
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

VALIDATION OF A NUMERICAL MODEL OF SEISMIC
NEWTONIAN NOISE FOR THE EINSTEIN TELESCOPE

PIETER REUMERS, STIJN FRANÇOIS AND GEERT DEGRANDE
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1 INTRODUCTION

The Einstein Telescope (ET) is a third-generation gravitational wave (GW) detector that is
planned to be constructed in the coming decade. It consists of an underground, triangular laser
interferometer and is designed to observe GWs – ripples in the 4D space-time continuum – due
to e.g. binary black hole or binary neutron star mergers. The mirrors of the laser interferom-
eter are installed in suspension towers placed inside large cavities at the corner points of the
interferometer.

To observe GWs caused by mergers at larger distance or with a larger mass, the sensitivity
and operating frequency range (above 10 Hz) of current second-generation GW observatories
is insufficient. To improve the sensitivity by one order of magnitude and lower the operating
frequency to 3 Hz, the ET is preferably constructed underground in a seismically quiet region [1]
so that disturbance by anthropogenic vibration sources such as road and railway traffic or wind
turbines is maximally reduced.

Seismic Newtonian noise (NN) dominates at low frequencies: seismic waves propagating in
the soil generate density fluctuations which result in gravitational attraction and correspond-
ing motion of the mirrors of the laser interferometer. Since these gravitational forces cannot
be shielded, the only remedy is to estimate seismic NN from seismic measurements through
wavefield reconstruction and subtract it from the interferometer data [2].

This paper presents a numerical model in which the soil domain surrounding a cavity is
discretized with finite elements. Gaussian quadrature is used to numerically evaluate the volume
integrals quantifying the NN. The model accounts for wave scattering by the cavity and is
validated using analytical expressions for plane waves propagating in a homogeneous fullspace [3].
The influence of wave scattering and the size of the cavity around the mirror on the NN is studied.

2 THEORETICAL BACKGROUND

Seismic NN is the undesired motion (acceleration) caused by gravitational attraction of the
mirror of the laser interferometer due to density fluctuations in the soil. These fluctuations are
induced by seismic waves with a compressional component. Shear waves do not generate NN,
unless they impinge on layer interfaces or free surfaces.
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2.1 Governing equations

The gravitational force F between two point masses M and m is determined by the gravita-
tional constant G ≈ 6.6743× 10−11m3/kg/s2 and their spacing r:

F = G
Mm

r2
(1)

The gravitational potential ϕ(r) [Nm/kg] is defined as the work per unit mass required to move
the mass m from infinity (where ϕ = 0) to a distance r from the mass M :

ϕ(r) =
1

m

∫ r

+∞
G
Mm

x2
dx = −G

M

r
(2)

The value of ϕ(r) is always negative, as work is required to pull objects away from large masses
such as the Earth. When a volume V with density ρ(x) is considered instead of the point mass
M , the gravitational potential ϕ(x0) at a position x0 is expressed as follows:

ϕ(x0) = −G

∫
V

ρ(x)

|x− x0|
dV (3)

The gravitational acceleration a(x0) [m/s2], or gravitational force per unit mass, is computed
as the negative gradient of the gravitational potential ϕ(x0):

a(x0) = −∇0ϕ(x0) = G

∫
V
ρ(x)χ(x,x0) dV (4)

where ∇0 denotes the gradient operator with respect to x0 and χ(x,x0) is defined as:

χ(x,x0) =
x− x0

|x− x0|3
(5)

The acceleration a(x0) is positive towards the elementary volume dV (x).
Consider now a seismic displacement field û(x, ω) [m/Hz] inside a soil volume V . The propa-

gation of seismic waves generates density fluctuations δρ̂(x, ω) [kg/m3/Hz], which are determined
from the conservation of mass:

δρ̂(x, ω) = −∇ · (ρ(x)û(x, ω)) (6)

