12, and making a new choice among the options offered.

DESAC has been used on ten test-designs and has met the performance requirements (within 3\%) and the constraint requirements (within 10\%), using approximately 7.5 minutes of CDC 7600 computer time on each doublesearch problem. Several of these test-designs will be described in the next Section.

6. TESTS ANO APPLICATIONS OF DESAC

Importance of Smooth Changes in Dependent Variables During the Minimizing Process

Of the seven functions minimized by the program POWSQ while carrying out an actuator design, six are highly nonlinear. These functions involve the dependent variables (i.e., TAC, VFIN, STMX, MPMX, BPMX, and GPMX). Since POWSQ was specifically intended to minimize the sum of squares of nonlinear functions, this did not appear to be a problem. Satisfactory convergence to a good minimum from the linearized starting-point was observed on the very first trial design. However, when the manual starting-point option was tried with the same starting-point (except for manual input round-off of the independent variables), POWSQ did not converge to the same minimum. Instead it decreased the sum of squares of the seven functions faster on the first three iterations, then failed to improve for the next six, and stopped (as programed) at a pseudo-minimum representing a very poor performance approximation. A study of the convergence history of these two cases, and of several additional examples of similar unpredictable behavior revealed the cause: subroutine STROKE (used to calculate the values of the six variables defining the actuator performance) calculated their values at exact multiples of the time increment. For example, VFIN was the velocity determined at the end of the time increment during which the required stroke had been exceeded. This sometimes produced a whole time-increment change in calculated actuation time, with considerable changes in the other five dependent variables, for a very small change in one or more of the independent variables changed by POWSQ. The result was a different convergence path for unpredictably small differences in starting point position, and a fortuitous convergence to a good minimum some (but not all) of the time. Reducing the time increment
from 10^{-4} to $10^{-5} \mathrm{sec}$ improved the situation, but at the expense of a tenfold increase in computation time.

The problem was resolved by calculating the time and velocity at the actual end of the stroke. This was done by backward calculation (assuming the same constant acceleration) once the stroke-length was exceeded, instead of taking the time and the velocity at the end of the time increment itself. This gave a smooth variation in time of action and final velocity. A Lagrangian interpolation was used (based on the last two values of buffer pressure, and the buffer pressure at the end of the time increment after the stroke length had been exceeded) to calculate the value of buffer pressure at the exact time of the end of travel. This, of course, was the maximum buffer pressure. The maximum head-volume pressure was found by assuming a parabola through the last two (increasing) and the first (decreasing) headvolume pressures, and finding the maximum point of the parabola. The maximum piston-rod stress was found by using either of these two methods, depending on whether the maximum stress occurred during acceleration or deceleration. This approach gave a smooth variation in calculated performance variables for any change, no matter how small, in the independent variables. POWSQ then converged reliably.

WEIGHTING FACTORS ASSIGNED TO THE FUNCTIONS TO BE MINIMIZED

The absolute values of the seven variables used to form the squares whose sum is to be minimized vary from 10^{-3} for actuation times, through approximately 3 for propellant charge and 30 for final velocity, to 10^{3} for maximum cylinder pressure. In view of this range, it is reasonable to normalize the functions which are squared so that they would all be quantities of the same order of magnitude, thereby refraining from creating a preferred minimization direction due to arbitrary choice of units. Dividing the difference
between the desired and actual values of the dependent variables by the desired value gives a simple normalizing scheme, and results in function absolute values generally located between zero and one.

Note, however, that there is no desired (i.e., specified) propellant weight. For this variable, the minimum possible value is desired. Therefore, to give it the same order of magnitude as the other six functions calculated by subroutine STROKE, an arbitrary weighting factor W WT was introduced, setting $F(1)=($ PWGR-10)*WT. The initial magnitude of wT was set to 0.02 .

TEST A: REDESIGN OF EXPERIMENTAL ACTUATOR

The observed performance of the experimental actuator was to move a load of 356.5 lb through a distance of 19 in . in 0.065 sec , and arriving at the end of the stroke with a velocity of 300 isp . To this were added the constraints (not present in the original actuator) of maximum piston-rod stress of $20,000 \mathrm{psi}$, and of maximum cylinder pressures of 5000 psia and generator pressure of 32,000 psia. Test A used DESAC to design an actuator satisfying these specifications. Results are given in Appendix V with all the details of the POWSQ iterations.

Referring to pages 120-128 the steady decrease in FF (the sum of the squres of the seven functions to be minimized) can be followed iteration by iteration. Note how, during the prototype design, FF was reduced from 0.0847 (for the linearized model representation) to 0.0256 , after 15 iterations (95 STROKE evaluations). The program then reported to the designer the calculated performance and specifications of the proposed prototype design, and entered the interactive communication mode. At this point the designer's judgement was introduced into the picture: he decided that a 1 inch piston-rod (the nearest standard diameter to the 1.045 in . diameter reconmended for the prototype design) is too slender for a 19 inch stroke (and some 24 inch length),
and selected a 1.25 inch diameter. This forced a proportional increase to 2.5 inches instead of 2 in . for the cylinder diameter. An arbitrary choice by the designer of 1.75 inches for piston thickness resulted in a $15.3 \mathrm{~L} / \mathrm{D}$ ratio (calculated by the program) for the one vent-hole, and was approved by the designer's OK. Note that, due to the designer's change to nonoptimum piston-rod and cylinder diameters, the value of FF jumped to 0.11 (an over forty-fold increase). It took twenty more iterations (and 101 function evaluations) to reduce it to 1.62×10^{-3}. A further reduction in FF could probably have been achieved by further iteration, but would have given only a small improvement in performance (3.6\% error on time required is the largest error observed).

Appendix VIa gives the history of the same problem as it appeared on the designer's teletype (i.e., without showing all the intermediate POWSQ function evaluations). Table III compares the two-cylinder actuator used to verify STROKE, with the DESAC- designed system. Note that for the same actuation time (3.6% off for the DESAC design) and final velocity (1.2% off), the job can be done with one 2.5 -inch cylinder instead of two 3-inch ones, and with one piston-rod 1.25 in . in diameter instead of two 1-11/16 ones. Finally, a total propellant charge of 10.6 g is required in only one gas generator, instead of 20 g in two generato s .

The DESAC design is obviously the cheaper and more efficient of the two.

TEST B: EFFECT OF THE ARBITRARY WEIGHTING FACTOR ASSIGNED TO F(1).

To investigate the influence of the weighting factor WT used in the propellant function $F(1)$, the design of the experimental actuator was repeated with the value 0.05 given to $W T$ instead of 0.02 . This encouraged minimization

TABLE III

	Exparimental Actuator	DESAC-Designed "A" Actuator
Performance:		
Time to travel $19-$ inch stroke (sec)	. 063	. 065
Velocity of arrival at end of stroke (ips)	300.	303.5
Components:		
Cylinders Gas generators	2	1
Dimensions:		
Cyl inder diameter	2×3.00^{11}	$1 \times 2.5{ }^{\prime \prime}$
Piston-rod diameter	$2 \times 1.687{ }^{\prime \prime}$	1×1.250
Vent-hole diameter Total propellant charge (grams)	${ }_{20} .165^{\prime \prime}$	10.6155

of propellant charge over that of the other six functions listed in Equations $5-2$ to $5-7$ by a factor of 2.5. Examination of the prototype design (pages 129-132) shows that this resulted in a considerably smaller charge for test B (10.746 g after 13 iterations for B against 14.868 g after 15 iterations for A). Also note that both prototype designs came to acceptable convergence in less than the maximum number of 100 function evaluations.

Table IV compares the two prototype designs.

It can be seen that test B yielded a faster convergence than test A, and arrived at a better performance approximation for all parameters except final velocity. As might be expected, the sum of squares is lower (0.00565 versus 0.0265).

Examination of the final design convergence (page 132) in test B shows that the sum of the squares FF has changed very little from the last iteration of the protolype design (0.0065 at Prototype Design Iteration 13 zo
to 0.025 at Final Design Iteration 0). This is due to the very small changes introduced by the designer in the interactive section.

TABLE IV		
Number of iterations (function evaluations)	$\frac{\text { Design A }}{15(95)}$	$\frac{\text { esign } B}{13(77)}$
Sum of squares minimized	. 0256	. 00565
Normalized Design Deviations (per cent)		
Excess over minimum propellant	9.736	3.730
Deviation from required time of travel	9.881	1.712
Deviation from allowable final velocity	1.849	2.719
Deviation of max. stress from allowable	5.194	4.019
Deviation of head-space max. pressure from allowable	4.631	3.887
Deviation of buffer max. pressure from allowable	-3.467	0.989
Excess of generator max. pressure over allowable	0.	0.

Further history of the two designs, nowever, breaks away from the previously established pattern. Design A continues for 100 more iterations, and is stopped before POWSQ is satisfied that a minimum is reached (i.e., that no reduction in FF can be made by taking steps smaller than the required accuracy on the independent variables). It can be seen, nowever, that only small changes are being made, and only very small improvements in FF are obtained between the $\mathbf{1 4}$-th and the 20 -th iterations. Design B continues for only five more iterations (30 function evaluations), stopping with a very small improvement over iteration zero, and with a larger FF than the one found for the prototype design.

Table V summarizes the convergence history of the two final designs:

TABLE V		
	Design A	Design B
Number of iterations (function evaluations)	20 (100)	5 (30)
Sum of squares to be minimized	. 00162	. 01927
Normalized Design Deviations (per cent)		
Excess over minimum propellant	1.231	3.478
Deviation from required time of travel	3.607	-0.281
Deviation from allowable final velocity	1.161	11.351
Deviation of max. stress from allowable	0.547	5.340
Deviation of head-space max. pressure from allowable	0.061	4.766
Oeviation of buffer max. pressure from allowable	0.027	0.721
Excess over generator allowable pressure	0.	0.

Evidently Design A, handicapped by a wide deviation from the prototype design, utilizes another 100 function evaluations to good advantage and ends up witi a very close approach to the desired performance, while Design B cannot find any major improvement to an already acceptable performance, and quits after only five iterations. Design A even requires 0.045 g less propellant than Uesign B (10.651 g versus 10.696 g), in spite of having a lower weight attached to propellant minimization.

Actually, either design would be acceptable, showing that weighting the functions to be minumized may affect the path of the design search, and hence the rate of convergence, but if convergence does occur (i.e., if all functions to be minimized do indeed reach small values), will not even guarantee that the most heavily weighted function will be the one most reduced, since it is the sum of the squares that POWSQ minimizes.

TEST C: EFFECT OF POOR STARTING VALUES

The linearized model used to calculate the starting point in tests A and B gave (perhaps fortuftously) a fairly good starting point (FF was 0.085
for test A and 0.11 for test B). To demonstrate that a less favorable starting point will not deter convergence by PowSQ to a minimum, test A was selected because it showd great improvenent from designer-modified prototype to the final design. Each independent variable defining the modified prototype in test A was altered by the amount of its improvement in the final design, but in the opposite direction. For example, the head-space length was decreased from an initial value of 2.7057 in . to the final value of $\mathbf{1 . 4 7 6 3} \mathrm{in}$. in test A. For test C, this space was increased by the same amount (1.e. . 1.2294 in .) resulting in a head-space length of 3.9351 . This was done to the other independent variables resulting in a starting point located (in the design six-space) in a direction away from the minimum previously found.

The option of answering "Yes" to DESAC's request for a starting point was used, and the calculated "poor" values for each variable ware read-in. The program made a normal 18 iteration (101 function evaluations) search and converged to a good value for the sum of squares ($\mathrm{ff}=.001942$). Another 100 function evaluations reduced the sum of squares to .001904, a very small improvement for double the computing time. The dimensions of the actuator obtained in tests A, B, and C are summarized in Table VI:

TABLE YI

Actuator		Test A	Test B	Test C
Cylinder diameter	CD	2.5	2.5	2.5
Piston-rod diameter	PRD	1.25	1.25	1.25
Piston vent-hDle diameter	HD	0.1191	0.1094	0.1054
Head space length	HL	1.4763	1.3955	1.3328
Buffer length	BL	20.4019	20.3730	20.3628
Propellant charge	PWGR	10.615	10.696	10.152

It appears evident that all three designs are very close to each other, and that variations in manufactured dimensions are likely to be of the same order of magnitude as the differences between these three designs.

TEST D: PARTIAL REDESIGN OF AN EXISTING, FASTER ACTING VALVE

To investigate the behavior of DESAC under a different set of operating conditions, a partial redesign was made of the original four-cylinder valve described in Section 4 and illustrated in Fig. 5. The mass to be moved is slightly greater than that in the experimental valve ($3741 \mathrm{lb}_{\mathrm{m}}$ instead of $356.5 \mathrm{lb}_{\mathrm{m}}$), but the actuation time is less than half that of the experimental valve (0.030 sec instead of 0.063 sec), and the final velocity is 200 ips instead of 300 . This valve requires, therefore, a considerably more pronounced deceleration action.

To be able to re-use the major components of the four-cylinder valve (i.e. the body, cylinders and pistons), the option of by-passing the prototype design was utlizized. The performance of the original four-cylinder valve was given as the required performance. The number of cylinders (4), and the cylinder and piston-rod diameters (3 in . and 1.6875 in.) corresponding to the existing valve were given to the program, as well as starting values for the four remaining independent variables: HD, HL, BL, and PWGR. Starting values for these four quantities were selected blindly, and proved to be very por. nuesses (FF, the sum of the squares, was found to be 2.287, indicating a very poor approximation of the desired performance).

DESAC ran for 17 iterations (100 fuiction evaluations) and arrived at a design that gave an actuation time of 0.0285 sec (0.030 desired), a final velocity of 210.7 ips (200 desired), and acceptable values for the maximum stress and pressures, while using 22.48 g of propellant in each actuator (instead of the 24 g originally used).

TELETYPE RECOROS

The designer - program interaction for all four test cases can be followed in Appendix VI, with designer's inputs marked by a suitable comment.

7. SUMMARY AND CONCLUSLON

A computer subroutine STROKE has been written for the purpose of describing the action of a self-decelerating pyrotechnic actuator. It has been tested and found to reproduce experimental data of actuator performance with good accuracy. STROKE has been incorporated into an interactive computer program DESAC for the design of such actuators. DECaC has been tested and shown to operate as intended and to converge to con-istent and efficient designs. DESAC may be used by a designer having only general actuator-design experience and a minimal understanding of the mat. 3matics involved. No knowledge of thermody:amics or pyrotechnic gas generation is needed.

