
16th World Congress in Computational Mechanics (WCCM)
21-26 July 2024, Vancouver, Canada

A. Korobenko, M. Laforest, S. Prudhomme, R. Vaziri (Eds)

A NONOVERLAPPING DOMAIN DECOMPOSITION METHOD FOR
EXTREME LEARNING MACHINES SOLVING ELLIPTIC PARTIAL

DIFFERENTIAL EQUATIONS

CHANG-OCK LEE1∗, YOUNGKYU LEE2 AND BYUNGEUN RYOO1

1 Department of Mathematical Sciences, KAIST
Daejeon 34141, Korea

*colee@kaist.edu

2 Division of Applied Mathematics, Brown University
Providence, RI 02912, USA

Key words: Extreme learning machine, Nonoverlapping domain decomposition method, Ellip-
tic problem, Parallel computation, Weight initialization.

Abstract. Extreme learning machine (ELM) is a methodology for solving partial differen-
tial equations (PDEs) using a single hidden layer feed-forward neural network. It presets the
weight/bias coefficients in the hidden layer with random values, which remain fixed throughout
the computation, and uses a linear least squares method for training the parameters of the out-
put layer of the neural network. It is known to be much faster than Physics Informed Neural
Networks. However, classical ELM is still computationally expensive when a high level of rep-
resentation is desired in the solution as this requires solving a large least squares system. In
this paper, we propose a nonoverlapping domain decomposition method (DDM) for ELMs that
not only reduces the training time of ELMs, but is also suitable for parallel computation. In
numerical analysis, DDMs have been widely studied to reduce the time to obtain finite element
solutions for elliptic PDEs through parallel computation. Among these approaches, nonover-
lapping DDMs are attracting the most attention. Motivated by these methods, we introduce
local neural networks, which are valid only at corresponding subdomains, and an auxiliary
variable at the interface. We construct a system on the variable and the parameters of local
neural networks. A Schur complement system on the interface can be derived by eliminating
the parameters of the output layer. The auxiliary variable is then directly obtained by solving
the reduced system after which the parameters for each local neural network are solved in par-
allel. An initialization method suitable for high approximation quality in large systems is also
proposed. Numerical results that verify the acceleration performance of the proposed method
with respect to the number of subdomains are presented.

Chang-Ock Lee, Youngkyu Lee and Byungeun Ryoo

Ω

∂Ω

Γ
Ω1 Ω2

∂Ω1 ∂Ω2

n2

n1

Figure 1: The domain Ω is decomposed into two nonoverlapping subdomains Ω1 and Ω2 with the
interface Γ. Note that n1 and n2 are the outward normal vectors of Ω1 and Ω2, respectively, on Γ.

1 INTRODUCTION

Since neural networks can approximate any continuous function according to the Universal
Approximation Theorem [1, 18], research on applying them to solve partial differential equa-
tions (PDEs) is attracting attention. The most popular method is Physics Informed Neural Net-
works (PINNs) [17]. A different method, so called extreme learning machines (ELMs) [6, 10, 11]
solve the collocation system for the parameters of the output layer by a least squares compu-
tation, not by back-propagation of gradients. In this method, the weight/bias coefficients in
all the hidden layers of the neural network are preset to random values and fixed throughout
computation.

The domain decomposition method (DDM) is a fast solver for PDEs that is suitable for
parallel computing of large-scale problems and has been successfully developed for elliptic
PDEs [4, 19]. There are two types of DDMs: overlapping and nonoverlapping methods. In the
latter, the domain is divided into nonoverlapping subdomains with interfaces. See Figure 1 for a
graphical description. Typical nonoverlapping methods are the substructuring methods [2, 7].

Recently, domain decomposition approaches for ELM have been proposed, so called Local
ELM (LocELM) [5] and Distributed Physics Informed ELM (DPIELM) [6]. In these methods,
Ck continuity conditions are imposed on the subdomain interfaces and the solution on each
subdomain is produced by a local feed-forward neural network. However, the parameters of the
output layer are not optimized in parallel for each subdomain.