The hat above a variable denotes its representation in the frequency domain; the explicit de-
pendence on the frequency ω is omitted from the notation in the remainder of this paper. The
divergence operator in equation (6) can be further elaborated using the product rule:

δρ̂(x) = − ρ(x)∇ · û(x)− û(x) · ∇ρ(x) (7)

In a homogeneous medium where ∇ρ(x) = 0, shear waves do not generate NN since the diver-
gence of the displacement field ∇ · û(x) is equal to zero. However, in heterogeneous soils or
near free surfaces, the gradient of the density ∇ρ(x) is no longer zero, and shear waves also
contribute to the NN.
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Assuming that a mirror of the laser interferometer can be represented as a point mass at the
position x0, the perturbation δϕ̂(x0) [Nm/kg/Hz] in its gravitational potential due to density
fluctuations δρ̂(x) inside the soil volume V is given by:

δϕ̂(x0) = −G

∫
V

δρ̂(x)

|x− x0|
dV (x) (8)

Substituting equation (6) into equation (8) yields:

δϕ̂(x0) = G

∫
V

∇ · (ρ(x)û(x))
|x− x0|

dV (9)

Integrating by parts, assuming an infinitely large volume V , gives:

δϕ̂(x0) = −G

∫
V
ρ(x)û(x) · ∇ 1

|x− x0|
dV = G

∫
V
ρ(x)û(x) · χ(x,x0) dV (x) (10)

The corresponding perturbation δâ(x0) [m/s2/Hz] in the gravitational acceleration is given by
equation (4):

δâ(x0) = −∇0δϕ̂(x0)

= −G

∫
V
ρ(x)∇0 (û(x) · χ(x,x0)) dV

= −G

∫
V
ρ(x) (û(x) · ∇0)χ(x,x0) dV −G

∫
V
ρ(x)û(x)× (∇0 × χ(x,x0)) dV (11)

where × denotes the cross product of two vectors. In equation (11), the second term vanishes
because the curl ∇0 × χ(x,x0) is equal to zero. Further elaboration gives:

δâ(x0) = −G

∫
V
ρ(x) (û(x) · ∇0)χ(x,x0) dV = −G

∫
V
ρ(x)∇0χ(x,x0) · û(x) dV (12)

This expression yields the total NN δâ(x0) at the mirror position x0 due to the seismic displace-
ment field û(x). By discretizing the soil volume V with finite elements, the volume integral can
be evaluated numerically using Gaussian quadrature. This is the subject of subsection 3.2.

2.2 Bulk and surface contributions

Consider the heterogeneous soil volume V consisting of two materials with density ρ1 (vol-
ume V1) and ρ2 (volume V2) shown in figure 1. The interface between V1 and V2 is described
by the plane S(x) = 0, with S(x) normalized such that ∇S(x) is equal to the unit normal
vector n1(x) pointing outwards of V1. The density ρ(x) inside V is then expressed using the
Heaviside function H(x):

ρ(x) = ρ1 +∆ρH(S(x)) (13)

where ∆ρ = ρ2 − ρ1. Substituting this expression for ρ(x) into equation (9) yields:

δϕ̂(x0) = G

∫
V

∇ · [(ρ1 +∆ρH(S(x)))û(x)]

|x− x0|
dV (14)
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x0

V1 ρ(x) = ρ1 S(x) < 0

V2 ρ(x) = ρ2 S(x) > 0

n1(x)

n2(x)

S(x) = 0

Figure 1: Heterogeneous soil mass V consisting of two materials with densities ρ1 and ρ2, separated by
the interface S(x). The unit outward normal vector on V1 equals n1(x) = −n2(x).