REFERENCES

1. Pitts, J. H., "Closure Redundancy in the PACKARD Experiment," Lawrence Livermore Laboratory, ENN-68-43, 1958.
2. Powell, M. J. D., "A Method For Minimizing a Sum of Squares of Nonlinear Functions without Calcuisting Derivatives," Computer J., 7:303-307, 1965.
3. Corner, J., "Theory of the Interior Ballistics of Guns," John Wiley \& Sons, 1950.
4. Baum, F. A., Stanyukovich, K. P., and Shekhter, "Fisika Vzryva," GOS.IZD.FIZIKO-MATEM.LIT., 1959.
5. Hall, N. A., "Thermodynamics of Fluid Flow," Prentice Hall, Inc., 1956.
6. John, James E. A., "Gas Dynamics," Allyn \& Bacon, 1969.
7. Giedt, W. H., "Thermophysics", Van Nostrand Reinhold Co., 1971.
8. Sweijert, R. L. and Eedrdsley, M. W., "Empirical Specific Heat Equations Based Upon Spectroscopic Data," Georgia School of Technology, Bulletin 1 (No. 3) (June 1938).
9. Mackay, C. O., Barnard, W. N., and Ellenwood, F. O., Engineering Thermodynamics, Wiley, New York, 1957
10. Wilke, C. R., "A Viscosity Equation For Gas Mixtures," Journal of Chemical Physics," Vol. 18, No. 4, April 195D, 517-519.
11. Rektorys, K., Ed., "Survey of Applicable Mathematics;" The M.l.T. Press, Massachusetts Institute of Technology," Cambridge, Mass.
12. Bisset, J., "Establish Break Out Friction Values for Polypaks," Engineering Report No. 52-192, Parker Seal Co., private communication from John Dorn, Lab Supervisor.
13. Obert, E. F., "Thermodynamics", McGraw-Hill Book Co., Inc. 1948,

APPENDIX I

A Four Parameter Equation For Calculating Gas Enthalpies

The enthalpy of a gas at a certain temperature T is calculated from the definition of specific heat capacity:

$$
c_{p}=\frac{d h}{d f}
$$

giving

$$
\begin{equation*}
h=\int c_{p} d T \tag{i}
\end{equation*}
$$

where c_{p} is the specific heat capacity at constant pressure.
To perform the intergration in Equation (1), an algebraic expression is needed giving c_{p} as a function of T. This expression is usually in the form of a polynomial in powers of T (sometimes these powers are negative or fractional). One of the better known is due to Mackay, Barnard and Ellenwood (Ref. 10), and the equations for c_{p} is: *

$$
\begin{equation*}
c_{p}=A+B T+C T^{2}+D T^{-1 / 2} \tag{2}
\end{equation*}
$$

Integration of Equation (2) gives:

$$
\begin{align*}
h & =\int A+B T+C T^{2}+D T^{-1 / 2} d T \tag{3}\\
& =A T+\frac{1}{2} B T^{2}+\frac{1}{3} C T^{3}+2 D T^{1 / 2}+K
\end{align*}
$$

Equations (i) and (3) apply tn narrow ranges of temperature. For example Ref. 10 gives, for air, two sets of coefficients for Equation (2):
a) from 400 to $1200 \mathrm{R} \quad \begin{array}{ll}A=0.2405 & B=-1.186 \times 10^{-5} \\ & C=20.1 \times 10^{-9} \\ & D=D\end{array}$

[^4]\[

b) from 1200 to 4000 \mathrm{R} \quad A=0.2459 \quad $$
\begin{array}{ll}
B=3.22 \times 10^{-5} \\
& C=3.74 \times 10^{-9} \\
D=-0.833
\end{array}
$$
\]

This dual equation system is awkward but usable when solving for enthalpy, given the temperature. It is much more complicated to solve for the temperature, given the enthalpy. Furthermore, gas temperatures over 5000 R were expected to occur, while Ref. 10 equations only extended to 4000 R .

The most recent enthalpy information available to the author was in the form of enthalpy tables (JANAF Thermochemical Tables, by the Dow Chemical Co., Midland, Michigan). It was decided to develop an independent equation to fit the JANAF data. Eleven uniformly spaced temperatures were selected (720 R to 7920 R at 720 R intervals) and enthalpy values for these temperatures were taken for each gas of interest in this study (i.e., nitrogen, carbon monozide, hydrogen, carbon dioxide, and steam). After trying several equation forms to fit this data in the least-squares sense, the following form was selected:

$$
\begin{equation*}
h=A+B T+C \ln T+D l^{2} T \tag{4}
\end{equation*}
$$

the would fit the data over the total temperature range with a higher overall accuracy than the fit of Equation (3) to the same data, even though only four parameters are used in (4).

Table III compares the fit of both equations and the per cent error at six arbitrary points in the range of the data.

Comparisons of enthalpy ${ }^{*}$ errors calculated by Equation (3) and (4) at six arbritrary temperatures, for the five propellant gases.

	7201800	3060	4500	5760	7200
H_{2} enthalpy per JANAF	12738899	18419	30326	41386	54571
enthalpy by Eq. (3) per cent error	$\begin{array}{rr} 1268 & 8872 \\ -0.394 & -0.304 \end{array}$	$\begin{aligned} & 18420 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 30276 \\ -0.165 \end{array}$	$\begin{array}{r} 41342 \\ -0.106 \end{array}$	$\begin{aligned} & 54572 \\ & 0.002 \end{aligned}$
enthalpy by Eq. (4) per cent error	$\begin{array}{rr} 1263 & 8395 \\ -0.792 & -0.045 \end{array}$	$\begin{array}{r} 18401 \\ -0.098 \end{array}$	$\begin{array}{r} 30325 \\ -0.003 \end{array}$	$\begin{array}{r} 41402 \\ +0.039 \end{array}$	$\begin{array}{r} 54580 \\ +0.016 \end{array}$
$\mathrm{H}_{2} \mathrm{O}$ enthalpy per JANAF	149511176	24817	42515	59177	78849
enthalpy by Eq. (3) per cent error	$\begin{array}{rr} 1473 & 11318 \\ -1.494 & +1.271 \end{array}$	$\begin{array}{r} 24901 \\ +0.338 \end{array}$	$\begin{array}{r} 42534 \\ -0.096 \end{array}$	$\begin{array}{r} 59231 \\ +0.091 \end{array}$	$\begin{array}{r} 79081 \\ +0.294 \end{array}$
enthalpy by Eq. (4) per cent error	$\begin{array}{rr} 1515 & 11135 \\ +1.338 & -0.368 \end{array}$	$\begin{array}{r} 24880 \\ +0.254 \end{array}$	$\begin{array}{r} 42577 \\ +0.005 \end{array}$	$\begin{array}{r} 59123 \\ -0.091 \end{array}$	$\begin{array}{r} 78839 \\ -0.013 \end{array}$
CO_{2} enthalpy per JANAF	172414371	31617	52454	71127	92768
enthalpy by Eq. (3) per cent error	$\begin{array}{r} 1711 \quad 14479 \\ -0.760+0.752 \end{array}$	$\begin{array}{r} 31661 \\ +0.139 \end{array}$	$\begin{array}{r} 52469 \\ +0.029 \end{array}$	$\begin{array}{r} 71178 \\ +0.072 \end{array}$	$\begin{array}{r} 92848 \\ +0.086 \end{array}$
enthalpy by Eq. (4) per cent error	$\begin{array}{r} 3730 \\ +0.348 \\ +0.028 \end{array}$	$\begin{array}{r} 31632 \\ +0.047 \end{array}$	$\begin{array}{r} 52444 \\ -0.019 \end{array}$	$\begin{array}{r} 71120 \\ -0.010 \end{array}$	$\begin{array}{r} 92773 \\ +0.005 \end{array}$
CO enthalpy per JANAF	12809329	19764	32276	43450	56369
enthalpy by Eq. (3) per cent error	$\begin{array}{r} 1268 \\ -0.946+1.276 \end{array}$	$\begin{array}{r} 19813 \\ +0.248 \end{array}$	$\begin{array}{r} 32274 \\ -0.006 \end{array}$	$\begin{array}{r} 43490 \\ +0.092 \end{array}$	$\begin{array}{r} 56456 \\ +0.154 \end{array}$
enthalpy by Eq. (4) per cent error	$\begin{array}{r} 1288 \\ +6.625-0.011 \end{array}$	$\begin{array}{r} 19784 \\ +0.101 \end{array}$	$\begin{array}{r} 32270 \\ +0.019 \end{array}$	$\begin{array}{r} 43438 \\ -0.028 \end{array}$	$\begin{array}{r} 56371 \\ +0.004 \end{array}$
N_{2} enthalpy per JANAF	12789232	19544	31970	43090	55960
enthalpy by Eq, (3) per cent error	$\begin{array}{r} 1266 \\ -0.9348 \\ -1.256 \end{array}$	$\begin{array}{r} 19587 \\ +0.220 \end{array}$	$\begin{array}{r} 31948 \\ -0.069 \end{array}$	$\begin{array}{r} 43112 \\ +0.051 \end{array}$	$\begin{array}{r} 56033 \\ +0.130 \end{array}$
enthalpy by Eq. (4) per cent error	$\begin{array}{rr} 1288 & 9227 \\ +0.782 & -0.054 \end{array}$	$\begin{array}{r} 19570 \\ +0.133 \end{array}$	$\begin{array}{r} 31962 \\ -0.025 \end{array}$	$\begin{array}{r} 43073 \\ -0.039 \end{array}$	$\begin{array}{r} 55961 \\ +0.002 \end{array}$

[^5]78.

TABLE I.B

Values of Constants in $h=A+B T+C \ln T+D n^{2} T, B T U / l b_{m}$ mole

GAS	A	B	C	D
H_{2}	$1.153 \mathrm{E}+5$	$1.152 \mathrm{E}+1$	$3.552 \mathrm{E}+4$	$-2.896 \mathrm{E}+3$
$\mathrm{H}_{2} \mathrm{O}$	$-1.156 \mathrm{E}+5$	$1.699 \mathrm{E}+1$	$3.829 \mathrm{E}+4$	$-3.398 \mathrm{E}+3$
CO_{2}	$1.172 \mathrm{E}+4$	$1.593 \mathrm{E}+1$	$-1.756 \mathrm{E}+3$	$-2.289 \mathrm{E}+2$
CO	$-5.761 \mathrm{E}+3$	$9.544 \mathrm{E}+0$	$2.2 \dot{2} 3 \mathrm{E}+3$	$-3.338 \mathrm{E}+2$
$\mathrm{~N}_{2}$	$-1.084 \mathrm{E}+4$	$9.611 \mathrm{E}+0$	$3.825 \mathrm{E}+3$	$-4.609 \mathrm{E}+2$

APPENDIX II

Determination of Six Gas Generator Constants

To calculate the performance of a given actuator by means of STROK., six constants determining the functioning of the gas generator had to be evaluated. They were:
$K_{B}, b_{1}, b_{2} \quad$ used in Equations 3-9 and 3-10 to calculate
propellant burning rates.

B
the first virial coefficient in the gas equation of state, used in Equations 3-3a and 3-35 to calculate specific volumes or gas pressures.
k_{f} the flow coefficient of discharge, used in Equation 3-11.
n
the effective heat of reaction of the propellant (the adiabatic heat of reaction reduced to account for the heat loss to the walls).

Three test firings of the PGG had heen made, with propellant loadings of 34,20 and 10 grams. All three were made with the PGG flow discharging int^ a 38 in. 3 ullage volume, and gave the following seven data points;

34-gram =harge:

1) Time to reach maximum generator pressure
2) Value of maximum generator pressure:

PMAX $=28650$ psia
3) Time to reach pressure equilibrium:

TP34 $=.00265 \mathrm{sec}$
4) Value of equilibrium pressure:

PE34 $=6460$ psia

20-gram charge:
5) Value of equilibrium pressure:

PE20 $=3350$ psia

10-gram chiüge:
6) Time to reach pressure equilibrium:

TP10 $=.0081 \mathrm{sec}$
7) Value of equilibrium pressure PE10 $=1532 \mathrm{psia}$

These seven data points were assumed to be functionally dependent on the six constants defined above. A simplified version of STROKE (obtained essentially by considering the mass to be moved to be infinite, the piston vent hole dlameter to be zero, and the head volume to be $38 \mathrm{in.}^{3}$) was used to calculate the seven quantities corresponding to the seven experimental points. Program POWSQ was used to find those values of the six constants that would minimize the sum of the squares of the following seven functions:

$$
\begin{aligned}
& F(1)=(\text { TPMAX }-.00164) / .00164 \\
& F(2)=(\text { PMAX }-28650) / 28650 \\
& F(3)=(\text { TP34 }-.00265) / .00265 \\
& F(4)=(\text { PE34 }-6460) / 6460 \\
& F(5)=(\text { PE20 }-3350) / 3350 \\
& F(6)=(\text { TP10 }-.0081) / .0081 \\
& F(7)=(\text { PE10 }-1532) / 1532
\end{aligned}
$$

This procedure gave the following values for the six canstants:

$$
\begin{aligned}
\mathrm{K}_{\mathrm{B}} & =3.9374 \\
\mathrm{~b}_{1} & =0.19079 \\
\mathrm{~b}_{2} & =0.043892 \\
B & =0.13131 \\
\mathrm{~K}_{\mathrm{f}} & =0.0401636 \\
\mathrm{~h} & =1241.58 \text { BTU/7b }
\end{aligned}
$$

The calculated values of the seven data points using the above results are compared to their experimental values in Table 11.A.

TABLE II.A

	Experimental Value	Calculated Vuantity	Per cent Error
TPMAX	0.00164	0.00195	-8.9
PMAX	28650.00005	$311 B 0.000000$	8.84
TP34	0.00265	0.002747	3.65
PE34	6460.00000	6469.000000	.138
PE20	3350.00000	3405.000000	1.63
TP10	0.0081	0.0080	1.17
PE10	1532.0000	1547.00000	1.03

The calculated total history of PGG pressure versus time is shown in Fig.II.A for all three loadings, with experimental values marked.

FIG. II.A CAL ULATED GAS GENERATOR PRESSURE VERSUS TMME

All solutions of nonlinear simultaneous equations are essentia?ly trial-and-error solutions, and hence, require a startin $:=1 n t$. In the case of mathematical models of real systems, this starting point must be a realistic point, l.e., one that will not give results contradictory to the basic limitations of the system being modeled (such as negative absolute temperatures or masses).

In the system being considered, desired performance is defined by specifying values for the following quantities:
t_{t} total time of travel
V_{f} final velocity at end of travel
S_{r} maximum stress in piston-rod
P_{c} maximum cylinder pressure
while moving a given mass W through a stroke S_{t}.
The starting point is defined when refinite values are assigned to:
d_{c} cylinder diameter
d_{r} piston-rod diameter
W_{p} propellant charge
L_{H} length of head-volume
L_{B} length of buffer-volume
d_{h} vent-hole diameter
L_{h} vent-hole length

To obtain an explicit (but approximate) solution for the above seven quantities, the fullowing procedure was used for simplifying assumptions
defining the actuator performance:
(1) Assume the piston moves with a constant acceleration A for an unknown acceleration time t_{a}, then ciecelerates at the same constant rate and arrives to the end of the stroke $\left(S_{t}\right)$ at the desired total travel time t_{t}, with a final velocity V_{f} equal to the maximum velocity allowed. Applicaticn of the well-known constant acceleration equations for dispiacement and velocity, and considerabie algebraic manipulation, gives the following quadratic equation in A :

$$
t_{t}^{2} A^{2}+\left(2 t_{t} V_{f}-4 S_{t}\right) A-V_{f}^{2}=0
$$

This can be solved for A in terms of ${ }_{c}, t_{t}$ and V_{f} :

$$
A=\frac{4 S_{t}-2 t_{t} V_{f}+\sqrt{\left(2 t_{t} V_{f}-4 S_{t}\right)^{2}+4 t_{t}^{2} V_{f}^{2}}}{2 t_{t}^{2}}
$$

Knowing A, the acceleration time t_{a} can be found:

$$
t_{a}=\frac{t_{t}+\frac{1}{2} V_{f} / A}{2}
$$

and the force required to maintain the constant acceleration:

$$
F=W A
$$

(2) By making the assumption that the maximum gas pressure in the head cylinder was twice the average pressure, the values of d_{c} and d_{r} are then calculated:

$$
d_{c}=\sqrt{\frac{2 F}{\frac{\pi}{4} P_{c}}}
$$

and

$$
d_{r}=\sqrt{\frac{2 F}{\frac{\pi}{4} S_{r}}}
$$

(3) It can be show that, for a mass M moving through a distance S in a time t under constant acceleration and deceleration, the kinetic energy at maximum velocity (i.e., energy input required) is independent of the relative magnitude of acceleration and deceleration, and of the final velocity, and is equal to:

$$
K E=2 M\left(\frac{s}{t}\right)^{2}
$$

Thus, the energ; required for actuation is:

$$
E=2 W^{\left.\prime \frac{s_{t}}{t_{t}}\right)^{2}}
$$

Assuming a 50% efficiency in transforming propellant chemical energy Into kinetic energy of the mars, the propellant charge required is:

$$
W_{p}=\frac{2 E}{778.3 h}=\frac{E}{389.15 h}
$$

where h is the effective heating value of the propellant, in BTU/Ib. (4) After calculating propellant gas pressures for many loadings and ullage volumes (using the program developed in Appendix II), a 4-parameter erpression was developed to fit this data in the least-squares sense. ifis expression (giving the final pressure P reached in a given volume V by a given propellant charge W_{p}), when solved for the volume, gives:

$$
V=\frac{5.4254+1.3258 \ln W_{p}-\ln P_{c}}{.019489+.004406 \ln W_{p}}
$$

where P_{c} is the allowed (and desired) maximum cylinder pressure.
Substituting P_{c} and W_{p} into this equation gives V, the head-volume
that will give the maximum desirable cyl inder pressure with the given propel iant loading. With the cylinder diameter already known, the length of the head volume can be readily found:

$$
L_{H}=\frac{V}{\frac{\pi}{4} d_{c}{ }^{2}}
$$

With no more information readily available, a buffer length at the end of the stroke equal to the head-volume length was assumed:

$$
L_{B}=L_{H}+S_{t}
$$

(5) The vent-hole diameter is calculated by assuming an orifice (instead of a Fannol flow. The ASME orifice flow formula gives:

$$
\dot{i}=.525 d_{h}^{2} K \gamma_{1} \sqrt{\rho_{1} \Delta p}
$$

where \dot{W} is the gas flow rate, d_{h} is the vent-hole diameter in inches, Δp is the pressure differential across the orifice, in psi, and $; 1$ the upstream dersity in $\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}, \mathrm{~K}$ is the flow coefficient (including the velocity of approach factor), and Y_{1} is the compressibility correction factor.