Motivated by substructuring methods of the nonoverlapping DDM, we propose a new nonover-
lapping DDM for ELM. In the proposed method, a local neural network is introduced for each
subdomain, which is valid only in the subdomain, along with auxiliary variable uΓ, which
represents the interface values of the solution. We construct a system for uΓ and the parameters
of the output layers of local neural networks. A Schur complement system is obtained by elimi-
nating the parameters of the local neural networks. After solving the reduced system for uΓ, the
parameters of the local networks are solved in the least squares sense via parallel computation.

It is known that the performance of ELMs depends greatly on the distribution used to sample
the hidden layer parameters [5]. A trial and error process to determine a suitable distribution
would be expensive for large scale problems. To address this issue, we propose an initialization
scheme for one hidden layer networks that scales well with the number of neurons.

2

Chang-Ock Lee, Youngkyu Lee and Byungeun Ryoo

2 PRELIMINARIES

We consider a general PDE with boundary conditions:{
Lu = f in Ω,

Bu = g on ∂Ω,
(2.1)

where Ω ⊂ Rd is a bounded domain, ∂Ω denotes the boundary of Ω, f, g are functions, L
is a differential operator defined for a function u, and B represents boundary conditions, e.g.
Bu = u = g gives Dirichlet boundary conditions. We assume that the problem (2.1) is well-posed
so that the solution exists uniquely.

2.1 Nonoverlapping domain decomposition methods

DDM is a fast numerical solver for PDEs that can be implemented efficiently in parallel. This
paper focuses on nonoverlapping DDM. Assume that the differential operator L is a second-order
differential operator and that the domain Ω is divided into two nonoverlapping subdomains Ω1

and Ω2. Then, under suitable assumptions on f and boundaries of the subdomains, the solution
of (2.1) is the same as the solution of the following system:

Lu1 = f in Ω1,

u1 = g on ∂Ω1\Γ,
Lu2 = f in Ω2,

u2 = g on ∂Ω2\Γ,
u1 = u2 on Γ,

∂u1

∂n1

= −∂u2

∂n2

on Γ,

(2.2)

where Γ denotes the interface between Ω1 and Ω2. In addition, n1 and n2 are the outward normal
to Ω1 and Ω2, respectively.

In substructuring methods, the interior unknowns are eliminated to obtain a Schur complement
system defined on the interface. The interface unknowns are found by solving the reduced system
using an iterative method. After finding the interface unknowns, the interior unknowns are found
through parallel computation.

2.2 Universal approximation theorem for extreme learning machines

ELM was developed for single hidden layer feed-forward neural networks [10, 11]. It presets
the weight/bias coefficients in all the hidden layers of the network with random values, which
remain fixed throughout the computation, and uses a linear least squares method for training
the weight coefficients in the output layer of the neural network. ELM is one example of
the so-called randomized neural networks (see e.g. [12, 15]). The applications of ELM to
function approximations and linear differential equations have been considered in several recent
works [6, 13, 14] based on the following Universal Approximation Theorem.

3

Chang-Ock Lee, Youngkyu Lee and Byungeun Ryoo

Theorem 2.1 ([9, 12]). Given any bounded non-constant piecewise continuous function g : R →
R, for any continuous target function f , there exists a sequence of single-hidden-layer feed-
forward neural networks with g as the activation function, with its hidden layer coefficients
randomly generated, and with its output layer coefficients appropriately chosen, such that
limn→∞ ∥f − fn∥ = 0, where n is the number of hidden-layer nodes and fn is the output of the
neural network.

3 SCHUR COMPLEMENT SYSTEM FOR ELM

In this section, we present a new nonoverlapping DDM inspired by Schur complement systems
in classical DDMs.

