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Summary. This study presents an approach for hyperparameter optimization in the Causal-
Marching Physics-Informed Neural Networks (CMPINNSs) framework, specifically designed to
model hyperelasticity. Physics-Informed Neural Networks (PINNs) are powerful tools for solv-
ing governing partial differential equations (PDEs) in physical systems. The CMPINNs model
proposed in this work enhances the PINN framework by minimizing the residuals of the gov-
erning PDEs while enforcing the boundary conditions for the nonlinear mechanical responses
of hyperelasticity. We study the accuracy of using CMPINNs to solve the Neo-Hookean hy-
perelastic model using soft and hard constrained boundary conditions. Additionally, the study
presented a hyperparameter optimization for CMPINNSs to identify the best suitable set of hy-
perparameters for deformation like biaxial compression. This optimization process ensures that
the CMPINN effectively captures the complex stress-strain relationships in hyperelastic mate-
rials under deformation. This research advances the development of robust, physics-informed
computational models for hyperelastic materials, reducing reliance on labelled or synthetic data.

1 Introduction

Traumatic brain injury (TBI) is a significant global health and economic issue, often caused
by external forces from falls, assaults, and road accidents, with contact sports being a leading
cause among youth [I]. In 2019, there were 27.16 million new TBI cases globally, a significant
rise from 18.85 million in 1990. An estimated 64 to 74 million people worldwide suffer from
TBI. Europe reports 235 to 262 cases per 100,000 people yearly, including 19,000 in Ireland [1].

The Sport Concussion Assessment Tool 5th Edition is widely used for evaluating sports-
related concussions in individuals over 13 years old. Due to the high incidence of TBI, various
computational models have been developed to estimate the brain’s mechanical response to dif-
ferent loads, relying heavily on hyperelastic material models [2]. Hyperelastic materials are
modelled using the first Piola-Kirchhoff stress tensor (P) derived from strain-energy density
functions [3]. Brain tissue, modelled as an incompressible hyperelastic solid under quasi-static
loading, utilises finite deformation theory, which is nonlinear and increases computational de-
mands.
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Partial differential equations are among the complex challenges in scientific computing, ad-
dressed through the Finite Difference Method and spectral methods. These techniques rely on
polynomials and basic functions set on a finite grid but struggle with the Curse of Dimensional-
ity. Mesh-based methods can introduce discretisation errors due to insufficient grid resolution.
Recent advancements in artificial intelligence have introduced Deep Learning techniques for
modelling partial differential equations [4]. While Neural Networks have been known since the
1990s for their flexibility in solving PDEs, Deep Neural Networks (DNNs) have become par-
ticularly popular for predicting solutions to physics-based problems. However, DNNs require
extensive training datasets and involve challenging hyperparameter optimization. To overcome
these limitations, Physics-Informed Neural Networks (PINNs) have been developed as special-
ized DNNs. PINNs embed the underlying physics along with initial and boundary conditions
directly into the loss function, using automatic differentiation to compute partial derivatives to
space and time, thus offering a mesh-free solution to the curse of dimensionality [5].

PINNSs use irregularly sampled points instead of a grid for spatiotemporal stepping and employ
the nonlinear representation of neural networks (NNs) to approximate PDE solutions, unlike the
linear piecewise polynomials in traditional methods [6]. PINNs focus on optimizing NN weights
and biases rather than grid point values, incorporating the PDE into the loss function rather
than as an algebraic matrix system. This allows PINNs to use gradient optimizers as error
minimizers. One advantage of PINNs is that they do not require precomputed solutions for
training; instead, they use collocation points as the training set. However, training PINNs can
be difficult for multiphysics problems requiring significant experimentation to identify the apt
model for the given problem.

This work introduces a causal-marching physics-based machine learning model designed to
capture the nonlinear response of the Neo-Hookean hyperelastic model. It aims to simulate
brain tissue response under deformation modelled using the Neo-Hookean hyperelastic model
undergoing sequential training. The model retains previous loss minimizations and focuses
on sequentially updated loading steps using a self-adaptive loss coefficient. The generalized
model can capture hyperelastic material responses under various loading cases. This research
compares the soft and hard constraints for implementing BCs in a homogeneous domain. The
article is structured as follows: Section 2 provides a brief overview of homogeneous deformation,
hyperelastic materials and governing equations; Section 3 details the different BC constraints
implemented using CMPINNSs; Section 4 presents stress response and loss minimisation results;
and Section 5 concludes the findings.