Squaring and transposing:

$$
d_{h}^{4}=\frac{\dot{w}^{2}}{\left(525 K Y_{1}\right)^{2} \rho_{1}}
$$

Assuming an average value of . 85 for $\left(\mathrm{Kr}_{\mathrm{l}}\right)$ and solving for d_{h} gives:

$$
d_{h}=\sqrt[4]{\frac{\dot{B}^{2}}{19914 \rho_{1} \Delta p}}=\sqrt[4]{\frac{5 \dot{w}^{2}}{\rho_{1} \Delta p}}
$$

It is now required to e: "imate \dot{w}, ρ_{1} and Δp.
a) Assuming half the propellant gas flowed through the vent during t_{a}, the acceleration time, and the initial flow as double the average flow, the mass flow rate for the initial conditions is:

$$
\dot{w}=\frac{w_{p}}{t_{a}}
$$

b) The average temperature of the head-volume gas is estimated as follows:

The maximum temperature of the propellant gas is the isochoric flame temptrature, which is approximately 5000 R. After the gas flows into the head-volume and comes to a stop, its temperature mây be raised by a factor equal to γ, its specific heat ratio. Thus, the gas temperature in the head-volume may be as low as ambient (520 R) and as high as $5000 \mathrm{\gamma}$. Ar average value can be taken as:

$$
T_{\mathrm{ave}}=\frac{5000 \gamma+520}{2}
$$

For this approximate calculation, the perfect gas equation of state can be used for finding ρ_{1} the gas density at maximum headvolume pressure P_{c} :

$$
\rho_{1}=\frac{P_{c} V}{R T_{\text {ave }}}
$$

(c) flow can be assumed to be choked, and the pressure differential Δp is then:

$$
\Delta p=P_{c}-P_{c}\left(\frac{2}{\gamma+T}\right)^{\frac{\gamma}{\gamma-T}}
$$

(6) To ensure that pipe flow is well established, a vent length equal to fifteen diameters is assumed for the prototype design:
88.

$$
L_{h}=15 d_{h}
$$

This concludes the determination of the seven quantities specifying a realistic starting point for the design search.

APPENDIX IV
Listing of Actuator Design Program DESAC

THTS TNTERACTIVE PROGPAM PROUTDFS THE DIMFNSIONS IIM TNCHFSJ AND THE PPAPELLANT CHANGE IIN GRAM) FOR A SELF=SIOPPING GAS-POWEREM ACTUATOR, UTILITING THE CTL-IO359 HIGH PRESSURE CARTRIOGE FOR GAS GENERATION. TELETYPE INPUT REOUFST ASKS IHE FOLLOWTAG:

```
NLR MASS TO DE MOVEN (POUNNS)
SYR PHYSICAL LENGTH OF STROKE (INCH)
TR TIME REQUIREN FOR STROKE ISFCONDI
VFAL FINAL VELOCITY AILOWEO (IPS)
STAL MAXIMLIM STRESS ALLOWFD IN PISTON ROD (PSI)
GPAL MAXIMUM PRESSUAE ALLNWFD IN GAS GENFRATOR (PSIA)
CPAL HAXIMUM PRESSUPE ALLNWFD IN ACTUATOR CYLJNDERIOSIA)
```

AFTER A PRELIMINARY DESIGN RUN, THE PROGRAM WILL REPOPT RFSULTS BY TELFTYPE AND ASK FOR DESIGNER,S DERISIONS IN PREFERREN SIZFS AND NUNAER OF COMPONENTS EEFORE MAKTNG A FINAL DESITAN.

ALL TMOCRTANT DATA ARE REROADED IN DISK FILE DESOUT, WHICH CAN RE JSSIIFD RY ALLOUT TO HSP OR RJET TO SUPPLEMENT THF INTFRACTTVE TELETYPE PAGE.

COMMAN /GEOM/ CN, PRO, HD, HL, RL, CEV,THET,PHI,PT,WLR,VHA, ELOM,STD COMMON /SPECS, TVMAX,TITLE(10):PEQU(7), NOS (3), NC, NOHC, NH OTMENSTON $x(6)$,F(7) \times (S (6)

IF (NF,NE.0) PAIISE
$I N=I T=E 9 \quad: N A G=0$
RSVP=3HNO
WRTTF (59-60)
WRITE (3,60)
IDENTIFY DESIGN PROELEM
READ (59.65) TITLE
WRITF (3.70) TITLE
WRITF (59.75)
WRITE (3.75)
OBTAIN NUMEERS RESCRIRTNG REGUTRED PERFORMANCE
CALL BATA (REOU 7 T, §M, IT)
WRITF (3.80) REOU
WLRERFOU(1)
STPERF OUl (2)
TR=FF Cll 3)
VFAL=OFOU(4)
STAL=PFOU(5)
CPALERFOU(7)
WRITF (59:40)
WRITF (3.40)
C CHFCK TF THIS IS A MODIFICATION OF AN EXISTING MODEL
READ (E9:INF) RFSP
WPTTF (3.110) RFSP
IF (PFSP.EQ. 3HYFS) GO TO 30
MAKE L TNEARIZED AND SIMPIIFIED FIRST MODEL
CALL START (X)

```
        WRITE (3.95)
        CALL PROTOT (F,X)
C
C QECORD PRELIMINARY DFSIGN RESULTS FOR POSSIHLE RE-USE
        00 5 F=9.6
    5. XS(I)=X(I)
    Ii CaLL HAGGLE {F,K,NAG}
    15 WRITE (7.85)
        CALL FTND:SS (F,X)
        WRITF. 13.90)
        CALL WFPORT (F:X)
        WRITE (59:100)
        WRTTF. (3.95)
        WRITE (3*100)
        READ (59,105) RSVP
        WRITE (3,110) RSVP
        IF (RSUP.EO.3HYFS) GO TO 25
C
    fESET valuES OF x TO STARTING POINT FGR NEW SEARCH
        00 20 T=1,6
        X(T)=xS(I)
        GO TO 10
        WRITF (3.115)
        CALL FYIT
        WRITE (50.45)
        WRITE (3.45)
        CALL NATA {F,7,IN,IT}
        HRITE (3.80) F
        OT=F!-!
        DO 35 T=1:6
        X(I)=F(I)
        CONTINIE
        X(3) =X(3) RFQU(?)
        WRITE (59.50)
        WRTTE (3.50)
        CALL NATA (NDS,7,IN:IT)
        WRITE 13.55) NOS
        NC=NOS{1) 5NOGC=NOS(?) 5NH=NOS(3)
        GO TO 15
C
C
40 FORMAT (/47HOO YOU HAVE A REASONARLF FIRST GUFSSS YFS OR NOY
45 FORMAT (3RHGIVE VALUFS OF HO,HI,RL&PWAR&CD,PAD,PT)
50ी FORMAT (2GHGIVE VALUES FOR NC,NCGCONH)
55 FORMAT (2IH(TELFTYPE INPUT) *-> & SIS)
60 FORMAT (////43HGIVF TITLE FOR THIS ACTIJAIOR DESIGN PRORLEM/S
65 FORMAT (10A7)
70 FORMAT (ZOH(TFLFTYPF. INPUT) m->|/&X,IOAT)
75 FORMAT (/46HGIVF VALUES FOR WLR,STR,TR,VFAL,STAL,GPAL,CPAL,
80 FORMAT (23H(TELETYPE INPUT) m-> {7EIO.3)
RS FORMAT \//55HFOLLOWING IS THF. POWSQ OUTMUT GIVING THE SEARCH HISTA
\⿴囗十|
90
100 FORMAT (//HRHTS THE. ABOVE DFSIGN SATISFACTORYS TYPE YES TO EXIT, N
    iO TO TRY AGAINI
OS FORHAT (A3)
:10 FORMAT (2IH{TELFTYPE INPUT) m, m3)
115 FORMAT (//BHALL OONE)
    END
```

SURROUTINE CALFIIN (M, N, F, X)

IT IS ALWAYS DFSIRABLF TO KEE'P RPMAX AT ALLOWABLE PRESSURE.

as LONA AS GENERATOR PRESSURE IS SAFELY BELOW GPAL, F(7)=0. F(7) 10 .
IF (GPMX.GT•REQU(G)) F(7)E(GPMX-REQU(6)//REOU(i)
IF BOTH TAC AND VFIN ARE NEGATIVE: PRIRLEN IS NOT CONVERGING. IF (TACOLT:O.ANO.VFIN.LT*O) PAUSE
C
C
C
IF VFIM IS NEGATIVE, IT IS THE DISTANCE AT WHICH PISTON STOPPFD AT MIO STROKF: WITH A NEGATIVE SIGN. PERFORMANCE IS DEFINITELY IN THF WRONG MONE, HFNCE F(?) IG GIUEN A PENALTY FUNCTION.

RETURN
PWCREARS $(X(4)\}$
COEARS (X(5))
PRPEARC $(X(G))$

IF (PGCR.LT-10.) PWGP=10.
GO TO E
ENT
SURROUTINE FANNOF (PI,PZ,TI,TZ,FMUP,EMDN,FF,EMDOT,FNRCE)
THIS FANNO SOLVFR IS FOR FASTEST SOLUTION FROM A GONO GUESS
COMMON /GEOM/ CN, PAD,HD,HL, RL, CEV,THET,PHI, PT, WLA,VHA,FLOD,STQ
COMMON /GASP/ R.SA, RK, BC, UB, $A, R, C, D, P H V$
COMMON /PARG/ PI;PIF,XJ,PA,TA,GC;SF,CUF
COMMON /PPTT/ PSUP,PSON.TSUP,TSNN
C
C FIND NIPECTION OF FLOW
IF (PI.LT.PZ) Gก TO 5
$P Z=P 1$
TZ=T1
PSEP?
60 TO 10
PZ=P\%
$T Z=T$?
5
C FIND SDFCIFIC VOLUME OF GAS AT QESERVOIR CONDITIONS

GAMAZ: FAMGAS (TZ)
GAMI = GAMGAS (TSUP)
Gam२ngamtas (TSDN)
GAMISE.5* \{GAMAT*GAM1\}
GE.5®(AAM) +GAMZ)
GMEGO).
$G P=G+1$.
C
C CHFCK FOR UFRY LOW PRESSURE OIFFERENTIAL
c
C RECORD PRESENT VALUES TO EVALUATE NEXT LOOR IMPROVEMENT
15 EMUP $=$ FMUP
EMONO $=F M O N$
TSUPO=TSUP
TSONOETSDN
EMDO =F UNOT
FOEFF

c
C IMPROVF EMON IF FLOW IS NDT CHOKED
EMON=FMUPO (PZ/PSI*SQRT(GAR)*(1.*.5*(GAMIS-1.) *EMUPAFMUP)*E(GAMIS/I
II-GSMTS)
C IF EMTN IS FOUND TO RE GT.I.O. FLOW WMS REAALY CHOKFD
IF (ARS\{PZ/PSm1.).LT.E日) GO TO 20
IF (EMNN,GT:IO) EMON:I.
C
C FINO FMUP FOR ETTHER CASE
(GAPB= $\mathcal{A} A R \# E M D N * F M D N /(E M U P * E M I I P)$

C
C IF EMLIP $\triangle N D E M D N$ ARE FAR FROM CONVEGGFO GGNORE DTHFR FACTORS
IF (APE (EMUP-EMIJPO).GT. OS.OH.ARS (EMDNEEMONOY.GT..OF) GO TO 15
C
FIND TSUP AND TGDN FOR GETTEA GAMAS AND VISCOSITIES

TSONET RUP EGAR
GAM1 =GBMGAS\{TSUP\}
GAN2: EGAMGAS(TGON)

```
GAM\ S%.5#(GAMAT&GAM1)
G=05*(GAM1 ©GAMZ)
GM=G-1.
GP=G*1.
```



```
CALL MIICOMP ITSIIP,UPMU}
CALL RIICOMP (TSNN.DNMU)
AVMUx.5* (UPMU&DNMU)
```

C FINO FMDOT FOR NEW CONOITIONS

VGUP $=E M H P$ SSAT (SCWGAMIS*R*TSUP)
EMDOTEVHA*VGUP/(SF母SVUP)
C
C
FJND NFW REYNOLDS NQ. AND FRICTION FAETOR
REN=4。*EMDOT / (AVMU*PIUHD)

EVALUATE THE IMPROVEMENT ON IMPORTANT PARAMETERS

C FIND IDAG FORCF ON WALL OF TURE POSITIVE IN DIPECTTON OF FLOW
PSUP=P7/(1.*.5*(GAMTS-1.) EEMUP*EMUP) *\& (GAMIS/(GAMIS-1.))
PSON土PEUPAEMUPASQRT (GAR)/EMDN

RETURN
C

VGUP=SNRT (2."GC*SVA*(PZ-PS)
EMDOTEVKA*VGUP/(SF\&SVA)
FORCFEA.
RETUFN
END
SURAROUTINE FINDES (F, X)
THTS SIRRDUTINE STARTS POWSG ON A FTNAL DESIGN SEARCH ONCE THF
NUMAFR OF COMPONENTS. AND THE CYLINDER AND PISTON-ROD DIAMETERS
HAVE RFFN SELECTED.
COMMON /PERF/ TAC,HPMX, RPMX, GPMX,STMX,VFIN
COMMIN /SPEC5/ TVMAX,TTTLE(10), DEOU(T), NOS (3), NC, NOCC.NH
COMIANN /PARS/ PT\&PIF,XJ,PA,TA\&GC\&SF,CUF