Application of the product rule results in:

δϕ̂(x0) = G

∫
V

(ρ1 +∆ρH(S(x)) (∇ · û(x))
|x− x0|

dV +G

∫
V

û(x) · [∆ρ∇H(S(x))]

|x− x0|
dV (15)

The gradient of the Heaviside function in the second term is elaborated using the chain rule:

∇H(S(x)) = δ(S(x))∇S(x) = δ(S(x))n1(x) (16)

where δ(x) is the Dirac delta function. The Heaviside function in the first term of equation (15)
results in the sum of volume integrals over V1 and V2, while the second term, after substituting
equation (16), becomes a surface integral over S(x) due to the presence of the Dirac delta
function:

δϕ̂(x0) = Gρ1

∫
V1

∇ · û(x)
|x− x0|

dV +Gρ2

∫
V2

∇ · û(x)
|x− x0|

dV +G∆ρ

∫
S

û(x) · n1(x)

|x− x0|
dS (17)

The first two terms can be interpreted as bulk contributions of V1 and V2, respectively. The
third term is the surface contribution due to the density change ∆ρ at the interface S, and can
be elaborated as:

G∆ρ

∫
S

û(x) · n1(x)

|x− x0|
dS = −Gρ1

∫
S

û(x) · n1(x)

|x− x0|
dS −Gρ2

∫
S

û(x) · n2(x)

|x− x0|
dS (18)

where n2(x) = −n1(x) is the unit normal vector pointing outwards of V2. By taking the negative
gradient −∇0δϕ̂(x0) of equation (17), the bulk and surface contributions to the NN δâ(x0) are
obtained:

δâ(x0) = Gρ1

∫
V1

(∇ · û(x))χ(x,x0) dV −Gρ1

∫
S
(û(x) · n1(x))χ(x,x0) dS

+ Gρ2

∫
V2

(∇ · û(x))χ(x,x0) dV −Gρ2

∫
S
(û(x) · n2(x))χ(x,x0) dS (19)

In the particular case that ρ1 = ρ2, the surface contributions cancel and the total NN is given
as the sum of both bulk contributions.
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3 NUMERICAL MODEL

We compute NN using a two-step procedure. First, we determine an incoming seismic wave
field ûinc(x) obtained either analytically (e.g. plane waves), as the solution of the elastodynamic
wave equations for a horizontally layered medium [4], or with commercial software such as
COMSOL or SPECFEM3D. Wave scattering by the cavity is taken into account using the
subdomain formulation proposed by Bielak et al. [5]. The total wave field û(x) is then equal to
the sum of the incoming wave field ûinc(x) and the scattered wave field ûsc(x). Next, the NN
due to the wave field û(x) is computed in a post-processing step on a finite element (FE) mesh
using Gaussian quadrature.

We first discuss the computation of the scattered wave field ûsc(x). Subsequently, the FE
discretization of equation (12) is presented to predict NN.

3.1 Computation of the scattered wave field

To compute the scattered wave field ûsc(x) due to an incoming wave field ûinc(x) impinging
on a cavity, we use the subdomain formulation by Bielak et al. [5]. Figure 2 shows an overview
of the involved subdomains; for simplicity, the geometry is shown in 2D, but the formulation is
identical in 3D.

In figure 2a, the volume Vi contains the cavity and part of the soil surrounding it. The
volume Ve consists of the soil outside Vi. The soil displacements are partitioned using the
subscripts i, e and b, denoting the displacements inside Vi, inside Ve, and on the boundary Σ
between Vi and Ve, respectively. The volumes Vi and Ve are discretized using FE, and their
dynamic stiffness matrices Di = Ki − ω2Mi and De = Ke − ω2Me are assembled. Hysteretic
damping is assumed, resulting in complex-valued stiffness matrices Ki and Ke. The equations
of motion for the problem in figure 2a are:Di

ii Di
ib 0

Di
bi Di

bb +De
bb De

be

0 De
eb De

ee


ûi

ûb

ûe

 =


0
0

f̂e

 (20)

where f̂e is a set of external forces that induce the incoming displacement field ûinc. The total
displacement field ûe in the exterior volume Ve can be written as a superposition of the incoming
displacement field ûinc

e (in the absence of the cavity) and the scattered displacement field ûsc
e :

ûe = ûinc
e + ûsc

e (21)

