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Summary. Modeling symmetric positive definite (SPD) material properties, such as thermal
conductivity, under uncertainty often leads to a substantial computational burden. Neural
networks can help mitigate these costs, yet standard architectures do not inherently preserve
SPD properties. To address this, we propose novel neural network layers that map the space of
SPD matrices to a linear space using logarithmic maps. We evaluate the performance of these
networks by comparing different mapping strategies based on validation losses and uncertainty
propagation. Our approach is applied to a steady-state heat conduction problem in a patched
cube with anisotropic and uncertain thermal conductivity, modeled as a spatially homogeneous,
tensor-valued random variable. The results indicate that the logarithmic mapping of tensor
eigenvalues significantly improves learning performance, highlighting its utility in handling tensor
data in neural networks. Furthermore, the formulation facilitate separation of strength and
orientational information.

1 INTRODUCTION

Thermal material properties of composites and biological tissues [1, 2, 3] are often of anisotropic
nature, meaning that material characteristics are directionally dependent. As these are not di-
rectly measurable, they need to be estimated or modelled as unknown. In addition, thermal
characteristics are also known to vary due to variations in manufacturing process, presence of
defects or natural phenomena. To be able to predict material behavior, one has to model thermal
characteristics as uncertain which means that the properties such a thermal conductivity, con-
sidered in this paper, have to be modelled as a random variable. In contrast to the isotropic case
in which thermal conductivity can be modelled as a scalar-valued random variable, anisotropy
results in modeling of a tensor valued random variable. [4] proposed a stochastic tensor model
using an exponential map and spectral decomposition, which is employed in this work to model
SPD matrices as random variables.

To predict the temperature dependency on the conductivity, one has to propagate the uncer-
tainties through the physics based-model, often numerically solved by the finite element method.
In contrast to sampling based methods such as Monte Carlo, its quasi-variants and determin-
istic integration rules, the use of surrogate based modelling has shown great promise [5]. In
particular, neural networks and their deep forms [6] have gained great popularity due to the
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ability of representing high nonlinearity in a scalable setting [7]. Most of existing classical neu-
ral networks do not incorporate physics-based parameters in their setting. In other words, these
networks do not respect constitutive relations for the corresponding material model. Some that
do respect such relations are i.e. [8] which proposes used a non-negative activation function and
Chomsky decomposition to uphold symmetry and positive definiteness in Lagrangian dynamics.
[9] where a physics based loss function is formulated to directly train neural networks, forgoing
the need for traditional solvers. Further, specifically for material mechanics, some constitutive
artificial networks use invariants for energy-based computations, but such implementations do
not work when specific directional information is required, i.e. [10, 11]. Recently, [12] proposed
a network architecture using eigenvalue activation functions and rotation-invariant matrices to
model symmetric strain matrices.

In this paper, we propose incorporation of a new stochastic model for SPD valued random
variables on a manifold to the neural network architecture, extending work done by [13, 14].
We propose a neural network that can handle both strength and directional information in
the stochastic tensor. In other words, the neural networks can handle specific anisotropy for
varying values of material constants, changing the anisotropy class. The adapted neural network
architecture consists of a material model part and the classical MLP network used to represent
the parameter-quantity of interest (QoI) map. The method is demonstrated on a 3D steady
state thermal problem with anisotropic random thermal conductivity. Novel neural network
layers are introduced to map from the SPD manifold to Euclidean space.

The paper is structured as follows. The first section introduces the thermal problem and
tensor valued random variable. The second section describes the neural network architecture
and different transformation layers studied. In the third section, results of different layers are
compared by analyses of the validation losses and uncertainty propagation performance. The
final section offers conclusions and discussion.

2 PATCHED CUBE WITH ANISOTROPIC TENSOR VALUED RANDOM THER-
MAL CONDUCTIVITY

Let be given the steady state heat conduction problem described by:

∇ · (C∇T ) = Q with b.c. a.e. on G. (1)

Here, T [K] is the temperature, C ∈ Sym+(d) [W/(m*K)] is the thermal conductivity tensor
with Sym+(d) being the space of symmetric positive definite matrices, Q [W/m3] is a volumetric
source term and G ⊂ R3 is the bounded domain of interest in Euclidean space.