©IMENSTON $X(6)$, $F(6), F(7)$
Nr 7
Na4
OO 5 Ix1*4
E(I) $=1 . E=4$
ESCALF=250.
IPRINTEI
MAXFUNE 100
IF (AFs\{X(4)).LT. 10.000001) Na 3
CALL PAWSO (M,N,F,X:E,ESCALE,IPRINT,MAXFUN)
CALL EMPTY (3)
RF.TURp
END

```
SUPRROITYNE HAGGLE (F,X,NAG)
C
    THIS SITAROUTINF. RFPGOTS THE RFSILLTS OF TMF PRFLYMTNARY NESIGN AND
        RECEIVES RESIGNFR,S TMSTRUCTIONE ON PAEFERRED (STANNADNS CYIIINDER
        ANH P\CTON-FOD DIAMETEPS. AND NIIMFER OF COMPONENTS.
        DIMENSION F(7),Y(G)OOTAM(2),NI(2)
        COFMTNN /PERF/ TAC,HPMX,APMX,GPMX,STMX,VFIN
        COMMON /GASPF R.SA,RK*HC&BH*A*R.C.D.PMV
        COMMON /PARS/ PI&PIF:%J,PA,TA.GIC,SF CUF
        COMMNN /SPECS, TYMAX,TITLE (1O),DEOU\TS:NOS(3), NCONDGE,NH
        COMHON /GEOH/ CO&PRO&HO&HL,PRL,CFY&FHET&PNI,WT,WLR&VHA,FLON&STD
        TNFITEEA
        HLA=RFA!{!)
        STP=RFC(ip)
        TR=PFAl1(3)
        UFAL=ptOU(&)
        STalmapFolu(S)
        CPaL=PFOU(7)
        Nagenartol
        IF INAT.,ED.II NRENOGC
        IF INAG.fT.Il GN TO 20
        WRTIF (59.65i NnTE,TAC,VFIN,STMX,GPNX,HPMX,HPmX
        WRITF (S.&5) NOGC,TAC,VFIN+STMN,GFOHX,HPMX&RHMX
        HOEARSfY(II)
        HLEARS{x{P)}
        BLEARS(X(7))*STp
        CDEAAS (X(4))
        PROEARSIK(SI:
        PWGPzaRS \K(f)\
```



```
        GVOLEF! #P{FO{COQCD-PRNEPND}
        WRITE (59.70) PWGR,HN,ML,EL, CO,PRO
        WRITF (3,70) PUFR,MD,HL,OL,CD,PRD
        WRTTE (S9.751
        MA!TF (3.75)
        CHLI. PPOPOSE (PUGR*X*NOGC)
        WRITE I3.ROI
        WRITF {SO:&0}
        WRITE {3.40)
        REAO (EQ,115) RSVP
        URITF (3PIZO) RSYP
        IF IRGUP,EQ.3HNN \ GD TO 30
        WR1TF (S9.65)
        WAITF (3*A5)
        CHLL DHTA INIG2*IN:ITI
        PWGRapWGRONGGCF(NT(I) ENT\ZI:
        NC&NT{\
```



```
        MRITE (3ilin5) Nt
        WRTTE (59.901
        MAITE 13:90%
        CHLL NATA (OTAM,2,IN,ITI
        WHTTF 13.9E) DIAM
        CDEX{g)xntam|l)
        PRHEXIRIEDIAM(2)
        ANC=,F*IO[AM(1)=0TAM(7))
        3f {PWGA,LE.10.1 60 10 25
        X{d)=p|f(R
        HLEHYOL/(PIF PD*CO)
```

```
    X(P)=wl
```



```
    X(3)nal -STR
    10 HOEHBYGORT (FLOAT (NGENH)!
    X||Em\
    15 WRJTF 159.100) ANC,HD
        WRITE (3.100) ANC,HD
        CALL NATA (DIAN,I,IN,IT}
        NH*IF!Y(ND*HD/(NIAM(1)*DIAM(1)): & |
        HD=HD/GORT (FLOAT (NH))
        WRITF (3.95) DIAM(1)
        WRITE (6901101 NH,HD
        WRTTE (3:110) NH&HD
        PTul5.0HD
        WRITF (59.125) DT
        WRITE (3.125) PT
        CALL TATA TDIAM,I,IN&TTY
        pT&0!am(3)
        WRITE (3.95) PT
        ELODEPT/HO
        WRTTF 159.45) ELOD
        WRITE (3.45) EL\capD
        READ (50.115) RSVP
        WRITF (30120) RSVP
        IF {RSUP.EGO3HNN \ GO 70 15
        RETURA
    20}\mathrm{ NOGC=NA
        WRTTE (59.130) NAG,NOGC
        HRYTE 13,1301 NAG,MOGC
    GO TO =
    25 PWGR=1A.
    x(G) =qn.
    X(2)=0,16670DTAM(1)
    x(3) =x(7)
    GOTO 10
    30 WRTTE (59:50)
    WRITE 1$050)
    CALL NATM (NOS*T*SN*IT'
    NC=ANOS(9)
    NONCENOS(2)
    NHmNOS (3)
    WRTTE (?.105) NOS
    WRJTE (59.55)
    WRTTE (3.55)
    CALL NATA TF,7*IN,ITI
    WRITE {3,60) F
    PT-F17%
    00 35 TF1-6
    35 X{|imF{!}
    C䖝 FMPTY (3)
    REEURM
C
40́ FORMAT I//49HTS DNE OF THE AROVE PROPOSE ACCEPTAALF& YES OR NR)
    45 FORHMT I/G9HYOUR CHOICE OF VENT LENGTH GIVES AN L/O RATTO OF GFS.I
        I*10N ON OR NOS?
    50 FOPNAT IAPMSPFCTFY YOUR VARIATION FOR THE FINAL OESTGN SEAPCH: NC:
        iNONC.NH)
    FORMAT (44HGIVE YOLSR VALUES FOR HD,HL,RL,PWGR,CO,PRN&PT)
```


FORMAT $33 / 9$ PGHFIRST TRY: 1 CYLINDFR:•12,2GH GAS GFNFRATORS A 1 í VENT: 3/14H PFRFORMANCE/RJNTIME FOR FLLLL STROKE -EIO.3.22N SEC

 4H PSIA MAX, HIIFFER PR*\&EIN. $3,5 \mathrm{EH}$ PSIA/I FORMAT I/IRH ACTUATOR SPECS:/PIHWEIGHT OF PROPELLANT oFQ.4.75H R jRAM VENT-HOLE DIAM. ,F7.4.5H INCH/I4HMEAD CLEARANCE,7X.FG.A.75H ? INCH RUFFER LEAGTH OF7.4.5H INH,H/Z1HCYLTNDER NIAMETER ,FO 3.4.25 [NCH PISTONTROD DIA. F7.4.4H INCHI
format l//ijahoptions availarlei/gehcylinners gen. fcyl. total gen. i CHARGF (GPAM)/GEN, CYL.DIA. PGROD DIAも/ FOPMAT $1 / / / 410 \mathrm{X} \cdot 50 \mathrm{HRECORD}$ OF INTERACTIVE COMMINNICATTONS WITH TELET iYPF/1 FORMAT $/ / \angle G H S F L F C T$ OPTION - TYPF NO. AF CYL. AND GEN./CYL. FORMAT $1 / 4 R H T Y P F$ PREFERRED CYLINDER AND PISTON-ROD NIAMETERSI

FORMAT (/33HTHERE IS AN ANNULAR CLEARANCE OF -F5.3.3AH INCH CVENT-
 FORMAT (2RH(TELFTYPE INPUT) $\rightarrow 3$, 3 I5).
110 FOPMAT $1 / 14$ HTHERE WILL EE $12,34 H$ VFNT-HOLES PER PISTON. OF APPROX 1.OF5.3.IIH INCH DIAM.:EOKDRNO)

115 FORMAT (A3)
120 FDRMAT (22H(TELETYPE INPUT) \rightarrow (A3)
 iNCH., /432HTYPF PREFERREN VENT-HDLE LENGTH.)
130 FORMAT (/f:I2,25H -TH TRY WITH I CYLINDERioI2,29H GAS GENFRATORS A IND 1 VENT:/1 END

SUFROUTINE INTERP $(Y 1, Y 2: Y 3, X 3$, DX,YMAK,NI

This sitrroutine fits a parabola throurh thate data points cyioyzo Y3) AT EQUAL INTERVALS OX, THEN FINDS THE VALIE DF THE MAXIMUN ON that parabola. n is a SEntinel. to inotcate the rolitine has befn calleg.

DIMENSION $Y(3), A(3,3), K(3), A(9), R(3), W(3), V(3)$
COMMON /HLRUNIT/ OUB

Y(1)eva
$y(2)=y ?$
$Y(3)=Y 1$
D0 5 TE1.3
$A(T, 3)=3$,
$A(I, ?)=x^{-1}-(T-1) * D x$

CONTINUF.
IMEMENE 3
CAIL NIP (IM,M,N,A,Y,X,B,R,W,V)
YMaXex(3)-X(2)*X(2)/(6.*X(1))
$\mathrm{N}=1$
RETURN
END

SURROUTINE MUCOMP (T.MUM)
This sirrroutinf. gets the viscosities df The 5 Propellant gases THF HIXTUPE COMPOSITION IS THF ONE GIVEN TO V.K. RY LOCKHFED FOR THEIR DIFLE-POWDER GAS GENERATOP CTI.- 10359 LOADEO WTTH 32 GRAMS OF IMPwar27 POWIER, DISCHARGEN INTO AN ULLAGE VOLUMF OF $3 R .5$ IN. 3 COMPOSIIION

SUBSTANCE	MOLE-PER-CENT	MOL. WT.
C-02	43.98R	44.011
co	4.415	? P.all
H2-0	3.85R	j日.016
H2	35.03?	2.016
N2	12.709	28.016

viscosities of indiviolial components are calculated by the semi EMPIRTCAL FORMII:A OUF. TO SUTHERLAND MUSC1*T*E(3/2)/CT*C2) WITH CONSTANTS FOR EACH GAS INSERTED TN THE PROGRAM EdUATIONS
real mum
OIMENSTON U(5): X(5),WM(5)
DATA $\times / .43988 \cdot 04415,=038569.35 n 32.017709 /$
OATA W以/44.011.28.n11.18.016.2.n16.2Bi016/
Pretel7.17.)

$U(7)=P \cdot 185-8 * D /(T+1960)$

U(4) =1-01EmRMP/(T+127.1

CALL miMJX (UOKOMM\& MUM)
REILIRN
END

SURROUTINE MUMIX (MU,MF,MW,XMU)
THIS SHPROUTINE, DUE TO F, MOPRISON, CALCULATES TME VISCOSITY of a ens mixturf given the composition. ano the viscositites ano THF mol ECULAR WEIGHTS OF THE COMPONENTS. THE METHOD IS DUE TO C.P.HIIKE, (J.CHEM, PHYS. 1A,517-519).

REAL MH:MF;MH
DIMENSTON MU(5) PMF (5), MW(5)
xmilin.
Do in 18. 5
DENOMEn.
DO 5 JF1.5

OENDMENFNOM\&MF (J) \#RA*RR/SORT (SR)
CONTTMIE
10 XMLIEXMI $1+M F(I)$-MII (I)/OENOM
RE TURN
END

SURROUTINE POWS (M,NoF,X,E EESCALE:TPRINT,MAXFUN)

POWSO MJNIMIZES A SUM OF SQUARFS OF NONLINEAR FUNCTIONS
M IS THE NUMBER OF FINCTIDNS IN SAIO SUM
NOTE M MUST BE GREATER THAN OR EQUAL TO N
N $1 S$ THF NUMAER OF INDEPENDFNT VARIABLES
NOTE N MUST BF GREATER THAN OR EQUAL TO 2
F IS A CNE DIMENSIONAL ARRAY OF LENGTH M CONTAIING FUNCTION VAl.IES
X IS A ONE DIMENSIONAL ARRAY OF LENGTH N CONTAIING VALUES OF THF INDEPENDFNT VARIABLES THE INDEPENDENT VARTABLES ANO SHOULD BE SET TO A STARTING POTAT FOR THF SEARCH

E IS A ONE DIMENSIONAL ARRAY OF LENGHT N CONTAING ARSOLUTE ACCIIRACY LIMITS FDR THE X (I). CONVERGENCE WILL RE ASSUMED WHEN $X(I)$ HAS EEEN FOUND TO ACCURACY E (T) FOR ALL I

ESCALF LIMITS THE STEP SIZE OF THE SEARCH, NORMALLY K(I) WILL NOT RE CHANGFD GY MOHE THAN ESCALEPEIIJ IN A SINGLE STEP

IPRINT CAUSES THE VARIARLES AND FUNCTTON VALUES TO RE PRINTED OUT AFTEA EVEAY IPRINT ITERATIONS. SET IPRINT TI ZERO FOR NO PRINTDUT

MAXFUN LIMITS THE MAXIMUM NUMBEA OF CALLS TO CALFUN
ON EXIT FROM THE ROUTINE.THE ELITMENTS OF F ANR X WTL RE SET TO THF REST CALCULATED VALUES, IF THFSE ARE NOT THF DESIRED MINTMUM VALUFS AN APPROPRIATE MESSAGE WILL EE PRTNTED OUT

THF COMMON RLOCK VOZOZACM CONTAINS WORKING SJORAGE FAR VDOZA IN W THF ARRAY W MUST RE OF LENGTH $(N+(M+3 * N / 2) \in(N+1)$

THE USFR MUST SUPPLY SUBROUTINE CALFUN(M,N*F + X). THIS ROUTINF MUST SET FII TO THF VALUE OF THF APPROPRIATE FUNCTION AT THE POINT X FOR ALL IPIdLEIGLEBH