2 Theoretical Background

This research aims to predict the deformation of Neo-Hookeran hyperelastic material under
biaxial compression conditions using a machine-learning model without labelled data. It also
demonstrate the performance comparison of CMPINNs with soft and hard constrained BCs. This
section explores the theoretical background of biaxial compression alongside the Neo-Hookean
hyperelastic material model.

2.1 Homogeneous Deformation

Homogeneous deformation occurs when the straight filaments of a material stay straight
even after undergoing deformation. The function x maps the body in reference (X) and current
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configuration (x) as x = x(X,t). The deformation gradient F is a second-order tensor, that
maps the gradient of the motion field x(X,t). The right (C) and the left (B) Cauchy Green
deformation tensors are represented as C = FTF and B = FFT respectively. The invariants of
C are crucial for maintaining objectivity and determining volumetric changes, where det(F) = 1
indicates incompressibility. We have considered a biaxial compression test case for our study
as it exhibits higher non-linearity with increasing order of the hyperelastic model. The biaxial
compression is characterised as,

1
a2
This deformation arises when a body is compressed along two mutually perpendicular axes. This
results in a reduction in length in the direction of applied compression as shown in Fig.
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Figure 1: Boundary and applied loading conditions, along with the deformed configuration under
biaxial compression.

2.2 Hyperelastic Material Models

Hyperelastic models describe materials undergoing large elastic deformations, typically ap-
plied to elastomers, rubbers, and soft tissues [7]. The strain energy function quantifies the energy
stored based on the deformation, relating stress to strain. The strain energy density function
for an incompressible polynomial model, known as the Rivlin model [§], is expressed as:

N
W= Cy(I—3) (I, 3). (2)
1,7=0

Here, Cj; in (2) parameterises the material properties and is obtained through experimental
studies.

The Neo-Hookean hyperelastic material model is a simplified isotropic model depending,
on the first invariant of the right Cauchy-Green deformation tensor (C). The neo-Hookean
model uses the shear modulus (x) to define the strain energy function. When N = 1 and
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Co1 = C11 = 0 in the Rivlin model, the expression simplifies to represent the Neo-Hookean
model for incompressible material as:

W = Cio (11 —3), szg- (3)

2.3 Governing Equations

The mechanical response of a body to external forces is governed by partial differential equa-
tions representing equilibrium, boundary conditions, and constitutive relations. In this work,
CMPINNSs are used to solve these governing equations for hyperelastic deformations, optimis-
ing neural network parameters through non-dimensionalization to ensure uniformity among loss
terms. This approach leverages the governing physics to predict material behaviour without
relying on labelled data.

The governing differential equations and boundary conditions for a mechanical body under-
going quasi-static deformation from a stress-free reference configuration are as follows:

Vx-P+fg = 0, Xeq, (4)
u = w, XeT, (5)
P-N = f,, XeIly, (6)

where P denotes the first Piola-Kirchhoff stress tensor, fp represents the body force, and Vx
is the gradient operator. The outward normal unit vector in the reference configuration is given
by N. The terms f; and u; correspond to the traction and displacement boundary conditions,
respectively. € refers to the material domain, while I';, and I'y are the surfaces where displace-
ment and traction boundary conditions are applied. The constitutive relation for a material
undergoing hyperelastic deformation is expressed as follows:

_ OW(F)
~ OF (7)

P

3 Numerical Methods

We have developed a causal-marching physics-informed neural network for boundary value
problems associated with the hyperelastic material model. The common input layer consists
of four neurons, representing 3D geometrical coordinates and the applied load (deformation in
this context). In contrast, the output layer comprises three neurons, tasked with predicting the
three displacement components at any given spatial coordinate for each material domain. The
tanh activation function is employed to capture the nonlinear response of the deformation, as
the ReLU activation function struggles with the stiff nonlinearity in the biaxial compression.
The predicted displacement is used to compute the predicted deformation gradient as F =
I + Grad(a1). The F is used to calculate the predicted first Piola-Kirchoff stress tensor (P),
which is a function of the deformation gradient as stated in (7). Additionally, the residuals of
Vx-P, serving as the governing equation, are obtained and termed as Lp. The errors associated
with enforcing the displacement and traction boundary conditions are referred to as Ly and Lr,
respectively, as illustrated in Figs. [2|- . The error between the predicted F and the actual F
is minimised to enforce the incompressibility condition using Lp.