To model the uncertainty associated with the anisotropic thermal conductivity C, we model
the tensor as a spatially homogeneous random variable. The tensor valued random variable
C(ω) ∈ Sym+(d) is defined in a probability space given by a triplet (Ω,F ,P) in which Ω
is the sample space of elementary outcomes ω, F represents the sigma algebra, and P is the
probability measure. The model is adopted from [4, 15] based on the spectral decomposition of
the deterministic thermal conductivity tensor, where:

C = QΛQT with Λ ∈ Diag+(d) and Q ∈ SO(d). (2)

The decomposition splits the strength and orientation information from each axis in the form of
eigenvalues Λ and eigenvectors Q. Diag+(d) is a Lie group of positive definite diagonal matrices,
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SO(d) is the Lie group of proper rotations. The spectral components allow for modelling of Λ(ω)
and Q(ω) separately. Directly altering values in either SO(d) and Diag+(d) is challenging due to
their manifold projections. To model variation in either of the quantities, we use an exponential
map from the tangent space, or Lie algebra, towards the respective Lie group. The Lie algebra
of Diag+(d) is diag(d) and that of SO(d) is so(d), both of which are unconstrained vector spaces,
making stochastic modelling simpler. Thus, we introduce the mapping:

(Y ,W ) 7−→ (Λ,Q) = (expY , expW ) 7−→ C = QΛQT , (3)

in which Y ∈ diag(d) is a diagonal matrix and W ∈ so(d) is a skew symmetric matrix, repre-
senting the strength and orientation matrix respectively. Extending Eq. (3) to the stochastic
counterpart, one may introduce:

Λ(ω) = exp(Y (ω)) = diag (exp(yi(ω))) with yi(ω) ∼ N (µi, σi), i = 1, ..., d (4)

for varying strength. By use of exponential mapping, we ensure the positive definite property
of the tensor. Furthermore, we introduce the stochastic rotational R(ω) such that:

C(ω) = R(ω)QΛ(ω)Q
T
R(ω)T ∀ω ∈ Ω. (5)

in which Q is the deterministic counterpart of the eigenvector and R(ω) is modelled as,

R(ω) = exp(W (ω)) where W (ω) =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (ω) with ϕ = ||w||. (6)

in which ϕ is the rotation angle and w is the Euler vector or random angle variables which are
drawn from a von Mises Fisher distribution (vMF), with mean direction vector µ and concentra-
tion parameter κ, which are akin to the mean and standard deviation of a normal distribution
[16]. vMF is a generalization of a Gaussian distribution on the unit sphere. Introducing the
stochastic model for the tensor into Eq. (1) one further obtains,

∇ · (C(ω)∇T (x, ω)) = Q with b.c. a.e. on G ×Ω. (7)

In which the temperature field also becomes stochastic. To quantify uncertainty, one has to
build the surrogate model that is sampling efficient. For this purpose, the previous model is first
spatially discretized by the FEM, and further sampled in a stochastic domain by a simple Monte
Carlo procedure. In this manner, the data set is collected based on which T is constructed as
described in the following section.

3 ANISOTROPY RESPECTING NEURAL NETWORK LAYERS

To map the varying input parameter Λ(ω) and R(ω) to the QoI T (x, ω), we propose the NN
architecture as shown in Fig. (1). The network consists of two parts: the part that introduces
the anisotropy notation and the second part that maps the tensor C to the QoI. Fig. (1 )
illustrates the proposed network architecture: an input node receives a tensor sampled from Eq.
(5), a transformation layer maps the tensor to Rn1 , followed by standard hidden layers, and an
output layer that produces the temperature field.

The standard for converting tensor to inputs for neural networks is to use a vectorize opera-
tion. But in this work we formulate alternatives which better preserve the information carried by
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Figure 1: Neural network architecture

the tensor. It is possible to reformulate the tensor representation using a logarithmic mapping
on the eigenvalues [13], inspired by the Log-Euclidean metric, thereby transforming them to the
Lie algebra diag, a vector space. The tensor is reconstructed as:

Q log(Λ)QT = X =⇒ [x11 x12 x22 x13 x23 x33]
T (8)

This transformation, referred to as the log-eigenvalue operation (LogEig), results inX ∈ Sym(d),
a linear space.