DIMENSION F(1)* $X\{1)$ DE(1)
INTEGED UN
CONHON / POWSOCH / W(1000)
UNa3
MPLUSNEM\&N
KSTEN.MPLUSN
NPLUS $=\mathrm{N}^{+} 1$
KINY
KSTORF $2 K$ INV $=M P L I S N-1$
CALL CALFUN (H,NOF*X)
ALARM FOR CALFUN PROBLEMS
IF (M,IT,O) RETURN
NNWN*N
K \quad NN
DO 5 IFI:M

```
    KEK+1
    H(K)=F(])
    5 CONTINJE
        I|NV=?
        K=KST
        IEq
    10 X{I}=XII) & E(I)
        CAGL ERLFUN (MON&F;X)
C
    IF (m,I T,O) RETURN
    X(I)=X(I)-E(I)
    OO 15 , JP1;N
    K5K+)
    W(K)=0.
    W(J)=0.
    I5 CONTTNHE
    SUME0, %
    KK=NN
    DO 20 .l=1%M
    kK=KK+1
    F{J}=F{J} WW{K!:}
    SUM=SUM&F(J, *F(J)
20}\mathrm{ CONTIAIIE
    IF (S(jM) 25:254.35
2t WRITE (59.410) J
    DO 30 J=1,M
    NN=NN+1
    F(J) EW {NN)
3N CONTINIE
    GO TO 135
    35 SUMEI./SQRTFISUM)
    JxK=N+I
    H(J)=F(I)*SUM
    DO 45 i=1.M
    K=k+1
    W(K)=F(J)*SUM
    KKmAN!A,!
    DO & | | =1 I
    KKEKK*MPLI'SN
    W(II)=W(II) &W{KK)尚W(K)
    CONTINIF
    CONTTNMF
    ILFSSEf-1
    IGAMAKRN+I-I
    INCINV=N-ILESS
    INCINPEINCINV+I
    IF (IlC゙SS) 50.50.55
50 W(KINV)EI:0
    60 70 05
55 Em}.á
    0O GO J=NAPLUS,IGAMAX
    W(J)=0.
    CONTImNIE
    KK=KTNW
    DO 8% IT=j,1LESSS
    1|P=!! |N
    W(IIPImW(IIP)*W(KK)*W(II)
    SHEII+1
    IF (JL-ILESS) 65:65:75
```

```
    65 DO 70, JJムJL,ILESS
        KK&KK*!
        JJPにJJ*N
        N{IIP{=W{IIP) *)山(KK)*W(J\)
        W(JJP)=W(NJP) & W(KK) FW(II)
        CON'TINHIF.
    75 B=R=W(TI)*W(ITP)
        KK=KKGTNCINP
    BO CONTYN:IE
        R=1./A
        KK=KTNV
        00 9% TImNPLUS*IGAMAY
        BB=*-म.प(II)
        0O R5 .IJEII IGAMAX
        W(KK)%W(KK) -RA*W(JJ)
        KK=KK+9
        A5 CONTINIE
        W(KK)ERR
        KK=KK& PNEINV
    90}\mathrm{ CONTINIF.
        W(KK)=口
        G0 TO 1115.100). ITNV
    100 I=I*1
        IF (ImN) 10.10.105
    I0% ITNGEI
        FFE0.
        KLINN
        DO110Ix1;M
        KL=KL*?
        F(J)=\mp@code{(KL)}
        FF=FF*F(I) #F (I)
    110 CONTSMME
        1ENNTEI
        IS'S!
        MCEN+i
        IPP\approxIPRINT昔:TPRTNT-1)
        ITCEO
        IPSE!
        1PC=0
    115 IPCEIPP=IPRINT
        IF IIPCY 120.125+125
    120 WRITF 13.415) TTC,MC,FF
        WRITE (3.420) (x(I) \I=1,N)
        C
C 31 FORMATISX,9HVARIARLES./(5E24.)4),
        WRITE (3.425! (F!|)&IC1;M)
        CALL EMPTY (3)
    C
        32 FORMAT(5%,GHFUNCTIONS./(5E24.J4:)
        IPCEIPD
        G0 T0 (125*145): IPS
    125 GO TO 1155:130), ICONT
    1.0 IF TEHANGE-1.\ 135.135.150
    134 IF (IPRINT) 145:145,140
    140 WAITE (30430)
        IPs卑?
        G0 TO 120
    145 RFTURN
    150 ICNNT=1
    155 JTC=ITP*1
```

```
    KEN
    KK&KST
    DO ;S5 IFION
    K=Kol
    W(K) =0.
    KK=KK*N
    W(T)&O.
    DO 16B J=1,M
    KK=KK+1
    W(I)=W(I)+W(KK)&F(J)
160 CONTTNME
165 CONYINUE
DM=0.
K=KINv
DO IOO II=IN
IIPEII*N
W(ITP)=W(I\P)+W(K)相(II)
JL&II*I
IF (JL-N: 170.170.189
170 DO 175 JSEJL,N
JJP=JJ&N
K=K+1
WCIIPI=W(TLPI*W(K)*WC.J.l
W(JJP) EW (JJP) &W (K)&W(II)
I75 CONTINHE
    KEK+1
180 JF (DM=ARSF{W{TT}#N(IIP)\) 185:190:190
IRS OM=AGSF(H(II)AW(IIP))
    KLEII
190 CONTTMHE
    II FN&MPLUSN*KL
    CHANGE=0.
    DO 20S I=1,N
    JL=N+Y
    W(!)=0.
    DO 195 J=NPLUS,NN
    JL=\LL*MpLUSN
    W(T) =W(T) & W(J)*W(JL)
195 CONTINIIE
    IImIl+1
    M!5\%=W(JL)
    W(J)=*I])
    IF (ARSF(E|I) CHAN(GE)-ARSF(W(I))) 200.200.?05
20̇O CHANGFEABSF(W(I)/E(I)
205 CONTINIF
    00 210 I=1,M
    IIEII+1
    JEJl**
    W(TI)=N{JL\
    W(JL}二巨{(I)
2)0 consimue
    FCmFF
    ACC=1.1/CHANGE
    ITE3
    xC=%:
    XLEO-
    \ S=3
```



```
        (CHANGE=1.0) 215.215.22%
215 ICONTE?
```

```
C
    220 CALL SFARCH IIT,XC&FC,G&ACCID.1,XSTEP&
        IF (ACC.GT.0.) GO TO 225
        M=|M
        RETUPN
C
    225 60 T0 P230,315,315,315) & IT
    230 MC=MC+1
        IF (MCmMAXFUN) 340%240:235
C
    C 235 WRITF (3,435) MAXFUN
C
        1SSx?
        G0 Tn \geqslant15
    240 XLEXC=XL
        DO 245 J=1 N
        X(J) =x(J)* XLSW(J)
    245 CONTTKIIE
        KL=xe
        CALL CALFUN (M,N;F,X)
C
C LLARM EOR CALFUH PAORAEMS
        IF (H.l T.0) RETURN
        FC=0.
        DO 250 J=1:M
        FC=FCOF(J):F(J)
250 CONTTMHE
        GO TO (270,270.,255). IS
255 K=N
        IF (FC-FF) 260.220.265
260 IS=2
        FMTNEFC
        FSFCeFF
        to TO 300
265 IS=1
        FMTN=FF
        FSEC=%
        G0 TO 700
<70 IF (F(-FSEC) 275:220.220
275 K=KSTODF
        G0 T0 (280:285). IS
2R0 K=N
2R5 IF (FC-FMIN) 295.220.290
290 FSFC=F%
        GO TO 300
295 IS=3-15
        FSEC=FMIN
        FM\NaFC
300 D0 305 J=1 *N
        k=k+1
        H(K) =x(J)
305 CONTTNNE
        DO 310 J=1,M
        K=K+1
        W(K) FF(J)
310 CONTININE
```

```
        60 T0 ?20
3%S KakSTOPE
    KK=N
    G0 T0 (325+320•325)* IS
320 K=N
    KK=KSTARE
325 SUMェ0.
    DM=0.
    JJ=KSTORE
    DO 330 J=1,N
    K=K+1
    KK=KK+1
    JJ=JJ+1
    X(N)=W(K)
    W(JJ) =W (K) =W (KK)
330 CONTTNUIF
    OD 335 J=1.M
    K=K+4
    KKェKK+1
    JJ=JJ*?
    F(J)=W(K)
    W(JJ)=W(K)-W(KK)
    SUHESUH*W{JJ}&W{JJ}
    DMEDM&F(J)*W(JJ)
335 CONTTNIIE
    GO T0 1340;135): ISS
340 J=KINV
    KK ENPL H5=KL
    00 345 IEl:KL
    K=J&KL-I
    J=K+KK
    W(T)=W(K)
    W(K)xW(J-))
345 CONTINIV
    IF (KL-N) =30.360.360
350 KL=KL+1
    JJ=K
    DO 355 I=KL.N
    K=K+1
    J=J*NPEUS=I
    W(I) =W (K)
    W(K) =W(J=1)
355 CONTINTTF
    w(.lJ)EV(K)
    B=1,/W(KL-1)
    W(KL=)I=W(N)
    G0 TO 265
360 B=1./W(N)
365 K=KINV
    00 375 Ix1:ILESS
    AH&B%W {T }
    DO 37n JxI| TLFSS
    W(K) EW(K) - BRNW(J)
    K=K*1
370 CONTINIIE
    KxK$1
375 CONTYNIE
    IF (FNTN-FF\ 3RE,380,380
300 CHANGF##.
    G0 10 39%
```

```
    3B5 FF=FMIN
    CHANGF=ABSF(XC) *CHANGE
390 KL =-DM/FMIN
    SLMEI;/SORTF(SUM*OMWXL)
    K=KSTORF
    00 395 T=J,N
    K=K+1
    W(K)=511M#W(K)
    W(T)=0.
395 CONTINNIE
    DO 4n5 I=1,M
    KEK*!
    W(t:)=gHM*(W(K)*XL*F(I))
    KK=NN+!
    00 400 J=1,N
    KK=KK&MPLUSN
        W(J)=W(J)+W(KK)*W(K)
    4OO CONTINIIF
    405 CONTINIIE
    G0 T0 55
C
    410 FORMAT (5X,RHPOWSN E (,I3,2OH) UNREASONABLY SMALL:
```



```
    420 FORMAT (5K,9HVARIABLES,/(3E?3.13))
    4.5 FCRMAT (5x,9HFUNCTIONS:/(3E23.1.7))
    430 FOPMAT I//5X.45HPOWSO FINAL VALIIES OF FUNCTIONS AND VARTABLES;
    435 FORMAT (5X,5HPOWSOPIGvlgH CALLS OF CALFUN)
    ENO
    SUPROUTINE POXTRAP (YI,YZ,Y3&OT,T3,YMAX,TAC)
C
C. THIS SHRROUTINE USES A LAGRANGIAN PGLYNDMIAL TO EXTRAPOLATE
C DATA(YI,YZ,Y3) AT EQUAL INTERVALS DT, TO GIVE THE VALUE OF Y FOR
C
TAC F AFTWEEN T3 AND T4*
T2=T.3_nT
T1xTP-nT
FT=Yy*(TAC-T2)*(TAC-T3)
ST=2.#Y2#(TAC-T1)*(TAC-T3)
TTFY3*(TAC-T1)*(TAC-T?)
YMAX=(FT-ST+TT)/(2.#DT*DT)
RETURN
ENO
```

```
    SURROUTINF PROPNSE (PHGR*KINOGC)
    DIMENSTON X(6)
    MINGR)FIX(PWGRENOGC/34.) +1
    MAXG=1FIX(PWGR*NOGC/10.)
    DO 10 IFI:MAXG
    DO 5 JFMING,MAXG
    IF (MON(U,I).NE,D) GO TO 5
    NGpC=J/I
    PWPG=PWGRaNOGC/J
    OCD=X(&)/SQRT(FL@AT(I))
    OPRD=X(5)/SORT(FLOAT(II)
    HRITF (G9,15) I%NGPC&J,PWPG;OCN,OPRD
    WRTYF (3.15) 1,NGPCOJ,PWPG:OCD,OPHD
    G0 10 :0
    5 CONTINIIE
    10 CONTTNNIF
    RETURN
C
    15 FORHAT (15,5x,I5:5x,15,10X,F7.3,6X,F7:3,4X,F7.3)
        END
        SURROIITNE PROTAT (F;X)
C
THTS SHRROUTINE STARTS THE PDUSA PRNTGRAM ON a PRELIMINARY SEARCH
        WITH NO CONSTRAINTS ON STANDARG SIZES BUT WITM PROVISIGN FOR
C ADOITIONAL GENERATORS IF NECESSARY.
C
```



```
S
MET
NEG
```



```
10 E(I)*I.F-3
            E(2)=% FF=A
            ESCALE=?50.
            IPPINTE1
            MAXFUN=100
C
C ARRANGF FOR OPTIMITING MIS:I A CONSTANY MIHITMUM CHARGE IF NEEDFD.
    IF (ARS{X{6)).LT=10.000001) N=5
C
GET PAFLIMJNARY DESIGN
    CALL PNWSA (H,N,F,N:E,OESCALE,IPAINT,MAXFUNT
    CALL FMPTY (3)
    RETURN
    ENO
```

C THIS SIIRROUTINE REPQRTS THE FINAL DIMFNSIONS, LOADING. AND THF
C
PERFORMANCE OF THE OPTIMIZE.O DESIGN.
DIMENSTON F(T), X(A)
COMMON /SPECS/ TVMAX,TITLE{1O1, PEOU(TI'NOSI3),NC,NOGC,NH
COMMON /PERF/ TAC,HPMX,APMX,GPMX\&STMX,VFIN
COMMON /GFOM/ CD*PRD,HD\&HL,RL.CFV,THFT,PHI\&PT,VLB\&VHA,ELOD, STR
WRITE (59.5)
WRYTE (305)
WRITF (59.10) N世,NOGC \$WRITE {3.10) NC.NOGC
WRTTF (59,15) X(5)*X(6)
WHITF (3,15) X(5), X(6)
WHITE (59,20) HL,BL
WRTTF (3,20) HL,BL
URTTF (59025) PT*NH,X(1)
WRITE (3.25) PT:NHOX(1)
WRITF (59.30) X(4) sWRITE (3.30) X(4)
PCFT=TAC/REQU(3)
WRITF (59.35) TAC, \&EOU(2), PCET
WRITF (3.35) TAC\&REQU(?),PCET
PCFVEVFIN/REOU(b)
WRITF. (59.4n) UFTN*PCEV
WRITF 13040) UFTN*PCEV
PCFSESTMK/REQU(F)
WRITF (59.45) STMX,PCES
WRITF (3u45) STMX,PCES
WAITF (55.5n) MRMY OQEDU(T)

```

```

 WRITF (59.55) RPMX,REDU(7)
 WRTTE (?.5S) ROUM, AEDU(7)
 WAITF (59+60) GPMX,REOUTS)
 URITF (3,EO) GPMX,REDUIS:
 CALL FMPTY (3)
 RFTURN
 C

```
```

FORMAT T/CBI9H DESIGN COHPLFTFDI
FORMAY (COEIR,IAM EVLINDEPS UITH OIPロPON GAS GENFRATORS EACMI

```



``` 14SEH TACHS
FOPMAT ITMPISTON FGE3.ITH INEH THICK WITN DI3.ION VENTS OF PFBE4O 110N TH. DIAM,
```






``` IVEI OCITY ALLOWFAI
```



``` \{RESS AI LOMESIS
```








```
ENS
```


## SURROUTINE SEARCH (ITEST,X,F,MAXFUN,ARSACC,RELACC,XGTEP)

```
THIS SIRROUTINE FINDS A MINIMUM OF A FUNCTION OF A GTNGLE VARTARLF
 A STARTING VALUE OF X MUST RF PROVTOED AS THF PROCENURE IS
 ITFDATIVF,AND THF MINIMUM FOIIND WILL NORMALLY RE THF NEAREST
 ONF IN A DOWNHTLL DIRECTION FROM THE STARTING VAIUE
 F(X) MUST RE SPECIFIEO IN THF CALLING ROUTINE IN THE MAY
 DESCRIBED RELOW.
```

ON ENTRY TO THE ROUTINE ITEST MIST RE SET TO 2 OR 3 ANO $X$ MUST RE SET TO THE STARTING VALUE OF THE VARIARLE SET TTEST TO 3 IF ON FNTRY $F=F(X)$, AND SFT IT TO 2 OTHFRWISE. IN THE FORMFR CASF A FIJNCTION EVALUATION WILL RE SAVEO.

DURING EXFCUTION ITEST IS AN INDEX TO CONTRDL A COMPUTED GO TO
ON THF FINAL EXTT DF SEARCH,F WTLL RE SET TO THF MEMIMIM VALUF. DF F(X). ANO X WILL BE SET TO THE CORRESPONDING VALUE OF THE Vartable

THF SUIRROUTINE WILL BE LEFT AFTFR MAXRUN FUNCTION EVALUATIONS
ABSACC AND RELACC MUST BE SET TO SPECYFY THE ACCURACY TM WHICH THF FINAL VALLE OF $X$ IS REOUPRED. IF THE CURRENT POSITION OF THF MINIMUM IS AT $X$, AND THF NEXT PREDICTED POSITION IS AT XX. THF SUBROUTINE WILL BE LEFT IF EITHER

ABS ( $x=x x$ ) $L$ T. ARS (ARSACC)
OR ABS $(X-X X)$-LT,ARS (XY*RELACC)
xSTEP SHOULO RE SET TO A REASONARLE CHANGE TO RE MANE TN THE VARTABLE IN PEGINING TO SEARCH FOR THE MINJMUM. A AAD ESTIMATE WILL CAUSE MORE FUNCTION VALUES TO RE RFDUESTED.EITT SHOILD NOT AFFECT THE FINAL CONVERGENCE.

OURING EXECUTION THE SURROUTINE WILL RETURN TO THE PALLING PROGRAM FOR VALUES OF THF FUNCTION: ON THESE RETURNS ITEST WILI RE SET TO UNITY FOR A COMPUTED 60 TO. AND ThE CALLING PRORRAM MUST SET $F=F(X)$ AND THEN EXECUTE THE IHIITIAL CALL DF THE SUBROUTINE AGAIN WITH ITEST SFT TO UNITY.

ON THE FINAL RETURN ITFST WILL RF SET TO 2.3, OR 4. 2 MINIMUM FOUND TO RFRUIRED ACCURACY 3 HOUNDING ERRORS HAVF PREVENTEN COMVFRGENCE HaxFUN FUNCTION VALIJES HAVE HFEN IISFD On RETURN $x$ ant $f$ are set to the best calculateo

THF COHING TO DRIVE SEARCH SHOULD APPPAR AS FOLLOWS
ITFST $=2$ (OR 3)
5 CALL. SFARCHIITEST, X,F,MAXFUN, ARSACC,RELACCIXSTEP)
GO TO 11. $2 \cdot 3,41$ ITEST
$1 F-F($ INC $(x)$
GOTC 5
2 CONTTNUE
GO TO (35.5.5). ITEST
ISE6-ITFST
ITFSTEIINC天:
XINEaYGTEP*RSTEP
MCEIS-9
IF (MC) 45:45:3n

```
 10 MCMMC+1
 IF (MAYFUN-NC) 15,30,30
 15 ITFSTE4
 20 X=0R
 F#FA
 IF (FA-FC) 30.30.75
 X=OC SF=FC
 c
 30 RETURN
C
 35 GO TO [B5:75,50:40],IS
 4) ISF3
 45 DCex SFC=F
 xxK*xSTEP
 GO TO 10
 IF (FC=F) 60,55:65
 K=X&XINC
 XINC=XYNC *XINC
 GO TO 10
 60 OBxX SFR=F
 XINC=-*INC
 GO TO 70
 DAnDC
 FReFC
 DCEX
 FCEF
 K=nC+NC-OB
 IS=2
 GO FO :0
 UM=0゙
 DBEDC
 FA=FR
 FRAFC
 B0゙ OC=X
 FC=F
 60 70 135
 85 IF (FR-FC) 105:90.90
 90 1F (F-FR) 95:80,80
 95 FA=FR
 OA=DB
 100 FR=F
 DREX
 G0 T0 135
105 IF (FAmFC) 115.115:110
110 XINCEFA
 FA=FC
 FCEXTMF
 KINC=DA
 DAmDC
 OCEXINO
115 XINC=OP
 IF ((N-DA)*(0.DC)) 80:120.120
120 IF (FOFA) 125,130,130
125 FC=FR
 DC=DR
 GD TO $00
130 FAEF
 DAm(
135 IF (FR-FC) 140%140%145
140 IINC=P
```