The process involves summing up all loss terms and minimizing them sequentially using both
Adam and L-BFGS (limited Broyden Fletcher Goldfarb Shanno) optimizers to fine-tune the
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network’s hyperparameters. Training continues iteratively until the model is fully optimized for
the given loading condition. This CMPINNs framework is implemented in TensorFlow through
the deep neural network, and the network parameters are optimised using Adam and L-BFGS
optimisers [9, [10]. Adam, a first-order optimizer, quickly converges with adaptive learning rates,
while L-BFGS, a second-order optimizer, refines the model by approximating the Hessian matrix
of the objective function.

3.1 Soft Boundary Enforcement in CMPINNSs:

Soft boundary enforcement integrates boundary conditions into the model by adding them
as penalty terms within the loss function rather than enforcing them exactly through the neural
network’s architecture or output transformation. This approach allows the network to prioritize
fitting the physics-based constraints while still allowing some flexibility in how strictly these
conditions are met. The boundary conditions are satisfied depending on the relative weighting
of the penalty terms in the overall loss function.

Consider the governing equations for a body undergoing hyperelastic deformation defined in
—@ over the domain ). The residual of at any step of the training is given by,

Ne 1 1 M,
ED:ZEDZ, D; = MZ

i—1 j=1

2

Vx - P; (8)

i

Here )\ZD is the trainable penalty coefficient with ¢ ranging from 1 to N, = 3, corresponding to
three components of Vx - P. D, denotes the residuals of x, y and z components of the governing
equation, with M; internal collocation points. The total displacement boundary loss incurred in
satisfying the displacement boundary condition at ‘N’ faces of the deformed body at any steps
of training is given by,
Ny 1 1 My
E— . . —_— —_— i PRp— . 2
EU—ZAT]UZ, U; = Md;m] u;|”| . (9)
= i

=1 "1

)\ZU denotes the penalty coefficient for the loss term in satisfying displacement boundary condition
at i*® face of a body having N + = 6 faces for a cubical domain. U; represents the average loss
in satisfying displacement boundary condition for all the My points of "' face. The total loss
incurred in satisfying the traction boundary condition is given as,

P, —P‘Q . (10)

7

where )\;TF represents the penalty coefficient of the loss term in satisfying the traction boundary
condition at i*" boundary face where traction is prescribed and T} yields an average loss in
satisfying traction boundary conditions at M; points of i*® boundary faces. N; represents the
number of faces where the traction is specified. The loss term penalizing the losses in satisfying
the gradient of deformation (F) at Ny faces besides the internal domain of the body at any steps



Vikrant Pratap, Michael D. Gilchrist and Bharat B. Tripathi

of the training is given as,

L 1 1 & 2 1 U
EF—Z)\FF ity Fa Fi= 5o |F - Fd:ﬁZ)FJ_FJ (11)
Ny+1 5 j=1 ; f j=1
where, \[', where i =1, ... Ng, and )\fvf 41 are the penalty coefficients for the loss in satisfying

the gradient of deformation at i*" surface of the body (F;) and inside the domain (Fg), respec-
tively. M represents all the points inside the domain, while M denotes the number of points
on the surface of the body, where the loss in satisfying the gradient of the deformation field is
penalized.

In soft boundary enforcement, the neural network’s output 4(x) is not inherently designed to
satisfy the given boundary conditions. Instead, the boundary conditions are included as part of
the loss function used to train the network. The total loss for the body undergoing hyperelastic
deformation is given by

L=Lp+Lyu+Lr+LF (12)

The schematic of causal-marching physics-informed neural networks incorporating hyperelastic-
ity using soft constrained boundary conditions is illustrated in Fig. [2
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Figure 2: Detailed schematic of causal-marching physics-informed Neural Networks (CMPINNSs)
incorporating hyperelasticity using soft constrained BCs.