3.1 Strength-Orientational (StrOr) Layer

An alternative approach involves feeding the network separate information about strength
and orientation. We introduce an eigenvalue/eigenvector-based transformation layer:

log(Λ),Q =⇒ [y1 y2 y3 q11 q21 q31 q12 q22 q23 q13 q23 q33]
T (9)

Similar to Equation 8, the log operation maps the eigenvalues to their Lie Algebra. For the
q entries, this representation maintains the direct interpretation of vectors on the unit sphere
hereby seperation the input channels for the strength and orientational (StrOr) information.

3.2 Strength-Angular (StrAng) Layer

To maintain consistency in representation, we can also use the logarithmic map to both
eigenvalues and eigenvectors, mapping them to their respective Lie algebras. While this approach
introduces computational complexity for the full eigenvector matrix compared to the diagonal
eigenvalue matrix, it is equivariant. The mapping is given as,

log(Λ), log(Q) = W =⇒ [y1 y2 y3 w1 w2 w3]
T . (10)

While both y and w are represented as elements of R3, they belong to different spaces: y is in
the Lie algebra of diagonal matrices, while w is in so(3), the Lie algebra of SO(3). Now are again
separated channels but for the strength and angular (StrAng) information. The comparison of
these transformation layers now follows in the next section.

4 SURROGATE MODEL FOR THE PATCHED CUBE

The problem tackled in this paper is the steady state heat conduction of a patched cube
with an anisotropic and uncertain thermal conductivity. The patched cube consists of a cube
with six patches, each situated along an axis, which originate from the center point of the cube
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Figure 2: Geometry of the patched cube.

Table 1: Patched Cube Parameters.

Parameter Value [Unit]

Cube length 0.05 [m]
Patch length 0.005 [m]
Qh 50 [kW/m2]
Tb 273.15 [K]

and run normal to the cubes faces. The geometry is shown in Fig. (2), where a patch on the
YZ plane indicates a heat source boundary condition Qh [W/m2], while the other five patches
are treated as temperature boundary condition Tb [K]. All the remaining boundary is insulated.
The physics are governed by Eq. (1). To solve the patched cube problem of Eq. (7) we use the
deterministic parameters of Table (1). For the varying thermal conductivity, we use

C =

11.24 5.18 1.73
5.18 3.49 −0.356
1.73 −0.356 1.78

where Λ =

 14
0.11
2.4

 and Q =

0.892 −0.416 0.174
0.436 0.700 0.565
0.113 0.580 0.807

 (11)

as mean values. The variability in the tensors is defined by the standard deviation vector for
the three normal distributions, σi = [0.8, 0.2, 0.27], and the concentration parameter κ = 200
for the vMF distribution in Eq. (4, 6). These input parameter were chosen with an initial
scale difference between the eigenvalues, such is commonly seen with thermoplastic composites
[17]. The rotation represent an Euler rotation (XYZ) of 35, 10 and 25 degrees respectively,
creating a full rotation matrix. Three datasets with 50000 input-output pairs are generated,
first one with random eigenvalues, then one with randomly rotated eigenvectors and lastly with
both random eigenvalues and eigenvectors referred to as scale, orientation and scale-orientation
random datasets respectively. The steady state patched cube solutions are solved by COMSOL
Multiphysics® [18]. The temperature field is discretized with an 11 by 11 by 11 grid over the
cube. For each grid a mean and standard deviation of the temperature field is computed using
the 50000 samples as a reference value to analyze neural network performance.

Table 2: Training result of scale random dataset.