Let n be the number of neurons in the last layer, N be the number of subdomains, and the
domain Ω be decomposed into nonoverlapping subdomains {Ωs}. For each subdomain Ωs, we
define a local neural network to produce us(x) as

us(x) =

nN∑
j=1

csjϕ
s
j(x), ∀x ∈ Ωs,

where nN := n/N , ϕs
j(x) is the j-th hidden layer output at x, and θs is the parameter for {ϕs

j}.
For simplicity, we assume N = 2 and L is a second-order differential operator. Then the

solution of (2.1) is the same as the solution of (2.2).
Let {xs

i ,x
s
Γ,x

s
b} be the interior, interface, and boundary points, respectively, where xs

i ∈
Rms

i×d,xs
Γ ∈ Rms

Γ×d, and xs
b ∈ Rms

b×d. Note that ms
i ,m

s
Γ, and ms

b denote the number of interior,
interface, and boundary points, respectively. We introduce an auxiliary variable uΓ satisfying

u1 = u2 = uΓ on Γ.

Then, we discretize (2.2) as follows:K1 0 B1

0 K2 B2

A1 A2 0

c1

c2

uΓ

 =

F 1

F 2

0

 , (3.1)

where

Ks =

Lϕs
1(x

s
i) · · · Lϕs

nN
(xs

i)
ϕs
1(x

s
b) · · · ϕs

nN
(xs

b)
ϕs
1(x

s
Γ) · · · ϕs

nN
(xs

Γ)

 , As =
[
∂ϕs

1

∂ns
(xs

Γ) · · · ∂ϕs
nN

∂ns
(xs

Γ)
]
,

cs =

 cs1
...

csnN

 , Bs =

 0
0
−I

 , F s =

f(xs
i)

g(xs
b)

0

 , for s = 1, 2.

Remark 3.1. When there are more than two subdomains,
∂ϕs

j

∂ns
(xs

Γ,j) can become ambiguous when
xs
Γ,j is a common corner point of the subdomains. In this case, we add a row to As for each edge

to which xs
Γ,j belongs, where ns is the normal direction to that edge.

4

Chang-Ock Lee, Youngkyu Lee and Byungeun Ryoo

Writing

K =

[
K1 0
0 K2

]
, A =

[
A1 A2

]
, B =

[
B1

B2

]
, F =

[
F 1

F 2

]
, and c =

[
c1

c2

]
,

we multiply [
I 0

−AK+ I

]
(K+ = (KTK)−1KT)

to (3.1), to obtain [
K B
0 −AK+B

] [
c
uΓ

]
=

[
F

−AK+F

]
. (3.2)

Instead of solving the least squares system of (3.1), we solve the least squares system of (3.2).
That is, (c, uΓ) is the solution of{

KTKc+KTBuΓ = KTF,

BTKc+BT (I +K+TATAK+)BuΓ = BT (I +K+TATAK+)F.
(3.3)

By eliminating c from (3.3), we obtain the Schur complement system

BT (I +K+TATAK+ −KK+)BuΓ = BT (I +K+TATAK+ −KK+)F. (3.4)

Since the system (3.4) is SPD, we use the conjugate gradient method (CGM) [8] to solve the
system. After finding uΓ, in each subdomain Ωs, we optimize the parameters of the output layer
of each local neural network by solving KsTKscs = KsT (F s − BsuΓ). The whole process is
described in Algorithm 1.

Algorithm 1: Nonoverlapping DDM for ELM
Set θs randomly.
for s = 1, · · · , N in parallel do

Construct Ks, As, Bs, and F s

Solve BT (I +K+TATAK+ −KK+)BuΓ = BT (I +K+TATAK+ −KK+)F
for s = 1, · · · , N in parallel do

Solve KsTKscs = KsT (F s −BsuΓ)

4 NUMERICAL EXPERIMENTS

We present numerical results of the proposed nonoverlapping DDM for ELM. Experiments
on various PDEs are conducted to demonstrate the performance of the proposed method.

A 1-hidden layer network with n = 216 = 65,536 neurons with tanh activation is used. The
number of neurons in each local neural network is n/N where N is the number of subdomains.

5

Chang-Ock Lee, Youngkyu Lee and Byungeun Ryoo

The total number of training points is m = (28 + 1)2 = 66,049, which are distributed to each
subdomain. CGM is used to solve the reduced system for uΓ, stopping when the relative residual
is smaller than 10−9.

