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Summary. Topology optimization is a design computational method that aims to find the best
distribution of material to maximize some performance measures within a given domain under
prescribed constraints. The technique has found a wide range of applications due to its flexibility
in addressing different problems. In particular, the pioneering work of Sigmund [1] and Bendsøe
and Kikuchi [2] on single and multiple materials has paved the way for developing new formula-
tions and educational codes. These codes demonstrate the potentiality of topology optimization
in structural mechanics to generate optimized layouts. Advances and extensions have been pro-
posed, including periodic and non-periodic microstructures. Motivated by these previous works,
we propose a plugin-based framework that allows the treatment of a multi-material formula-
tion for large-scale structural problems. Standard compliance minimization is used, and the
proposed implementation enables handling multiple materials with different stiffness properties,
i.e., isotropic and anisotropic materials, as well as various constraints. The plugins are imple-
mented to allow the user to customize the specific problem to address. Moreover, the software
allows new features to be added to the pre-existing code to extend or change the formulation
already implemented. Numerical examples are presented to demonstrate the capabilities and
validate the main features of the proposed framework. The authors are investigating potential
extensions of this work to consider more complex formulations, such as stress constraints and
multiphysics problems.
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1 INTRODUCTION

Topology optimization is a computational method that allows designing the optimal layout of
a given domain subjected to user-defined constraints and proper loading and support condi-
tions. This technique leverages its potential to embed numerical optimization methods with
finite element analysis (FEA). As a consequence, topology optimization deals with the main
limitations related to the finite element method (FEM). In particular, topology optimization
has emerged sensitive to numerical instabilities, such as checkerboard patterns. Efforts to face
and overcome these limitations have been proposed using restriction methods for Solid Isotropic
Method Penalization (SIMP) problems, such as perimeter control [3, 4], sensitivity filter [5],
density filter [6], and projection filter [7]. In addition, filtering techniques allow, with adequate
discretization, to provide the smoothness of the design field. Despite some limitations, topology
optimization is a pervasive methodology that handles different physics and problems, e.g., struc-
tural optimization and thermal and fluid management. So, in this context, a modular code can
provide adequate flexibility and versatility to change the formulation and the analysis method,
the solver, and the update scheme. Initially, many available routines were focused on specific
topology optimization problems, such as the 99-line [1] and 88-line [8], combining the topology
formulation and the numerical analysis methods to preserve the compactness of the code. Then,
educational codes were presented to increase the readability and efficiency of the technique,
such as PolyTop [9], which offers a general FE framework based on isoparametric polygonal
finite elements integrated with a modular code structure for topology optimization. Indeed,
taking advantage of this code organization, it was extended for multi-materials problems with
PolyMat [10] and for dynamics with PolyDyna [11]. In addition, some examples [12, 13] leverage
on pre-computation of element and global stiffness matrix by considering a discretion of all equal
elements and same material in order to speed-up the problem resolution. Despite being compu-
tationally efficient for the problem addressed, these codes present memory allocation issues in
Matlab for large-scale problems. The filtering sparse matrix also requires storing a large amount
of memory. Another issue presented in these Matlab codes is associated with the solution of
large linear systems of equations that arise from finite element analyses. Therefore, strategies
to efficiently deal with large-scale problems have received increasing interest in the literature
in the past few years. Indeed, a parallel framework for topology optimization PETSc [14] was
proposed to solve fluids and solid mechanics problems integrated with the method of moving
asymptotes (MMA). Amir et al. [15] proposed a multigrid preconditioned conjugate gradient
(MGCG) solver to improve the computational performance for solving 3D structural topology
optimization problems. To overcome the mentioned memory and performance limitations, we
propose a framework based on plugins to handle large-scale structural topology optimization for
multi-material problems. The proposed topology optimization approach is integrated into Top-
Sim [16], a C++ software developed at Tecgraf/PUC-Rio for high-performance finite element
analysis. Using plugins provides versatility in implementing different topology optimization
features and allows for easy-to-extend existing codes. Here, we exploit the implementation of
a multi-material formulation with a homogenization approach to optimize an assigned layout,
selecting the optimal microstructures concurrently with the optimal macrostructural topology
during the optimization process. The paper is organized as follows: Section 2 details the main
features of topology optimization and its integration in a plugin-based framework, Section 3
outlines the main results and novelty aspect of the proposed implementation and finally Section
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4 provides conclusions and future perspectives.