```
 XINC=nC
 IF (FA-FC) 145,P05:145
 1&5 D= (FA-FR)/(DA-DR)-(FA-FC)/(DA-DC)
C
C TRAP FO D.ED,O.
 IF (D,NE.O.) GO TO 150
 HRITF {59.215}
 ABSACCE=AHSACC
 RETURN
 150 CONTINHE
c
 IF (D*(MA-DC)) 185,155,155
 155 D:0.5* (DR*DC=(FR-FC)/0)
 IF (AR&F (D-X)-ARSF (AHSACC)) 165.165.160
 160 IF (APGF(D-X)-ARSF(\cap&RFLACC)) 165.165:170
 165 ITFSTE?
 GO TO 20
 170 1S=1
 X=n
 IF ((NA-DC)*(DC-D)) 10.210:175
 175 5S=2
 GO TO {1BO.195}. IINC
 180 JF (AREF(XINC)-ABSF {DC-DJ) 19N.10.10
 IRS ISE?
 G0 TO 1190.2001. IINC
 190 K=DC
 GO TO 55
 195 IF (ARCF(XINC-X)=ABSF(X=DC)) 200.200.10
 200 X=n.5#{XINO+DC)
```



```
 205 X=0.5* (NR*DC)
 |F((nR-x)*(X-nC)) 210.210.10
 ?10 ITFSTm=
 G0 T0 >0
C
 215 FORMAT (AKD EO N.)
 ENO
 SURROUTINE SEEKT {GEN&XT,ACSU}
 THIS SIARROUTINE FINOS GAS TFMRFQATURES, ETVEN THE INTFRNAL ENFRGY.
 USING THE NEWTON-RAPHSON ITFRATYVE WETHOD WITH THF UK EDUATIONS
 FOR PPAPFLLANT GAS INTFRNAL ENFGGY ANO SPECIFIC HFAT IUSED AS THE
 ANALYTICAL DERIVATIVE OF THE FNFAGYI.
 COMMON /GASP/ R,SA%NK,AC,RB,A,A,C%O,PHV
 CONMNN PPARS/ PT,PIF,X,JPPA,TA,GC,SF,CUF
 NL=0
5 FX=GAgSN(MT)=GFN
 ELTsBLCG(FT)
 DERER&C/XT & P, DEELT/XT=R/KXJ
 CORAFY/DER
 KT#KTmPOR
 IF IAPS(COR).LT.ACCUS RETUNN
NLHNL*I
If SNH OT.1001 PAUSE
G0 10 %
ENO
```

```
SURROUTINE START (XG)
ASSUME MAX GAS FORCE IS DOUBLE THE AVERAGE (CONST.ACCEL.) FORCE
 FMAXIP.*FORCE
 PRA=FHAX/STAL
 PRD=SORT(PRA/PIF)
C
```

```
THIS SIJRROUTINE CALCULATES THE ACTUATNR DIMENSIONS AND LOAOING
 ASSUMYNG A VERY SIMPLE, LINEARTTED SYSTEM. THIS ALLOWS THE OPTI-
 MIZINf SEARCH TO GE STARTED FROM A FEASIBLE POINT.
 DIMENSTON XG(G)
 COMMON /SPECS/ TVMAX,TITLE\1OI;REQU(T):NOS(3);NC;NOGC,NH
 COMMON /PARSA PI,PIF,XJ,PA,TA,GC,SF,CUF
 COMMON /GASP/ R&SR,BK,AC,BE&A,R,C*D,PHV
 COMMON /GEOM/ CO,PRD,HD,HL,FHL,CFV,THET,PHI;PT,WLR,VHA,ELOD,STR
 WLR=RFOU(1)
 STR=RFOU(2)
 TRERFOll(3)
 VFAL=2FOU(4)
 STALERFOU(5)
 CPAL=RFOU(7)
 NCENOGO&NHEI
 CONSTANT ACCEL. A DECEL. TO VFAL FOR STR,TR GIVES A GUADRATIC IN a
```




```
 ACC=(-RA*SART (DTSCR) //(2.*TP*TR)
 FORCE=ACCOWLB/3RG.088
 TVMAX=,5* (VFAL/ACC+TR)
 ESTIMATE ENERGY NFEDED FROM THE AVERAGE VELDCITY
 ENID=P**LB*STReSTR/(4633.056*TR*TR)
 ASSUMF 5nS ENERGY CONVERSION EFFICIENCY
 PWSEENTD/13R9.15*PHV)
 PWCREPWS*453.6
 IF (PWAR,GT.34,\ GO TO 15
 If (PWAR.LT&10.) GO TO 20
 USE CPAL. AND FHAX TO FIND MIN. CD
 CAEFMAY/CPAL
 CDESARTICA/PIF)
 USE CIIOVE-FITTEN CONSTANTS TO FIND HVOL NECESSARY TO GIVE CPAL FOR
 TMF ASGUMEO PWGR.
 ELPMAL NG (PWGR)
 AK=5.4754*14325R解P
 BKKE,0194RO+, On4406*ELP
 HVOL&NOAC& (AK-AL OG (CPALI)/EKK
 HLEHVOI/CA
 IF (HI LT.O.) GO TO 20
 ASSUMF AN END-DF-MOTION CLEARANCE EOULL TO STARTING HEAO CLEADANCE
 BL=STP+HL
 ASSUAF A PISTON VFNT-HNLE KNOWN TO RE TOO SHALL RY TREATING FANNO
 FLOH A': SIMPLE ORTFICE FLOW,ASSIJME AVFRAGE GAS TFMPFRATURE RFTWEER
 FLAME AND AMBIENT, THE PEAFECT GAS FOIIATION OF STATF&AND THE
 FLOW GF HALF THE GAS PROQUCFD DIJRING THE ACCELERATION TIME
```

```
C ASSUME THE ASME FLUTD METER CONSTANT K(1)*Y = &SS
C ASSUMF CHOKED FLOW
 TAV=(FOO0.*GAMGAS(5000.)*TA)*,5
 SVH=R&TAV/(CPAL*SF)
 G=GANCAS(TAV)
 RC=(2./(G+1.))**(G/(G*)*))
 PDIFF=CPAL*\1•#RC!
 GMFEPWG/TVMAX
 HO={5.ASVH%GMF GMF/PDIFF % **25
 PT=15.*HD
C
C STARTJNG VALUES PaCKEO INTO XG(TV TO XG(G) aRE THUS
 KG(1)=Hn
 XG(?.) =HL
 XG{3)=PL=REQU(2)
 XG(4)=CD
 XG{5} =PRD
 XG(f)=DWGR
 RETURA
 C
C THFRE MIJST BE AT LEAST ONE MORE GENFRATOR TO HOLD THAT MUCH
C PROPFLIART, AT NOT MORE THAN 34. GRAM PER GENERATOR.
 PWTOTEPWGR*NDGC
 NOGCONARC +1
 PWGRmPWTOT/NOGC
 GO TO =
C
SINCE 10. GRAM IS THE SMALLEST IJSABLE CHAPGE, PWGR IS SET TO 10.*
```



```
 ATTENNANT LOSS OF AVATIARLE ENERGY DUE TO EXPANSION INTO RIGGFR V.
 PHGR=IT*
 ELP=Al NG (PWGR)
 CP=#
 AK=544>54*1.3259*ELP
 BKK=.N19489*.004406*ELP
C
 ASSUMF HL&CD/G. &HFNCE HVOL&PI*CD**3/2*,BACK SURSTTTUTION FOR CD*HL
 25 CON=SORT (FMAX/(PIF*CP))
 HVOL =P IF-CD*E3/R.
 CPN:FFXP(AK=RKK#HVOL)
 IF (ARS(CO-CDN),LTO-01.AND.ABS(CP-CPN).LT.1.) GO T0 30
 CP=CPN
 COECON
 GO TO =5
 CO=C\NA
 HL=CD*.16667
 GO 10 10
 END
```

SURROUTINE STROKE（PWGR）

```
 THIS GURROUTINF CALGULATES THE PEHFORMANCE OF A SELF-STOPPING
 ACTUATOR DRIVEN RY THE CTL-10359 HIGH-PRESSURE CARTRIOGE LOANED
 PWGR GRAM OF IMR=42?7 PROPELLANT. SELF=STOPPING ACTION IS
 ORTATNED BY USING A VENTED PISTON.
```

        COMMAN /GEOM/ CO\&PRD,HD,HL,FL, CEV,THET,FHI,PT,WLB,VHA,ELOD,STR
        COMMAN /PGGD/ FQA,CVOL,PVOL,CPA1.
    
COMMON /SPECS/ TVMAX,TTTLE (10), RENU(7I,NOS(3) *NC\&NOGC,NH
COMMON /PERF/ TAC,HPMX,BPMX,GPMX,STMX,VFIN
COMMDN /PARS/ PI*PIF,XJ,PA,TA,GC,SF,CUF
COMMON /PPTT/ PSUP\&PSDN +TSUP,TSNN
DATA PT*PIF, XJ*PA / 3.1415926535A98**78539R1633974*778.3.14.7/
DATA A,R,C,D / - 1324.36186..52n5302R1.532.320597, 51.2364509/



SET A FEW STARTING VALUES

HGP $=$ RGP $=G G P=P A$
HGTERGTEGGT=TSUP※TSDNETA
FFI.O3
BKC $=8 K$
TAFE4Aの体•
PWSaPWRRH*0022046
PWLEPWC
FMIP mFMNN $=43$
ACCURIF-1
NSTENHP=NRP=0
STMXO:CTMXL=0.
GPMXOZ $\mathrm{GPMXL}=0$ 。
HPMKDEHPMXL=0.
ВРНХО = PPMKL=0.
$c$
C FIND A FEW RASIC OUANTITIES
HCAAPIF*CD*CD

PRAEPTF*PRD*PRO
BCA ${ }^{\text {BCAFPRA }}$
DtEononl
GVOLECVAL
HVOL S=HCABHL-CEV
BVOLSERCA*BL
$C$
C CALCULATE SPECIFIC VOLUMES. GAS MASSES, GAS ENERGIES IN 3 VOLUMES
D1SCERAHGT* (R*HGT*576\& *HGPESR)
SSVE (P由HGT+SORT (DISC) / (28R. "HGP)
SVHGEGURGESVGGESSV
GGME (KVOL -PWL\& 17.1969)/(CUFeSVing)
HGMAHYRI.S/(CUF SVHG)
BGMERVNLS/(CUFeSVAG)
SSGF日GASENITA)
GGFEGGMESSGE
NGF mHGMESSGF
BGFERGMESSGE
MVOL $\quad$ HVNLS
BVOL mAVOLS

```
 C START TIME INTEGRATION
 5 TTE=TTF&DT
 C AVOID IINREAL BUPN IF THERE IS NO MORE PROPELLANT (I.EEAKC=0)
 DPREO.
 IF (RKP..LT.].E-12) GO TO 15
 OPRERKPHPWS*OT*RGP**(CNLALFA(GGP))
 IF (PWL.GT.OPR\ 60 T0 130
C
C IF PWL.LT&DPG; RURINOUT OCCURRED DURTNG TME LAST TIMF INEREMFNT
C FIND GRP = EPMX AT EXACT TIME OF BURNOUT RY EXTRAPOLATING THE LAST
C THREE PRESSURE VALUES GY POXTRAD.
 FBEPWLIDPB
 DPR=PK1
 BKC=0*
 TPMX=TTE=(1, #FA) *DT
 TTM#TTF=DT
 CALL POXTRAP (GPMXC,GPMXL,GPMXN,DT,TTM,GPMX,TPMX)
 10 PWL=PWI =OPA
 GGVOL=FVOL=17.1965.4PWL
 C
 C USE SFALEO SYSTEM BEFDRE DISC BURST
 IF (Fr.LY.I.E-I2) GO TO I20
C
 I5 1F (GGP.LT.MGP) GO TO 20
 PUP=GGP
 PDNEHGP
 TUPAGGT
 FCC=FC
 GO TO 2S
 PUP&HGP
 POHEGCD
 TUPEHGT
 FCCE-FC
 C
C ITERATF FOR AVERAGE GAMA ACCROSS CARTRIDGE GAS FLOW
 25 GUPGEGAMGAS (TUP)
 TSTAR=3,*TUP/{GlIPG*1.}
 30 GSTARETAMGAS{TSTARY
 GAMAVI*S* (GIJPG4FSTAR)
 TSTARNEP. *TUP/(GAMAV*) .)
 IF (ARS(TSTARN-TSTAR)-LE.0.1) GO TO 35
 TSTAR=TSTARK
 6070 70
 C
C FIND PHOKED PRESSURE
 PSTAREP|P*(2./(GAMAV*1.)) ** (GAMAV/(GAMAV-1.))
C
C FIND PRESSURE PF AT EXIT FROM PGG, DETERMZNING KIND OF FLOW
 IF (PSTAR.GT.PDN) GO TO 40
 PE=gNN
 GO TO 45
 40 PEEPSTAR
 USF ASME FLUIO METER FLOW FORMULA
 45 EMNOTGrFCC4SORT((PUP.PE)/SVGG)
C
 FIND FANNU FLOW THROUGH VENT(S)
```

```
 CALL FPNNOF (HGP,RGP,HGT&RGT,EMIJP,EMDN,FF,EMDOTR,FORCE.)
 IF (HCD,LT.AGP) EMDOTR==EMDOYR
 IF (HGP:LT*RGM) FORCEE=FORCE
 C
 FIHD FORCES ON DISTON
 FH=HGP& (HCA-VHA NH)
 FA=RGP* (RCA-VHA*NH)
 FG=WI_R COS|THET*AI/IAO.|/NC
 C
 C CALCILATE VENF=WALL DRAG
 FD=NH*FORCEO{COS(PI*PHI/180.))
 C
 ATIAOSPHERIC FORCE ON PISTON ROD
 FA=PRA*PA
 C
 C PISTONGRING AND ROD=SEALS FRICTION FORCE [RINGS TURNEO OUTWARNJ
 FFPR=PCLYPAK(HGP,PA,CD) +POLYPAK{'GGP,PA&CD}
 FFRS=PALYPAK {RGP,PA*PRD)
 FFOP&FFPR+FFRS
 C
 C TOTAL ACTIVE FORCES ACTING ON PISTON
 PAF=FH*FG+FI)=FR-FA
 C FRICTINN FORCES OPPOSE VELOCITY (IF ANY)
 IF (VFI.OEQ.0) GO TO 50
 FDIR=FFOP:VEL/ARS(VEL)
 C ASSUNE KINEMATIC FRICTION IS 25& LOWER THAN STATIC
 PPF=PAF=FDIRO.75
 60 T0 <n
 C IF ACTTVE FORCES PREVATL NET FORCE PRODUCFS ACCELERATION
 50 IF (APS(PAF) -LT.(FFOP+TBF/NC)) GO TO 5S
 RPF =PAF=FFOP
 GO TO <0
 C
 55 ACC=0.
 DDST=0.
 GO TO 65
 C
 CALCULATE ACEELERATION DF PISTON: THEN VEL AF.J DST
 60 ACC:RPF*3R6.0FA*NC/WLP
 DDSTxVFL*OT**5*ACC*DT-DT
 VELEVFi_*ACC&DT
 DSTEDST*DOST
 C
 C FIND NFW VOLUMES, GAS MASSES AND GAS ENERGIES.
 HVOLEHVOL*HCABDIST
 BVOLERVOL-RCAWODST
 GGM&GGM**97?4 #DPR-EMDOTG#DT
 HGM=HGM*FMDOTG*NT*NOGC-FMDOTB*DT*NH
 BGM=RGM*EMDOTREDT*NH
C
 FIND FNTHALPY OF FLOWS
 IF (EGP.LT.HGP) GO TO 70
 SHGG=GASEN(GGT)*R&GGT/XJ
 60 TO 75
 SHGGGGASFN(HGT) *R*HGT/XJ
 IF (HGP.LT,AGP) GO TO BO
```

1