All algorithms are implemented using Pytorch [16] with mpi4py [3]. Except for the 16× 16
case, all experiments were conducted on a single node equipped with two Intel Xeon Gold 6448H
(2.4GHz 32c) processors, 256GB RAM, and each process was allocated 64/N cores. For the
case of 16×16, two nodes with two Intel Xeon Gold 6448H and three nodes with two Intel Xeon
Gold 6348 (2.6GHz 28c) with 256GB RAM each were used, and each process was allocated
one core. The cluster is connected by a 100Gbps Infiniband network and runs on the CentOS 7
operating system.

4.1 Initialization of parameters of the hidden layers

In Algorithm 1, we solve the system (3.4) using CGM which requires matrix-vector multipli-
cations involving BT (I +K+TATAK+ −KK+)B. When a 1-hidden layer network is applied
to the local neural network, the output of the j-th neuron for a given x can be described as

ϕs
j(x) = σ

(
ws

j · x+ bsj
)

where ws
j ∈ Rd and bsj ∈ R.

To satisfy the basic concept of ELMs, the initialization of {ws
j} and {bsj} must meet two

conditions. First, the span of {ϕs
j}

nN
j=1 should cover the solution space on each subdomain.

Second, {ϕs
j}

nN
j=1 should be sufficiently independent. A certain way to achieve the first condition

would be that for given w ∈ Rd, b ∈ R and ϵ > 0, the probability that there is some ϕs
j for which∥∥w − ws

j

∥∥ < ϵ and |b − bsj| < ϵ tends to 1 as the number of neurons increases. However, in
such a situation, many neuron outputs become redundant, violating the second condition. As a
compromise, we require that the probability merely be a number close to 1 for some fixed ϵ.

Let B̄r(Ωs) = {ξ | dist(ξ,Ωs) ≤ r(nN)}. Suppose that for some functions l, r : N → R+ we
choose ws

j and bsj in the following way:

ws
j ∼ U([−l(nN), l(nN)]

d),

bsj = −ws
j · ξsj for ξsj ∼ U(B̄r(nN)(Ωs)),

where U denotes the uniform distribution.
Since the bias bsj determines the geometric position of ϕs

j , we assume that r is fixed. Then,
the given initialization satisfies the conditions laid out above, if and only if l = O(n

1/d
N). To

determine the proportionality constant, we first scale the subdomain Ωs to the unit square.
Combining nN = n/N with the fact that scaling performs a N1/d multiple, the initialization for
2D problems is given by

ws
j ∼ U([−l, l]2) for l = c

√
n,

bsj = −ws
j · ξsj for ξsj ∼ U(B̄r(Ωs)).

(4.1)

The values of c and r are obtained empirically: we used c = 1/8 for the Poisson equation and
c = 1/16 for the plate bending problem, respectively; we set r = diam(Ωs)/2 for both problems.

6

Chang-Ock Lee, Youngkyu Lee and Byungeun Ryoo

Table 1: Relative L2 and H1 errors of the solutions of 2-D Poisson equation with the exact
solution u(x, y) = sin(2πx)ey. N denotes the number of subdomains and the solutions of the
case of N = 1× 1 is the ELM solution. For N > 1, the solutions are computed by Algorithm 1.

N L2 rel. error H1 rel. error Wall-clock time (sec)

1× 1 8.1550e-11 1.6095e-09 8617.13

2× 2 1.0748e-10 1.0590e-09 315.83
4× 4 1.6192e-08 3.2441e-08 19.46
8× 8 2.6392e-08 8.1948e-08 3.48
16× 16 1.0212e-07 1.5199e-07 10.43

Note that although r and c must be determined empirically, this can be done on a small scale
problem before application to large scale problems.

4.2 Application to PDEs

We now look at the performance of the proposed non-overlapping DDM for ELM. All reported
computation times for solving the model equations are averages of 10 runs. The finite element
method (FEM) solution on a 4096× 4096 grid is employed in cases where the exact solution is
unknown. Note that the solution space is discretized by conforming P1 elements. To solve the
system derived from FEM, we used CGM with stop condition 10−9 on the relative norm of the
residual.