2 MATERIALS AND METHODS

The multi-material formulation for static linear elasticity topology optimization problem in a
continuum setting is stated as follows:

min
z

C(z) = U𝑇 K(z)U

s.t. 𝑔 𝑗 −𝑉 𝑗 ≤ 0, 𝑗 = 1, ..., 𝑁𝑐

0 ≤ 𝑧𝑚𝑒 ≤ 1, 𝑒 = 1, ..., 𝑁𝑒, 𝑚 = 1, ..., 𝑁𝑚

with: K(z)U(z) = F

z = Pz

(1)

where the volume constraints 𝑔 𝑗 =
∑

𝑚∈G 𝑗

∑
ℓ∈E 𝑗

𝑉ℓ𝑚𝑣 (𝑦ℓ𝑚)/
∑

ℓ∈E 𝑗
𝑉ℓ are defined through the

element densities, 𝑧𝑚𝑒 , evaluated in the element centroids. The constraints, 𝑗 = 1, ..., 𝑁𝑐, where
𝑁𝑐 is the total number of constraints, are controlled by the element, E, and the material G index,
which allows to define global and local constraints subdividing regions of the design space to
provide flexibility to the designer. The optimization is density-based [17], where the discretized
design domain is associated with the optimized design variable. This method is combined with
the classical theory of homogenization [18], which allows a multi-material formulation to handle
both isotropic and anisotropic materials, as depicted in Figure 1.

Figure 1 Conceptual illustration of material distribution shaping the optimal layout with single (a) and multi-material (b)
formulation. The optimal layout is depicted with the extended design domain and boundary conditions.

The material properties are provided to the iterative process by defining the homogenized mate-
rial density matrix 𝐶𝐻

𝑚 . The iterations are performed using a gradient-based method alternating
design variable update and finite element analysis (FEA). It consists of an Eulerian approach,
allowing the non-re-mesh at each iteration to take account of new boundaries between mate-
rials and voids. An issue with the topology optimization problem is that the solution is not
unique, i.e., by increasing the mesh refinement, the objective function decreases, meaning that
the problem is not well-posed and is mesh-dependent. However, this problem can be overcome
by introducing a density filter. The filter represents a convolution factor over the design variable
𝑧, which allows the control of the minimum length scale of the optimal topology by defining a
weighting function:
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P𝑖, 𝑗 =
𝑝(𝑖, 𝑗)𝐴 𝑗∑𝑁

𝑘=1 𝑝(𝑖, 𝑘)𝐴𝑘

𝑝(𝑖, 𝑗) = 𝑚𝑎𝑥{0, [𝑟𝑚𝑖𝑛 − 𝑑𝑖𝑠𝑡 (𝑖, 𝑗]𝑞}
(2)

where the distance 𝑝(𝑖, 𝑗) is computed over the neighborhood centroids of elements (𝑖, 𝑗) in a
user-defined radius 𝑟𝑚𝑖𝑛 by the operator 𝑑𝑖𝑠𝑡 (𝑖, 𝑗). The order of the filter is computed according
to the user-defined parameter 𝑞, where for two-dimensional problems a cone convolution is
preferred by setting a linear filter 𝑞 = 1, but quadratic (𝑞 = 2) and cubic (𝑞 = 3) can be used.
The filtered design variable 𝑦 is calculated by applying the filter P𝑖 𝑗 to the design variables 𝑧.
In this work, the filter is calculated efficiently using recursion, a technique for making a function
call itself. Figure 2 illustrates the implemented filtering technique.

Figure 2 Filtering technique of design variables.