Substituting equation (21) into the system of equations (20) yields:Di
ii Di

ib 0
Di

bi Di
bb +De

bb De
be

0 De
eb De

ee


ûi

ûb

ûsc
e

 =


0

−De
beû

inc
e

f̂e −De
eeû

inc
e

 (22)

Consider now a second problem in figure 2b, where the volume Vi is replaced by Vi′ in which the
cavity is removed and the soil heterogeneity is simplified, so that the incoming wave field ûinc(x)
can easily be computed. The exterior volume Ve is identical as in figure 2a. The equations of
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motion for this problem are:Di′
ii Di′

ib 0

Di′
bi Di′

bb +De
bb De

be

0 De
eb De

ee


ûinc
i

ûinc
b

ûinc
e

 =


0
0

f̂e

 (23)

where Di′ denotes the dynamic stiffness matrix of the volume Vi′ . Since the incoming displace-
ments ûinc

b and ûinc
e are known, the external force vector can be computed from the bottom row

in equation (23):
f̂e = De

ebû
inc
b +De

eeû
inc
e (24)

Substituting equation (24) into the system of equations (22) yields:Di
ii Di

ib 0
Di

bi Di
bb +De

bb De
be

0 De
eb De

ee


ûi

ûb

ûsc
e

 =


0

−De
beû

inc
e

+De
ebû

inc
b

 (25)

which can be solved for the total displacement fields ûi and ûb, and the scattered displacement
field ûsc

e .
The force vector on the right hand side of equation (25) depends on the known incoming

displacement field and the submatrices De
be and De

eb of the dynamic stiffness matrix De. In
order to compute the latter, the external volume Ve needs to be meshed with at least one layer
of elements next to the boundary Σ. Any additional elements are not connected to Σ and, hence,
do not contribute to De

be and De
eb, but only to De

ee. Furthermore, a perfectly matched layer
(PML) [6, 7] is used at the boundary Γe (figure 2) to absorb the out-going scattered waves.

(a)

x0

Vi Ve

ûi

ûe

ûb

Γe

Σ

(b)

Vi′ Ve

ûinc
i

ûinc
e

ûinc
b

Γe

Σ

Figure 2: Subdomain formulation proposed by Bielak et al. [5] to compute the scattered wave field.
Problem involving (a) the total displacement field û and (b) the incoming displacement field ûinc.

3.2 Computation of NN on an FE mesh using Gaussian quadrature

In order to evaluate the volume integral in equation (12), the volume V is discretized into ne

finite elements (FE) with volume V e and constant density ρe, resulting in the following sum:

δâ(x0) =

ne∑
e=1

G

∫
V e

ρe∇χ(x,x0) · ûe(x) dV e (26)
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where ûe(x) are the element displacements. The equality ∇0χ(x,x0) = −∇χ(x,x0) is used in
equation (26). Within each FE, an isoparametric transformation is employed to transform the
global coordinate x = (x1, x2, x3) to a local (element) coordinate ξ = (ξ1, ξ2, ξ3) using shape
functions N e

k(ξ):

x(ξ) =

n∑
k=1

N e
k(ξ) 0 0
0 N e

k(ξ) 0
0 0 N e

k(ξ)

xk =

n∑
k=1

Ne
k(ξ)xk (27)

where n is the number of nodes in the element and xk is the global coordinate of node k. The
element displacements ûe(ξ) in the local coordinate system are approximated using the same
shape functions Ne

k(ξ):

ûe(ξ) ≃
n∑

k=1

Ne
k(ξ)û

e
k = Ne(ξ)ûe (28)

where ûe = [ûe
1; û

e
2; . . . ; û

e
n] is a column vector containing the nodal values of ûe(ξ), and Ne(ξ) =

[Ne
1(ξ),N

e
2(ξ), . . . ,N

e
n(ξ)]. Likewise, the vector function χ(ξ,x0) is approximated as:

χ(ξ,x0) ≃
n∑

k=1

Ne
k(ξ)χk (29)

Its gradient ∇χ(ξ,x0) is a second-order tensor:

∇χ(ξ,x0) ≃
n∑

k=1

χk ⊗∇N e
k(ξ) (30)

which involves derivatives of the shape functions N e
k(ξ) with respect to the global coordinates x.