Layer Best Val. Loss Mean Error SD SD Error SD Mean Val. Loss SD Val. Loss

Vectorize 0.048414 0.06627 0.03153 0.720689 0.422424
LogEig 0.000301 0.00431 0.00259 0.001066 0.000992
StrOr 0.000148 0.00502 0.00271 0.000512 0.000387
StrAng 0.000164 0.00801 0.00151 0.000930 0.001204

5



Wouter J. Schuttert, Mohammed Iqbal Abdul Rasheed and Bojana Rosic̀

Table 3: Training result of orientation random dataset.

Layer Best Val. Loss Mean Error SD SD Error SD Mean Val. Loss SD Val. Loss

Vectorize 0.000065 0.0081 0.0087 0.000179 0.000194
LogEig 0.000027 0.0038 0.0040 0.000082 0.000010
StrOr 0.000039 0.0056 0.0077 0.000137 0.000117
StrAng 0.000061 0.0072 0.0081 0.000172 0.000122

Table 4: Training result of scale and orientation random dataset.

Layer Best Val. Loss Mean Error SD SD Error SD Mean Val. Loss SD Val. Loss

Vectorize 0.03498 0.0291 0.0266 0.0656 0.0211
LogEig 0.00068 0.0090 0.0075 0.0021 0.0012
StrOr 0.00152 0.0118 0.0157 0.0052 0.0038
StrAng 0.00410 0.0091 0.0080 0.0138 0.0063

The neural networks are set up as shown in Fig. (1) with as transformation layer baseline the
Vectorize operation and the three transformation layers LogEig, StrOr and StrAng given in Eq.
(8) - 10. The hyperparameters are: 1500 epochs, a batch size of 20, two hidden layers of 1700 and
1500 neurons, a RELU activation function, the mean square error loss, the ADAM optimizer, 250
samples, a learning rate of 1×10−4 and 5 experiments with different initial samples. The analyzed
metrics include the best validation loss with the corresponding estimated mean and standard
deviation of the error of the standard deviation over all the grid points. Additionally, the average
and standard deviation of the validation loss over the 5 repeat experiments is provided. The
results are visible in Tables 2, 3 and 4.

Looking at the Table 2 it is evident that the logarithmic mapping of the eigenvalues is
particularly crucial for the proper representation of the tensor scaling. Interestingly, the StrOr
layer shows good performance in terms of validation loss, but it does not directly translate to
better uncertainty propagation. For the orientation random dataset, in Table 3 we see that the
logarithmic mapping of the eigenvectors seems to matter less. Here most networks performed
similarly with a small edge given to the LogEig and StrOR layers. It is worth noting that in this
case, the eigenvalue input nodes were disabled which, contrary to the scale results, improved
performance. Lastly, Table 4 again demonstrates that the lack of a logarithmic map for the
eigenvalues heavily affects the performance of the Vectorize layer. The best performing layers
in terms of uncertainty propagation are the LogEig and StrAng transformations.

Overall, the LogEig layer performs best. A possible reason could be that the entries originate
from a unified space, that is Sym(d). A disadvantage of this layer is its lack of separation between
strength and orientation. The difference between the StrOr and StrAng layers can be explained
by in processing of the eigenvector, as the unit vectors appear to be better interpreted than the
angular information, resulting in better approximation. It is important to note that since the
best validation loss did not always result in the best uncertainty propagation performance, it is
difficult to decide which network is the best to use in practice.
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5 CONCLUSIONS

In this paper, several neural network transformation layers were introduced to map from a
SPD manifold to a vector space. The layers approximation performance is compared with data
from a steady state heat conduction problem with anisotropic random conductivity. The neural
network layers proposed in this study have demonstrated consistent and significant improvements
over the standard approach of vectorizing second-order tensors. In particular, the LogEig layer
Eq. (8) and StrOr layer Eq. (9)) have shown notable enhancements in terms of validation loss
reduction and uncertainty propagation performance. The logarithmic mapping of eigenvalues
appears to be a key factor in this enhanced performance.

While our study focused on a simple, single tensor input problem, future research should
explore these layers in more complex, high-dimensional scenarios which could further highlight
advantages or disadvantages for each layer. Also, the current implementation, which prioritizes
simplicity, could benefit from further hyperparameter tuning and advanced techniques such as
batch normalization to address the observed performance variability.
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