In particular, this work proposes a different strategy to compute the filter, which is particularly
expensive to implement, as suggested by the educational code PolyTop [9]. Indeed, a loop for
every element [9] to compute the distance to the other elements in the mesh is performed in
order of O(𝑛) and, once the vector holding all distances is obtained, a sort is performed in order
of O(𝑛 log(𝑛)). Therefore, the entire algorithm has order of O(𝑛2 log(𝑛)). The proposed imple-
mentation allows for reducing the order, where the built-in sort algorithm is performed only once
by Tops [22], with an order of O(𝑛 log(𝑛)), and, using the recursion, the total algorithm order re-
mains O(𝑛). It is a density filter and represents a restriction method for SIMP problem, which is
a common technique used to reduce mesh-dependency and the topology optimization problem to
be well-posed. In addition, filtering technique allows to address well-known problem in topology
optimization, such as checkerboard patterns. In addition, it works as convolution operator over
design variables, providing density continuity in the design space and a minimum-length control
in the optimal layout, which is particularly useful for additive manufacturing applications. In
particular, the design variables are penalized by a modified SIMP (Solid Isotropic Material Pe-
nalization) method, which enforces the solution to a 0/1 pattern, while the voids are modeled as
an Ersatz material. The multi-material framework is tailored by a multi-material interpolation
scheme [10], which is derived from interpolation scheme of discrete systems (DMO) [19, 20]:
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K =

𝑁𝑚∑︁
𝑚=1

𝑤𝑒𝑚

𝑁𝑚∏
𝑝=1
𝑝≠𝑚

(1 − 𝛾𝑤𝑒𝑝)K𝐻
𝑚 , 𝑒 = 1, ..., 𝑁𝑒 (3)

where the parameter 𝛾 handles the mixing of materials in the continuation scheme, starting from
a convex formulation (i.e., p=1 and 𝛾=0 ) without mixing for 𝛾 = 0 to a non-convex optimiza-
tion by increasing the penalization and mixing parameters. Then, the design variables 𝑤𝑒

𝑖
= 1

and 𝑤𝑒
𝑗≠𝑖

= 0 ∀𝑒 are updated with the Optimality Criteria (OC) [1] for two-phase topology
optimization problems, while to accommodate multiple materials and constraints the Zhang-
Paulino-Ramos (ZPR) update scheme [21] is adopted, which is a sequential linear programming
(SLP) technique. The presented multi-material topology optimization framework has been im-
plemented and integrated into TopSim. The plugin framework for multi-material optimization
is shown in Figure 3.

Figure 3 Plugin-based framework for multi-material topology optimization with 4-noded quadrilateral elements and ZPR
update scheme.

The approach allows the optimization of structures, including multiple materials with differ-
ent stiffness properties. These features are included in the optimization process through the
stiffness material matrix 𝐷𝐻

𝑚 calculated by the classical theory of homogenization [18]. This
information is computed in the "Homogenized" plugin. The multi-material interpolation func-
tion, which is built inside the "MultiMat Element TopOpt" plugin, provides the local inter-
polated stiffness matrix [19] starting from the single-material stiffness material computed in
"Mechanical", which are calculated separately with the information located in "Homogenized".
The plugin "Congruent elements" provides information about identical elements. Then, in the
"Optimization" plugin, the Topology Optimization is performed by computing the objective
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function "Compliance" and the constraint function "Volume Cnstr" of the current problem.
Finally, the design variables are updated by an update scheme, e.g., "ZPR", which can be sub-
stituted with OC, GCMMA, MMA, and SDM under appropriate amendments.

3 RESULTS AND DISCUSSION

The numerical simulations are performed in static linear elasticity with Quad-4 (Q4) elements.
The discretized space adopted for the FEA matches the design variable space. The example
presented here is the Messerschmitt-Bölkow-Blohm (MBB) Beam, a well-known benchmark for
topology optimization. Figure 4 depicts the geometry, loading, and boundary conditions. The
problem is set dimensionless and solved on half of the domain by taking advantage of symmetry
conditions. A distributed vertical load 𝑞 = 0.5 is applied on a beam, with length 𝐿 = 3 and
height 𝐻 = 1, for a length of 𝑥 = 𝐿/16.