These are computed using the Jacobian matrix Je:

∇N e
k(ξ) = Je−1∇ξN

e
k(ξ) (31)

where ∇ξ denotes the gradient operator with respect to ξ. The volume integrals over V e in
equation (26) are subsequently transformed to the local coordinate ξ as:

δâ(x0) ≃
ne∑
e=1

G

+1∫
−1

+1∫
−1

+1∫
−1

ρe∇χ(ξ,x0) · ûe(ξ) det(Je) dξ1 dξ2 dξ3 (32)

Substituting the approximations (28) and (30), and separating ûe gives:

δâ(x0) ≃
ne∑
e=1

G +1∫
−1

+1∫
−1

+1∫
−1

ρe

(
n∑

k=1

χk ⊗∇N e
k(ξ)

)
·Ne(ξ) det(Je) dξ1 dξ2 dξ3

 ûe

=
ne∑
e=1

Aeûe (33)
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The 3× 3n matrix Ae yields the contribution of the nodal displacements ûe of element e to the
total NN. The element matrices Ae are assembled into a global 3 × 3N matrix A, where N is
the number of nodes inside the discretized volume V , yielding:

δâ(x0) = Aû (34)

The vector û contains the nodal displacements inside V . The matrix A needs to be computed
only once for a particular discretization, as it is independent of the displacement field û(x).
Hence, computing NN for any seismic displacement field becomes a simple post-processing step.

4 RESULTS

In this section, the Newtonian noise due to a plane P-wave with direction ek = ( 1√
2
, 1√

2
, 0)

and unit amplitude is computed. The volume V consists of a homogeneous fullspace with a
cavity with radius r0 = 20m at x0 = (0, 0, 0). The soil is modeled as a linear elastic medium
with shear wave velocity Cs = 500m/s, dilatational wave velocity Cp = 1000m/s and density
ρ = 1800 kg/m3.

4.1 Analytical solution

Analytical expressions for the NN induced by plane, harmonic waves propagating in a ho-
mogeneous fullspace with density ρ are first presented in order to validate the results obtained
with our numerical model.

The soil displacements ûp(x) due to a plane P-wave with unit amplitude propagating in the
direction ek (normalized) with wavenumber kp = ω/Cp are equal to:

ûp(x) = exp(−ikpek · x)ek (35)

Inserting equation (35) into equation (12) and evaluating the volume integral in spherical coor-
dinates between radii r0 and R yields the analytical expression for the NN at x0 [3]:

δâp(x0) = 8πρ1G

(
j1(kpr0)

kpr0
− j1(kpR)

kpR

)
ûp(x0) (36)

where jl(x) is the spherical Bessel function of the first kind and order l. Wave scattering by the
cavity is not taken into account in this analytical solution. Assuming a fullspace, we take the
limit for R → +∞, yielding:

δâp(x0) = 8πρ1G
j1(kpr0)

kpr0
ûp(x0) (37)

Note that the NN only depends on the displacement ûp(x0) at the position x0 of the mirror.

4.2 Influence of the domain size

We now consider an FE mesh of a cuboid soil volume V around the cavity with sides equal
to 2R (figure 3a) consisting of at least 4 20-node solid elements per wavelength λp. The domain
size R needs to be sufficiently large to reach convergence of the volume integral (12). To
this end, we compare numerical predictions on a grid with increasing ratio R/λp with the
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(a) (b) (c)

Figure 3: (a) FE mesh and (b) soil displacements ûp1(x) for R/λp = 1.5. (c) Newtonian noise δâp1(x0)
as a function of R/λp computed analytically ( ) and with the numerical model ( ).

analytical solution for a fullspace given by equation (37). The wavelength λp = 100m is fixed,
corresponding to an excitation frequency of 10Hz.