```
 SHRG=RASEN(HGT) &R#NGT/XJ
 GO TO RS
 BO SHRG=RASFN{BGT\+R*RGT/XJ
C
 FIND MFCH, WORK DONE ON AND BY RAS, AND GAS INTERNAL ENERGIES
 85
 WH={HCA -VHAWNH) #HOPMODST
 WH={(ACS-VHA*NH) &RGP4OOST
 GGF=GMF &DPH*PHV-EMDOTG&DT*SHGG
```



```
 TGFEARF & EMDOTH*DT/ SHRG*NH + WH/93.39.6
 C
 C FIMD TFMPERATURFS FROM SPECIFIC ENERGIES
 SGGE=CGEJGGM
 CALL SFFKT (SGGF,GGT,ACCUR)
 SHGE =HAF/HGM
 CALL SFFKT (SNE':AGT,ACCUR)
 SAGE =R FF,AGGM
 CALL SFFKT (SNGF,RGT,ACCUR)
C
 FIND PPFSSURES TN THE 3 VOLUHES, AFTE& GETTING SPFCIFIC VOLUMFS
```



```
 GGP=R&&юT*(1.*SR/SVGG)/(SVGG*SF)
 SVHG=HVOL/ICUFHHGM)
 HGP=RGH*T*(1-*SR/SVHG)/(SVHG*SF)
 SVRG*RVOL/(CUF*RGM)
 BGP=R&AGT*(1.*SR/SVAG)/(SVBG*SF)
C
C RECORN MAXIMUM GTRESSES OR PRESSURES: IF ANY
 PRS=AF& (RPF/PRA)
```



```
 IF (STMKL.LT.PRS) GO TO I25
 90
 IF (HPMKLaLT.HGPY GO TO }13
 IF (NHP&F\cap,O) CALL INTERP (HPMXO&HPMXL,HGP,DT,TTE&HPMX,NHP)
 O5 IF (APNXL.IT.PGP) GO TO 140
 IF (NRD.EG.O) CALL INTERP (BFMXO&BPMXL,8GP,IT,TTE,BPMX,NBPI
C
 100
 IF (TYF.GE.05) तO TO 105
C
 CHECK FOR SHDRT STROKE
 IF (VFI,LT.0) GN TO 110
C
C
C REQUYAFD STROKE NOT YET REACHED
 GO TO E
C
C POST SFNTINEL FOR EXCESSIVE RUNNING TTME
 y05 TACEmnCT
 VFJN=-VFL.
 RFTURN
C
C POST SFNTINEL FOR SHORT STROKE
110 VFIN=-nST
 TAC=TTF
```

```
 RETURN
C RENUTPFN STROKE HAS REFN OVERSHOT, RETURN WITH CONSTANT ACCELFRETI
C TO FINM TIME OF ACTUAL TRAVEL.
 115 STMzNST-STR
 DISC=VFL*VEL-?.*ACC*STM
 VFIN=SNPTIDISC)
 TDFC=IVEL-VFINI/ACC
 TACETTF=TDEC
C
C USF POYTRAP TO TNTERPOLATE FOR RPMX AT TRHE END OF STGOKE
 IF (NAP.EO.O) CALL POXTRAP (RPMXO,BPM&L,SGP,DT,TTF,RPMX,TAC)
 RETURN
C BURST NISC STTLL INTACT
 120 GGMxGGM4.9224ONPA
 SVGGzGRVOL / (CUFGGGM)
 GGF=GGF+DPR*PHV
 SGGE=GGE/GGM
 CALL SFFKT ISGGE,GGT.ACCUR)
 GGP=R#GRT* (I**SR/SVGG)/(SVGG*SF)
C
 IF DISP STILL INTACT. REPEAT BURN IN SEALED SYSTEM
 IF (GGP.LT.2000.) GO TO 5
C
IF DISC RUPST, RURN ON WITH NEW GEN, VOLUME AND WITH FLOM
 GVOLECVOL&PVOL
 FC=EQA
 GO TO E
C
 125
 STMXOESTMXL
 STMXL=mPS
 GO TO O
130 GPMXOEGPMXL
 GPMXL =APMXN
 GPMXNECGRP
 GO TO IO
135 HPNXOEHPMXL
 HPHXI EHGF
 GO T0 05
140 EPMXOEPPMXL
 APMXL EAGP
 GO TO 100
 END
```

COMMON /GASP/ $R, S R, B K, B C, B B, A, B, C, D, P H Y$
$\times 2=0.4-0.52 / B C$
1Pat. 0.0001
T0р: 1. n2~×2
BTAII.*RCEEXP (-TOPEAR*TP) .
CALALFA $=\times 2$-TOP/RTM
fE.TURN
END

## FUNCTION GAMGAS(T)

THIS FINCTION GTVFS THE SPECIFIC HEAT RATIO FON THE PROPFLLANT
GAS USTNG THE ENTHALPY EQUATIONS DEVELOPEN BY VK
COMMON /GASP/ $\mathrm{P}, \mathrm{SR}, \mathrm{BK}, \mathrm{AC}, \mathrm{BB}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{PH}$
ELTEALAG(T)
$C P=A+C / T+2 \cdot * 0 * E L T / T$
CV:CP-P/778.3
GAMGASECP/CV
RETURN
END

## FUNCTION GASEN(T)

THIS FIINCTION GIVFS THE PROPELLANT GAS INTERNAL ENEPGY USING THE ENTHALDY EQUATIONS DEVELOPED GY VK

COMMON /GASP/ R,SR,BK,BC, $\mathrm{BB}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{PKV}$ COMMON /PARS/ PT:PIF,XJ,PA,TA,GE,SF, CUF ELTEALnG(T)
GASENェA*B*T*CPELT*D*ELT*ELTーR*T/XJ RETURN
END

FUNCTION POLYPAK (PHI, PLO,DIA)
THTS FIINCTIUN FTNDS THF POLYPAK-SEALS FRICTION FORCE BY AN EXPERTMFNTALLY FITTED ESUATTON.

PDIFgARS\{PHI-PLO)
 RETURN
ENT

## APPENDIX V

## A Complete History of Test Designs A and B

## a. Complete History of Test Destgn A

GIVE TITLE FOI: THiS AGTUATOA DESION PROSLEH
(TELEITPE IPPUTY - = ?



 (TELSTYPE [NPUTJ * 2 N

FOLLOHIMG IS THE POWSO DUTPUT QIVIHN IHE GEAREH HISTOHF



ITERATION 1063 VARIABLES $33$	CALLS OF CALFUN $F=$	2．56279659379675E－02
$\begin{array}{r} 147250751692 E-01 \\ \dot{2} .08559043191 E 0 \end{array}$	$\begin{aligned} & 3.6767656625612 E+00 \\ & 1.0454114215765 E+00 \end{aligned}$	2.395g291920700E+00 $\text { 1. } 4867929734699 \mathrm{E}+01$
FUNCTIONS   今． $7356594693976 \mathrm{E}-02$   $9.6007033661395 E-0.2$ $.0 E \rightarrow 00$	1．8492800254626E－02 $4.6314004673896 E-02$	$\begin{array}{r} 5.19 仓 6399144403 E-02 \\ -3.4670952484617 E-02 \end{array}$
EFATLEM 11   VARIABLES $71$	calls ef talfun Fm	2．56279650379675E－02
$\begin{aligned} & 1.142536761299 E-01 \\ & 2.9965940431-06 \end{aligned}$	3． 8767 Э56「ヶ2 $3512 \mathrm{E}+00$   1．045 1114213765E＋00	2．3930291920700E＋00   1．4B67923734699E＋01
3．7558594693973E－02   $.84070830 .11393-02$ $10 t+00$	1．8492EuEEG：626E－02 4．621 4004う：3096E－02	$\begin{array}{r} 5.1936339144403 E-02 \\ -3.4670952494617 E-02 \end{array}$
$\text { II GABASLES } 12$	CALLS CF CRLFINN F：	2．56279650379675E－02
1472以36？d1？－-01   8856440．1．3iE＇00		$\begin{aligned} & \text { 2. } 3930291920700 \mathrm{E}+00 \\ & \text { 1. } 4367929734699 E+07 \end{aligned}$
	1．349еE0325－9626E－02 4.631300 小．？ $3896 \mathrm{E}-02$	5． $1936339144409 E-02$   －3．4670952494617E－02
TEKA： 10 N i 30 VARIMBLES	CALIS OF CALFUN F＝	2．56279850379675E－02
$\begin{array}{r} 14725307 e 1926-0 t \\ 2.7438904315+00 \end{array}$	$3.8757655625612 E+00$   1．04541i4213765E＋00	2．3520291920700E＋00   1．4857929734699E＋01
FUNGTIUNS  	i． $8492808254626 E-02$ 1．6314004673896E－02	$\begin{array}{r} 5.1936339144403 E-02 \\ -3.4670952484617 E-02 \end{array}$
TE＂ATION 14 89 VARIABLES	CALLS OF CALFUN $\quad F=$	2．56279650379675E－02
1．1A7   2．08BEES4 ： 3 i．S1E $=00$	3． $8767656625512 E+00$   i．045411421 $5755 E+00$	2．3930291920700E＋00   1．4867＠29734699E＋01
FUNCTIONS   5．7348354063576E－02   9． 600703 E． 51 ASEE－0．	1．8492808254626E～02   4． 531 4004E73396E－02	5．1336339144403E－02   －3．4C7095248d617E－02
JEKATION 15 SS	CALLS OF CALFUN $F=$	2．56278018339512E－02
？．14＇25509：38074E－01 0865735896971E4：10	3． 8767 S37754145E +00   1．0454133696471E＋60	2． $3930280793217 E+00$   1，48678977690）OE＋01
FUMCTIONS   9． $757555000: 95 \pi-02$   จ． 80065175790 SaE－02	1．9492110873900E－02   4．6314531277097E－02	$\begin{array}{r} \text { 5. } 1936807497864 E-02 \\ -3.4670974849013 E-02 \end{array}$

POWSG FINAL VALUES OF FUNCTIONS AND VARIABLES

ITERATION 15 95 VARIABLES	CALLS OF CALFUN Fa	2. 36278018330812E-02
1.1472560838374E	3, $8767337754149 \mathrm{E}+00$	2.3930280783217E*00
2.OUBST3S696971E+	O4Jal3369047 IE	1. 486789776.010E+01
9. $7357955380195 \mathrm{E}-\mathrm{O2}$	1.8492110873800E-02   4. $8314531277097 E-02$	5. 1986807497884E-02 -3.4670974 deoli3E-02

FIRST TRY: 1 CYLIMDERA 1 GAS GENERATORS 61 VENT:
PERFERMANCE

ACTUATOR SPECS:
WEICHT OF PROPELLANT
HEAD CLEARANGE
CYLI NDER DIAMETER
14.8679 GRAM VENT-HOLE O1AM.
3.8767 INCH EUFFER LEGTH
2. OB 8 S INEH PISTON-ROD DIA.


GPTIONS AVAILABLE:
GYLIMOERS GEM. ICYL, TOTAL GEN, CHARGEIGRAM)/GEN. CYL, DIA. P.RED DIA.
$11114.880 \quad 1.048$
fiEcORD OF \NTERACTIVE COMNUNICATIDNS WITH TELETYPE

IS ONE OF THE ABOVE FRGPOSE ACCEPTABLET YES OR NO
(TELETYPE INPUT) --3 YES
SELECT OPTION - TYPE,NO. OF CYL; AND GEN./CYL.
TYPE PREFERRED CYLINDER AND PISTON-ROD DIAMETERS
(TELETYPE INPLUT) - 2.50000 1.20000
THERE IS AN ANNULAR CLEARANCE OF . 625 INCH (VENT-HOLE DIAM. $x .115$ ) TVPE MAX. ACCEPTABLE VENT-HOLE DIAM.

THERE WILL BE I VENT-HULES PER PISTON, OF APPROX. . 115 INCH DIAM,
MIN. VENT LENGTH (1.E, PISTON THICKNESS) IS 1.721 INCH.
TYPE PREFERRED VENT-HELE LENGTH.
(TELETYPE INPUT) --> 1.75000
Y YUR CHOICE OF VENT LENGTH GIVES AN LJD RATIO OF 15.3 OK UR NO?