3.2 Hard Boundary Enforcement in CMPINNSs:

Hard boundary enforcement ensures that the boundary conditions of a partial differential
equation are strictly satisfied throughout the training process. This method integrates the
boundary conditions directly into the architecture of the neural network or manipulates the
output to inherently satisfy the boundary conditions by construction [11]. The output u(x) of
the causal-marching physics-informed neural networks incorporating hyperelasticity using hard
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constrained boundary conditions as illustrated in Fig.

u(x) = n(x) + ¢(x) - 4(x) (13)

where 7(x) is a particular solution that satisfies the boundary conditions by itself; ¢(x) is a
smooth function that is zero on the boundary 9€2; 4(x) is the output of the neural network that
is unconstrained by the boundary conditions. This construction ensures that u(x) = u, on 012,
satisfying the boundary condition exactly by the design of ¢(x) and n(x). The total loss for the
hard constrained BCs for the body undergoing hyperelastic deformation is given by

L=Lp+Lr+LF (14)
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Figure 3: Detailed schematic of causal-marching physics-informed Neural Networks (CMPINNSs)
incorporating hyperelasticity using hard constrained BCs.

4 Results

A homogeneous, isotropic, incompressible unit cube with a Poisson’s ratio, v = 0.499, ma-
terial density, p = 1000 kg/m?® and shear modulus, x4 = 1401 Pa is considered to represent
tissue-mimicking soft solids. The unit cube is subjected to biaxial compression loading to anal-
yse the non-linear stress response of the material. The stress response is studied under hard and
soft boundary constraints for the Neo-Hookean hyperelastic model. The hyperparameter tuning
is also carried out to find out the best suitable parameters for both models.

4.1 Biaxial compression for Neo-Hookean model: soft and hard constrained BCs

The performance of CMPINNs for the Neo-Hookean hyperelastic model undergoing biaxial
compression was analysed for soft and hard constrained BCs in Figs. [ and [5] Fig. [a] and
compare CMPINN’s performance to the analytical solution for the Neo-Hookean hyperelastic
model with soft and hard constrained BCs respectively. The best set of hyperparameters for
the soft and hard constrained BCs are mentioned in Table [2] demonstrating CMPINN’s ability
to capture the material’s response despite nonlinearity. Additionally, Fig. shows that with
soft constrained boundary conditions, the Neo-Hookean model’s relative error remains below
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0.5% under higher compression above A = 0.6. In contrast, Fig. shows that with hard
constrained boundary conditions, the relative error shoots above 1% under higher compression
above A = 0.6. Figs. and [b¢| illustrate the Neo-Hookean model’s overall loss and its loss
components in both cases. The overall loss and loss components converge to the order 107°.
The sudden spike in losses is observed when the optimiser switches from Adam to L-BFGS.
The root mean square error (RMSE) for soft and hard constrained BCs Neo-Hookean model
are 0.12% and 0.39% respectively. The hard constrained model poses a higher relative error as
compared to the soft constrained model.
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Figure 4: Comparison of CMPINN with soft constraints BC and analytical (AN) solution for
the Neo-Hookean (NH) model undergoing biaxial compression: (a) Stress response, (b) Relative
Error, (c) Total training Losses (£) with Divergence Losses (Lp), Displacement Boundary Con-
dition Losses (L), Traction Boundary Condition Losses (L7) and Deformation Losses (Lf).
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Figure 5: Comparison of CMPINN with hard constraints BC and analytical (AN) solution for
the Neo-Hookean (NH) model undergoing biaxial compression: (a) Stress response, (b) Relative

Error, (c) Total training Losses (£) with Divergence Losses (Lp), Traction Boundary Condition
Losses (Lr) and Deformation Losses (Lf).
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4.2 Hyperparameter tuning for hard and soft constrained BCs

Neurons: 25
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Neurons:

75

Neurons:

Figure 6: Hyperparameter Investigation for soft constrained BCs:
Adam and L-BFGS optimizer epochs on a neural network configuration featuring (a) 4 hidden
layers x 25 neurons, (b) 6 hidden layers x 25 neurons, (c¢) 8 hidden layers x 25 neurons, (d) 4
hidden layers x 50 neurons, (e) 6 hidden layers x 50 neurons, (f) 8 hidden layers x 50 neurons,
(g) 4 hidden layers x 75 neurons, (h) 6 hidden layers x 75 neurons, (i) 8 hidden layers x 75

Table 1: Search space for hyperparameter tuning

Parameter

Search space

Number of hidden layers
Number of neurons for each layer
Adam optimiser learning rate

Adam training epochs
L-BFGS training epochs

{4,6, 8}

{25, 50, 75}
{0.0001}
{100, 200, 300, 400}
{200, 400, 600, 800}
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neurons with tanh activation function, and an Adam learning rate set at 1x107%,

Assessing the influence of
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Figure 7: Hyperparameter Investigation for hard constrained BCs: Assessing the influence of
Adam and L-BFGS optimizer epochs on a neural network configuration featuring (a) 4 hidden
layers x 25 neurons, (b) 6 hidden layers x 25 neurons, (c) 8 hidden layers x 25 neurons, (d) 4
hidden layers x 50 neurons, (e) 6 hidden layers x 50 neurons, (f) 8 hidden layers x 50 neurons,
(g) 4 hidden layers x 75 neurons, (h) 6 hidden layers x 75 neurons, (i) 8 hidden layers x 75
neurons with tanh activation function, and an Adam learning rate set at 1x107%.