Figure 4 MBB Beam 2D Symmetric Domain with assigned boundary and load conditions.

The single and multi-material formulations have been tested as single isotropic material and
homogenized multiple lattice microstructures. Figure 5 shows the microstructural shape and
elastic surface.

Figure 5 Microstructural material used in topology optimization: a) isotropic, b) and c) lattice microstructures, and d)
homogenized elastic surfaces of assigned microstructures.

Two types of discretization have been adopted. We ran the first group of simulations with
30000 elements to investigate the local minimum achieved with different solvers and filter radii
to the length scale of the optimal layout. Then, a fine mesh of 360000 elements is used to test
the computational efficiency of the topology optimization algorithm. As update schemes, we
adopted the OC and ZPR Update Scheme to address a single-material, see Figure 6, and a
multi-material topology optimization problem, see Figure 7.
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Figure 6 Numerical solution with single isotropic material: a) OC update scheme, b) ZPR update scheme.

The result for single-material is achieved using an isotropic material, as depicted in Figure 5b.
Here, different update schemes and filter radii have been used to show the influence on the local
minimum. Then, motivated by investigating the multi-material formulation, we considered two
lattice microstructures with different stiffness properties oriented orthogonally.

Figure 7 Numerical solution with multi-material applying different filter radii.

The solutions clearly show the density filter’s influence on controlling the length scale and,
consequently, the local minimum achieved. This first group of numerical simulations with 30000
elements has been solved with a direct FE solver. Then, we adopted a larger discretization
of 360000 elements. In this case, we considered a single-material isotropic, and the solver
adopted is the Preconditioned Conjugate Gradient (PCG), which allows the FEA to speed up.
The numerical solutions are performed using a modified SIMP approach, and the optimization
parameters are detailed in Table 1.
In the last numerical result presented here, the domain is discretized using 360000 elements, as
illustrated in Figure 8.
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Table 1 Numerical parameters for single-material (SM) and multi-material (MM) optimization with discretization of 30000
elements (30k) and 360000 elements (360k).

Parameter Description SM 30k MM 30k SM 360k

𝑝 SIMP penalization factor [1:0.5:4] [1 1.5 2 3 4] [1:0.5:4]
𝛾 MM weight penalization factor [ ] [0 0.2 0.5 0.8 1] [ ]
𝑞 Filter exponent 1 1 1
𝑅 Filter radius [0.02 0.04] [0.02:0.02:0.10] 0.04
𝑚𝑜𝑣𝑒OC OC move 0.2 [ ] [ ]
𝜂OC OC exponent 1/2 [ ] [ ]
𝑚𝑜𝑣𝑒ZPR ZPR move 0.2 0.2 0.2
𝜂ZPR ZPR exponent 1/2 1/2 1/2
𝑣 Volume Fraction 0.3 0.3 0.3
maxiter Maximum iterations 150 150 150
tol Convergence tolerance 0.02 0.02 0.02

Figure 8 Numerical solution with single-material isotropic topology optimization.

Figure 9 shows the convergence of the objective function along the optimization iterations for
each penalization factor.

Figure 9 Convergence plot for single-material isotropic example using 360000 elements in the mesh.
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4 CONCLUSIONS

In this work, we presented a general framework for topology optimization based on plugins, where
a robust and efficient topology optimization formulation is embedded with high-performance
finite element analysis (FEA) software. In addition, we showcased the algorithm’s efficiency
using a 2D benchmark numerical example with singular and multiple materials. We performed
a simulation with a fine mesh to demonstrate the capabilities of the implemented plugins to
face a high-resolution solution. Future works will focus on implementing a stress constraint
formulation to handle structural problems, including materials failure limit and yield functions.
Additionally, attention will be paid to the design freedom of the material design space, such as
porosity and orientation.
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