```
(TELETYPE INPUII --> OK
```





-0610276227277E゙-01
UNLTIONS
1. 2200524.45543E-02
3. 601757580770 eve02
1.184:497267704E-02
-. 3738491752198E-04
5. 6948352714360E-03 1.3426es42e3275E-03

POWSG FINAL VALUES UF FUNCTIONS AND VARIABLES

REPORT ON THE FJMAL DESIGN FOLLOWS:
DESIGN COMPLETED
1 CYLINDERS WITH 1 GAS GENERATORS EACH
CYLINDER DIAMETER 2.5000 INCH, PISTEN-ROD DIAMETER 1.2500 1NCH HEAD CLEARANCE 1.4763 INCH, BUFFER LENGTH 120.4019 NNCH PISTEN 1, 750 INCH THICK WITH 1 VENTS OF 1191 IN, OIAM.
PREPELLANT LGADING: 10.615 GRAM PER GENERATER
PERFORMANCE:
0653 SEC. TO CROSS 19.0000 INCHES ( 1.036 OF TIME REQUIRED)
VELबCITY OF ARRIVAL! 30ה, 5 jPS (1.012 OF FINAL VELOCITY ALLOWED)
MAXIMUM PISTEN-ROD STRESS 20109.4 PSI (1.005 OF STRESS ALLOWED)MAXIMUM HEAD-SFACE PIESSURE 50OS I PSIA (PGESSSURE RATIMG 5OOD, O PSJA)
 MAXIMUM OENERATOR PNEFSURE 4915.1 PSIA (PRESSURE RATING 3ZOOO.O PSIA) PROGRAM IS MGAIN INTERACTIVE WITH THE TELETYPE
IS THE ABUVE DESIGN SATISFACTGRY? TYPE YES TS EXIT, NO TO TRY AQAIN ALL DONE

## b. Complete History of Test Design B

GIVE TITLE FQR THIS ACTUATOR DESIGN PROBLEM
(TELETYPE INPUT) --)
is $X$ 2 FERFORMANCE W! TH MINIMUM PROFELI.ANT. NT(PW)=.05. ESCALE=5000.
GIVE VALUES FOR WLB, STR, TR, VFAL, STAL, GPAL, CPAL
(TELETYPE :NPUT)

DO YOU HAVE A REASONABLE FIRST GUESS? YES OR NO (TELETYPE INPU

FOILOWING IS THE PGWSO EIUTPUT GIVING THE SEARCH HISTGRY

ITERATION 7	CALLS ©F CALFUN Fz	1.05477404056402E-01
1.277849239	2.44921u42890e5E+00	
2.3338363691464E+00	1. 1669181 ¢, $40732 \mathrm{E}+00$	1, 31408
$\begin{aligned} & \text { FUNCTIONS } \\ & 1.5704086500698 E-01 \\ & 6.6397626793183 E-02 \\ & .0 E+00 \end{aligned}$	1.0254440327099E-02 5. $3548192386690 \mathrm{E}-02$	$\begin{array}{r} 5,7196028037090 \mathrm{E}-02 \\ -2.6475710582614 \mathrm{E}-01 \end{array}$
ITERATION 11	CALLS OF CALFUN F=	9.52539036319293E-02
1. 26A56B68-86 $35 E-01$   2. $3642718745830 \mathrm{E}+00$	$2.1992104289084 E+00$   1. $1823551749710 \mathrm{E}+00$	2. 3228094186436E +00   1. $2754354221699 E+01$
FUNCTIENS   1.3771771108497E-n1   5. $60412463333308 E=02$	1.1575646095925E-02   6. 501922010938 OE-02	G. $8041677976207 E-02$ $-2.5329024830591 E-01$
IMERATIUN $\quad 17$   Vafiables	CAL.LS OF CALFIIN F=	2.25232793日71223E-02
$1.1308827048007 E-01$ $2.389271015560=+00$	2. $0197293055626 E+00$   7. $1932789456639 \mathrm{E}+0 \mathrm{C}$	$1.5496534003747 \mathrm{E}+00$
$\begin{array}{r} \text { FUNDT10NS } \\ \text { 1. } 4674732753966 E-01 \\ 4.459792466 E 2 E-02 \\ .0 E+00 \end{array}$	$\begin{aligned} & -8.755702<303351 E-03 \\ & 4.0898916095 B 7 E-02 \end{aligned}$	4. 3098924893589E-02 8.2337913237436E-02
ITERATION 3 VARIABLES 23	SALLS OF CALFUN F=	2.01876105321799E-02
$\begin{aligned} & \text { 1493135A17894E-01 } \\ & 48501618564 E+00 \end{aligned}$	1.6508230227415E+00	$\begin{aligned} & 1.3684783211745 E+00 \\ & 1 \cdot 1364844957 E+61 \end{aligned}$
FUNCTIENS   6. $6242724767845 E-02$   3. $2699997512008 E-02$   OE+00	$\begin{aligned} & -2.5239255002064 \mathrm{E}-02 \\ & 3.3315085684234 \mathrm{E}-02 \end{aligned}$	3. $4596516069560 \mathrm{E}-02$   1.0731923108090E-01


11ER:ITARNABLES 26	CALLS OF CALFUN F=	1.45386019184651E-02
$\begin{aligned} & \text { 1.0791300281077E-01 } \\ & 2.3964012624153 E+00 \end{aligned}$	$\begin{aligned} & \text { 1. } 8659821792336 E+00 \\ & 1.2003122846847 E+00 \end{aligned}$	1. 5048 亿 $40549805 E+00$ 1.1359580467344E+01
FUNCTIONS   7. $7979023367200 \mathrm{E}-02$   3. $5095036482260 \mathrm{E}=02$	2. 7756844857577E-02   3. $9201843274617 E-02$	4. $0205618844222 E-02$ $5.7521362308576 E-02$
ITERATION 59 VARIABLES	GALLS UF GALFUN F:	6.62705S19330645E-03
	1.4U993 $2598204553 \mathrm{E}+00$	$1.3990495519038 E+00$   1. 0776493689039E+01
	2. 9384365579275E-02 4. 0485311031301E-02	4. 1874204376602E-02   2.3362542271759E-02
IIERATION GARIABLES $\quad 25$	SALLS OF CALFUN $\quad \mathrm{F}=$	5. 6571 А21 4208962E-03
$\begin{aligned} & 1.0932151940575 \mathrm{E}-01 \\ & 2.522593730122 \mathrm{O} \end{aligned}$	1. $3879585679712 E+00$	1. 3945522265 565E+00 $1.0752008154102 \mathrm{E}+01$
IJNCTIONS  	2.8113951548591E-02 $3.8920046534036 E-02$	4. 0283056151325E-02   4. 3342050255392E-03
1 TEFATION $\operatorname{VARIABLES}$	Calis of calfun $F=$	5, 6473791\}316818E-03
$\begin{aligned} & 1.09345736602 G E-01 \\ & 2.584005: 379422 E+00 \end{aligned}$	$\begin{aligned} & 1.3845000005444 \mathrm{E}+00 \\ & 1.2639526625641 E+00 \end{aligned}$	1. 383900 $50601 \mathrm{E}+00$ 1.0745905531014E+01
4. 729528 ; 5505B4E-02 1.712465172039?EGO	2. $7186528089080 E-02$   3. $8867117814341 \mathrm{E}-02$	4. $0193095668067 E-02$   9. $9030436716822 E-03$
11 KRATION - 47 VARTABLES	CALLS OF CALFUN F:	5.64737911316818E-03
$\begin{aligned} & 1.093457565020 E-01 \\ & ? \end{aligned}$	1. $3845000085442 \mathrm{E}+00$ 1.263952e625641E*00	$\left\{\begin{array}{l} 1.3685000350601 \mathrm{E}+00 \\ 1.0745905531014 \mathrm{E}+01 \end{array}\right.$
3. 72932e15406818-02  	$\begin{aligned} & 2.715928085080 E-02 \\ & 3.8067, ~ \end{aligned}$	4.019369556e067E-02   9.8؟30436716822E-03
ITERATION 93 variables	CALLS OF CALFUN $F=$	5.34737911316818E-03
1.09345578G6020E-01 $2.524005137942 E+00$	1.3845000085442E+00	1.3689090350501E+00
FUNCTIONS   3.72952e1550681E-02  	2. $7186928089030 E-02$   3.8867117814341E-02	A. 018३395668067E-02   9. $8930436716822 E-03$



FIRS [ IR'Y: 1 CYIINDER, I GAS GENERATORS \& 1 VENT;

# ferformance 


ACTUATOR SPECS:

OPYIGNS AVAILABLE:
CYLINDERS GEN. fCYL. TOTAL GEN. CHARGE(GRAM)/GEN. CYL.DIA. P.ROD DIA.
1
1
10.746
2.524
1.264

## RECORD OF INTEIIACTIVE COMPIUNICATIONS WITH TELETYHE

IS GiNE GF THE ABOVE PROFOSE ACCEPTABLE? YES OR NU (TEIETYPE INPUT) $\rightarrow$ Y YES
SELECT OFTION - TYYEE NO. OF CYL; AND GEN. /CYL.
TYPE PREFEIREED CYLINDER AND PISTON-ROD DIAMETERS
(TELETYPE INFUT) $=-3$ 2,50000 1,25000
THERE IS AN ANNUIAR CLEARAPYCE OF , 625 INCH (VENT-HOLE DIAM. = . 109) TYPE MAX AGCEPTADLE VENI-HDLE DIAM.
THERE WILL BE 1 VEINT-HOLES PER F!STOA, OF APPROX. . 103 INCH DIAM,
MIN YERT LENGTH (I, E P S S
TYPL PHCFERRED YEINTHOLE LENGTH.
YOLAR GHEIICE OF GENT : ENGTH GIVES AN L/E RATIO OF 16.0 OK OR NO?
(TELETYPE INPUT) $\rightarrow$ OK
FOLLOWIIC IS THE POWSO GUIFUT GIVING THE SEARCH HISTERY

ITERAIIEN D 5	CALLS GF CALFUS $\mathrm{F}=$	2.497890\%2129120E-02
VARIABLES 1.09231000	1.4112175770549E+00	1.4142411432786E+00
1.044910711030E+01		
+ UNCTIENS		
$3.7295553551479 E-02$ $-4.203228094634 E-03$	$\begin{aligned} & 1.2275290173056 E-01 \\ & 5.8 \text { cont24812297E-02 } \end{aligned}$	$\begin{array}{r} 5.6374103707500 E=02 \\ -5.0114707916893 E=02 \end{array}$



## FUNCTIONS

3.4776045253120E-02
-2. 01439085250202003
$1.1351215253965 E-01$
4.7664436051255E-02
5. 3401 EDOE255日BE-D2
7.2141376965875 E -03
gepert on the final design fullows:
OESIER: CAMFLETED

1 CYLINDERS: WITH 1 GAS GENERATORS EACH


PERFORMANCE:
O626 SEC. TO CFOSS $19.0 C O Q$ INCHES $(1.997$ OF TIME REQU?RED)


MAX NUIA HEAD-SFACE PRESSURE JE38, 3 PSIA (PRESSURE RBTIM 5000 D PSIA)
MAXIMUN EUEFER PEESSURE 50130 . PSSIA (PRESSURE RAT NO SGUO.O PSIA)
MAX,MUN GENERATOR PKESSURE S331, 2 FSIA (PRES5URE RATING 32OOO.O PSIA)
PREGRAM IS AOAIN INTERACTIVE MTH TIEE TELETYPE

IS THE ABOVE DESIGN SATISFACTORY? TYPE YES TO EXIT, NO TO TRY AGAIN (TELETYPE Ir'PUT) --> YES

ALL DONE

## APPENDIX VI

a. Teletype printout for Test Design $A$
b. Teletype printout for Test Design B
c. Teletype printout for Test Design C
d. Teletype printout for Test Design D

DESAC / 84
GIVE TITLE FOR THIS ACTUATOR DESIGM FRGBLEM
(TEI-ETYPEEINPUT) 16 PERFORMANOE', WEIGHT ON EXCESS-GVER-MINIMUM PROFELLATYT $=0.02$
GIVE VALUES FER WLB, STR, TR, VFAL, STAL, GPAL, CPAL
(TELETYPE INPUT) $3.565 E+02$ 1.9OOE+O1 6.300E-02 3.000E+02 2.000E+04 3.200E+04 5.000E+03
DG YOU HAVE A REASONABLE FIRST GUESS? YES OR NO

FIRST TRY: 1 GYLINDER, 1 GAS GENEIRATORS 81 VENT:
PEKFLRMANCE
TIME FOR FULL STROKE E.922E-02 SEC. FINAL VELOCITY $3.055 E+02$ IPS
MAX. ROD STRESS FRESS. $5.234 E+04$ PSI MAX MAX. OEN, PRESS. $5.335 E+03$ PSIA
ACTUATOR SPECS:

OPTIONS AVAILABLE:
CYLIMOERS GEN. /CYL. TOTAL GEN. CHARGE(GRAM)/GEN. CYL. OIA. P.ROD DIA.

$$
\begin{array}{llllll}
1 & 1 & 1 & 14.868 & 2.089 & 1.045
\end{array}
$$

(TELETYPE (NPUT) --> YES
SELECT OPTION - TYPE NO, OF CYL, AND GEN. ICYL,
TYPE PREFERRFD CYLINLER AND FISTON-RUD DIAMETERS
(TELETYPE (NPUT) --> 2.50000 1.25000
THERE IS AN ANNULARR CLEARANCE OF GOS INCH (VENT-HELE DIAM. = . 115 )


THERE WILL BE 1 VENT-IIGLES PER PISTON, OF APPROX. 115 INCH DIAM.
MIN. VENT LENGTH (i,E, PISTON THICKNESS) IS 1.721 INCH.
TYPE PREFERREG VENT-HÉLE LENGTH.
YOUR CHOICE OF VENT LENGTH GIVES AN L/D RATIO OF 15.3 OK OR NOP

## DESIGN COMPLETED

1 GYLINDERS WITH 1 GAS EENERATORS EACH
CYLINDER DIAMETER 2.50DO INCH, PISTON-ROD DIAMETER 1.2500 INCH HEAD CLEARANCE 1.4763 INCH: GUFFER LENGTH 20,4019 INCH PISTON 1.750 INCH THICK WITH, 1 VENTS GF 1191 IN. DIAM. PROPELLANT LEADINO: 10.615 GRAM PER GENERATOR

PEI:FORMANCE:
OOS3 SEC TÓ CROSS 19.0000 INCHES ( 1.036 OF TIME REOUIRED)


MAK MUM HEAD-SPACE PRESSURE SOOS, 1 PSIA (PKESSURE RATING 5000 O PSIA)
MASIMUN BUFRER PRESSURE EDO1 4 PSIA (PRESSURE RATING SOOD. O PSIA)

IS THE ABOVE DESIGN SAI!SFACTORY? TYPE YES TO EXIT, NO TO TRY AGAIN (TELETYPE INPUT) $\rightarrow$ YES

```
DESAC / 0 4
GIVE TITLE FOR THIS ACTUATOR DESIGN PROBLEM
(TELETYPE INPUT) --` HEIGHT ON EXCESS-GVER-IIINIMUM PROPELLANT = 0.OS
GIVE VALUES FOR WLB,STR, TR, VFAL,STAL, GPAL, CPAL
(TELETYPE JNPUT)
OO YOU HAVE A REASONABLE FIRST GUESS? YES OR NO
(TELETYPE INPUT)
```

FIRST TRY: 1 CYLINDER, 1 GAS GENERATORS t 1 VENT:
PERFORMANCE

ACTUATER SFECS:

OPTIONS AVAILABLE:
CYLINDERS GEN. /CYL. TOTAL GEN, CHARGE(GRAM)/GEN. CYL.DIA. P.ROD DIA.
$1110.748 \quad 2.524 \quad 1.284$
1S ONE OF THE ABOVE OPTIONS ACCEPTABLET YES UR NG
(TELETYPE INPUT) - -3 YES
SELECT OPTION - TYPE NO. OF CYL; AND GEN. ICYL.
TYPE PREFERRED CYLINDER AND PISTON-RED DIAMETERS
THERE IS AN ANNULAR CLEARANCE OF . 625 INCH (VENT-HOLE DIAM, $x .109$ )
TYPE MAX. ACCEPTABLE VENT-HGLE DIAM.
(TELETYPE INPUT) --> 25000
THERE HILL BE 1 VENT-HOLES PER PISTON, OF APPREX. . 109 INCH DIAM,
MIN VENT LENGTH (I.E. PISTON THICKNESS) IS 1.640 :NCH.
TYPE PREFERRED YENT:HELE LENGTH.
YOUR CHOICE OF VENT LENGTH GIVES AN L/D RATIO OF 16.0 OK OR MOT
(TELETYPE INPUT) $=7$ OK
DESIGN COMPLETED
1 CYLINDERS WITH 1 GAS GENERATORS EACH
CYLINDER DIAMETER 2, 5000 INCH, PISTON-RED DIAMETER 1.2500 INCH
HEAD CLEARANCE 1.395S INCH, BUFFER LENGTH 20.3730 INCH
PISTON 1 , 7 OO INCH THICK WITH. 1 VENTS OFF 1094 IN. DIAM.
PROPELLANT LOADJNG: 10.606 GRAM PER GENERATOR
PERFORMANCE:


MAXIMUN BUFFERPRESSURE GOBG, 1 PSIA (PRESSLRERRTING NGOOGOMESIA)

## Test Design C

DESAC/BA
GIVI TITLE FOR THIS NOFHATOH DESIGN ORDELEM

OIVE VALUES FOR, WH, GTR, TR, VFAL, STAL, EPAL, CPAL

00 YOU HINVE A REAS.MNABLE FIRST G!LESS? YES OR NO
TTELE SPE I'4FUT) --3 YES
GIVE, WIIF GF HID, HL, HT, FNOR, CD, PRD, PT
(TELETIPE INFUT)



## DESOH CCAJLETEO

1 SYL!NILRS GITA 1 CAS BENETLATURS EACH



BLIf!rinumCE:



ALL. DOME.

Test Design D

DESAC / 63
give TitLe for This actuatoi design prcelem
(TELETYPE INPUT) --3
REDESIGN GF 4 CYL. 18 INCH VALVE TO ELIMINATE GREASE-PACK DECELERATOR GIVE YALUES FOR HLE, STR, TR, VFAL, STAL, GPAL, CPAL
(TELETYPE INPUT) $3.745 E+02$ 1.900E+01 3.000E-02 2.000E+02 2.000E+04 3.200E+04 7.500E+03
DO YOU HAVE A REASONABLE FIRST GUESS? YES OR NO
(TELETYPE INPUT) $-\gg$ YES
(TELETYPE INPUT) -->>
2. 500E-01 t. $500 E+001.925 E+012.000 E+013.000 E+001.688 E+00$ 4.000E+00 QIVE VALUES FOR NC, NOGC, NH 41

## DESIGN COMPL.ETED

A CYLINDERS WITH 1 GAS GENERATORS EACH

PRGPELLANT LCADING: 22.480 GRAM PER GENERATOR


1S THE ABOVE DESION SATISFACTORY? TYPE YES TO EXIT, NO TO TRY AGAIN (TELETYPE INPUT) $\Rightarrow$ YES

ALL DONE


[^0]:    ${ }^{\text {* }}$ The author is not aware of any application of this idea. However, the possibility of its use to cushion the travel of a moving piston at the end of its stroke has been investigated previously (Ref. 1).

[^1]:    *To ensure a fully established pipe-flow, the length-to-diameter ratio will be taken to be fifteen. Hence only one variable is involved.

[^2]:    This is the sotal propellant charge per cylinder, and will remain nearly unchanged $i^{*}$ the number of gas generators is changed by the program when their maximum charge is exceeded.

[^3]:    *The mass to be accelerated includes that of the load and of the piston and piston-rod. Since the latter is of the order of 2 to $3 \%$ of the load, this factor will be added to M in the design calculations.

[^4]:    *The letters $A, B, C$ and 0 are commonly used to denote the constants in such equations. Note, however that in the actuator analysis (Section 3) these constants are denoted by $c_{1}, c_{2}, c_{3}$ and $c_{4}$.

[^5]:    *In BTU/1b mole