Figure 3a shows the FE mesh for R/λp = 1.5. The mesh is denser close to the cavity to
accurately capture the strongly decaying function χ(x,x0). The soil displacements ûp1(x) due to
the P-wave are shown in figure 3b. For now, we disregard wave scattering by the cavity. Figure 3c
shows the NN δâp1(x0). As the domain size R increases, the numerical result approaches the
analytical solution for the fullspace. Convergence is reached for a domain size R ≃ 1.5λp, which
is used in the following.

4.3 Influence of the cavity radius and wave scattering

We now take into account wave scattering by the cavity and consider three cavity radii equal
to 10m, 20m and 40m. The FE mesh consists of the inner volume Vi, the outer volume Ve and
the PML (figure 4). For the computation of the scattered wave field ûsc(x), a hysteretic loss
factor of 0.02 is assumed.

Figure 5 shows the incoming wave field ûinc1 (x), the scattered wave field ûsc1 (x) and the total
wave field û1(x) for λp = 100m (10Hz) and r0 = 20m. The amplitude of the scattered wave

Figure 4: FE mesh used for the computation of the scattered wave field ûsc(x) due to an incoming
P-wave with wavelength λp = 100m (10Hz) impinging on a cavity with r0 = 20m. The mesh consists of
the volume Vi (gray), Ve (red) and the PML (blue) (cfr. figure 2a).
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(a) (b) (c)

Figure 5: (a) Incoming wave field ûinc
1 (x), (b) scattered wave field ûsc

1 (x) and (c) total wave field û1(x)
for a P-wave with wavelength λp = 100m (10Hz) impinging on a cavity with r0 = 20m.

(a) (b) (c)

Figure 6: Newtonian noise δâ1(x0) as a function of frequency computed on a domain with R = 1.5λp

and cavity radius (a) r0 = 10m, (b) r0 = 20m and (c) r0 = 40m. Results are computed with ( ) and
without ( ) wave scattering by the cavity.

field ûsc1 (x) is much smaller than the amplitude of the incoming wave field ûinc1 (x).
Figure 6b shows the NN δâ1(x0) for the fullspace with cavity radius r0 = 20m. The result

without taking into account wave scattering is shown as a reference. At low frequencies, where
the wavelength λp is large compared to the radius r0, the effect of wave scattering on the NN
is limited. Above 12Hz, where λp ≃ 4r0, the predicted NN is lower compared to the reference
solution without wave scattering.

Figure 6a shows that, for a smaller cavity radius r0 = 10m, the NN at low frequencies
remains approximately the same, while the NN at high frequencies is higher. The effect of wave
scattering is also not very important for the considered soil characteristics. For a larger cavity
radius r0 = 40m (figure 6c), however, the NN clearly decreases with increasing frequency. A
significant discrepancy between the results with and without wave scattering is observed between
6Hz (λp ≃ 4r0) and 16Hz (λp ≃ 1.5r0). When the wavelength λp approaches the cavity radius
r0, the strongly scattered wave field results in a (on average) zero contribution to the NN.

5 CONCLUSIONS

This paper presents a numerical model to predict NN due to seismic wave propagation in the
soil. Gaussian quadrature on an FE mesh is used to numerically evaluate the volume integrals
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governing NN. Any soil heterogeneity and cavity shape can be meshed. A subdomain formulation
is also suggested to take into account wave scattering by the cavity. The model is validated for
a spherical cavity inside a homogeneous fullspace, for which analytical expressions for the NN
are available. It is concluded that the NN reduces with increasing cavity radius r0, except at
low frequencies, where the wavelength in the soil is much larger than the cavity. We also show
that the influence of wave scattering by the cavity can be important for wavelengths between
1.5r0 and 4r0, resulting in lower NN for the considered soil characteristics.
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