Grid search is a systematic hyperparameter optimization technique used to exhaustively
explore a specified parameter space for a machine learning model [12]. In this approach, a
multidimensional grid is constructed where each dimension represents a different hyperparam-
eter, such as learning rate, number of layers, number of neurons for each layer and training
epochs. Each point in this grid corresponds to a unique combination of hyperparameter values.
The model is trained and evaluated on each combination to obtain a robust estimate of model
performance. The objective is to identify the hyperparameter configuration that minimises the
RMSE for the predicted spatial and loading points. While grid search thoroughly explores the
specified hyperparameter space, it is computationally expensive due to the exponential growth
of combinations with each additional hyperparameter and value range considered. The search
space for hyperparameter tuning for CMPINNs Neo-Hookean hyperelastic model with soft and

10
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hard BCs constraints are summarised in Table [l

The Figures[f]- [7]illustrate the results of hyperparameter tuning across various configurations
for soft and hard constrained CMPINNSs for the Neo-Hookean hyperelastic model, ranging from
shallow to deeper neural networks with different hyperparameter configurations. The configura-
tions explore different numbers of layers, neurons per layer, optimizers, Adam training epochs
and L-BFGS training epochs. Shallow networks even with higher Adam and L-BFGS training
epochs often fail to minimise the losses effectively, resulting in higher RMSE in both soft and
hard constrained BCs as shown in first row of Figs. [6]- [7] This is likely due to the insufficient
capacity to learn non-linearity. In contrast, deeper networks with more layers and neurons per-
form significantly better in both soft and hard constrained BCs as shown in third row of Figs.
-

Notably, the configuration with 6 hidden layers, 50 neurons per hidden layer, tanh activation
function with an Adam learning rate of 1 x 1074, and 200 training epochs using the Adam
optimizer, as well as 400 epochs using the LBFGS optimizer, achieved the best balance between
performance and computational cost as shown in Fig. for the soft constrained BCs with the
parameters summarised in Table [2. The configuration with 4 layers, 75 neurons per layer, tanh
activation function with an Adam learning rate of 1 x 10™%, and 400 training epochs using the
Adam optimizer, as well as 400 epochs using the LBFGS optimizer achieved the lowest RMSE
for hard constrained BCs as shown in Fig. and the hyperparameters are summarised in Table

2l

Table 2: Best found hyperparameters for soft and hard constrained BCs

Parameter Soft constrained Hard Constrained
Number of hidden layers 6 4
Number of neurons for each layer 50 75
Adam optimiser learning rate 0.0001 0.0001
Adam training epochs 200 400
L-BFGS training epochs 400 400

5 Conclusions

In this work, we focused on developing and applying boundary conditions for a causal-
marching physics-informed neural network for the Neo-Hookean hyperelastic model. Our in-
vestigation assessed the performance of CMPINNs in handling boundary conditions through
both soft and hard enforcement approaches. The findings reveal that utilising soft constraints for
boundary conditions enables accurate modelling of the non-linear behaviour of the Neo-Hookean
hyperelastic model. Additionally, we investigated the optimal combination of hyperparameters
for CMPINNs when implementing soft and hard constrained boundary conditions. In soft con-
strained BCs, the network has more flexibility during training because the BCs are not rigidly
enforced from the start. The network is free to explore a larger solution space and gradually
learns to satisfy the governing equations along with the boundary conditions. In contrast, hard
constrained BCs restrict the solution space, ensuring that the boundary conditions are exactly
and strictly satisfied throughout the entire training process. The hard constrained BCs guar-
antee physical consistency and may lead to more robust solutions, especially in scenarios where
strict adherence to the boundary conditions is critical. Although soft constrained boundary

11
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conditions performed better in this particular test case, hard constrained boundary conditions
are theoretically superior and more robust.
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