4.2.1 2-D Poisson equation

We first consider the following 2-D Poisson problem:{
−∆u = f in Ω = (0, 1)2,

u = g on ∂Ω
(4.2)

with the exact solution u(x, y) = sin(2πx)ey. Table 1 shows the relative L2 and H1 errors of the
proposed DDM solution. Note that the result of N = 1× 1 denotes the ELM solution trained on
the whole domain Ω. The relative errors of the solutions generated by Algorithm 1 are slightly
larger than those of the ELM solution, but the wall-clock time is significantly smaller.

In addition, we test a more oscillatory case where g ≡ 0 and

f(x) =
256∑
i=1

ai sin(wi · x+ bi),

ai ∼ N (0, α4/256), wi ∼ N (0, α2I), bi ∼ U((0, 2π)).

(4.3)

In this formulation, f approximates a Gaussian random field of varying oscillation depending on
α. In this case, since the exact solution is unknown, the FEM solution is used as a reference. A

7

Chang-Ock Lee, Youngkyu Lee and Byungeun Ryoo

(a) (b)

Figure 2: Graphical description of f(x, y) and corresponding FEM solution u(x, y) of 2-D
Poisson equation; u is computed via FEM on a 4,096 × 4,096 mesh. (a) f for α = 32 (b)
Solution u for α = 32

graphical depiction of the right hand sides and solutions for α = 32 is shown in Figure 2. The
results of Algorithm 1 are summarized in Table 2. Note that the wall-clock times decrease as
the number of subdomains increases until the 16× 16 case. At this point the interface problem
becomes large enough to overtake the cost of solving a least squares problem on a subdomain.

4.2.2 2-D Poisson equation with a variable coefficient

Next, we test the proposed DDM with an equation with variable coefficient{
−∇ · (ρ∇u) = f in Ω = (0, 1)2,

u = g on ∂Ω,
(4.4)

where ρ(x) = tanh(grf(x)) + 1.1, f ≡ 1, and g ≡ 0. Here, grf is an approximate Gaussian
random field defined in (4.3). We again test the cases α = 32. Note that ρ varies from 0.1 to
2.1. Since there is no closed form solution of (4.4), the FEM solution is used as the reference
solution. Figure 3 gives a graphical depiction of ρ and the reference solution u.

Table 3 shows the relative L2 and H1 errors. Best accuracy is achieved when N = 16× 16,
suggesting the proposed DDM is more effective in handling oscillatory problems.

4.2.3 Plate Bending

Finally, we test a plate bending problem, assuming the Kirchhoff-Love plate bending theory
for isotropic and homogeneous plates. For Young’s modulus E, plate thickness H , and Poisson’s

8

Chang-Ock Lee, Youngkyu Lee and Byungeun Ryoo

Table 2: Relative L2 and H1 errors of the solutions of 2-D Poisson equation in the more
oscillatory case when α = 32. The FEM solution on a 4,096 × 4,096 mesh is used as the
reference solution. N denotes the number of subdomains and the case of N = 1× 1 is the ELM
solution. For N > 1, the solutions are computed by Algorithm 1.

N L2 rel. error H1 rel. error Wall-clock time (sec)

1× 1 3.4758e-06 2.8890e-05 10992.84

2× 2 2.7517e-06 2.2974e-05 314.09
4× 4 2.4976e-06 1.9726e-05 19.54
8× 8 2.4946e-06 2.1812e-05 3.28
16× 16 2.2749e-06 1.9084e-05 8.11

(a) (b)

Figure 3: Graphical description of ρ(x, y) and corresponding FEM solution u(x, y) of 2-D
Poisson equation with variable coefficient; u is computed via FEM on a 4,096× 4,096 mesh. (a)
ρ for α = 32 (b) Solution u for α = 32

9

Chang-Ock Lee, Youngkyu Lee and Byungeun Ryoo

Table 3: Relative L2 and H1 errors of the solutions of 2-D Poisson equation with variable
coefficient when α = 32. The FEM solution on a 4,096× 4,096 mesh is used as the reference
solution. N denotes the number of subdomains and the case of N = 1× 1 is the ELM solution.
For N > 1, the solutions are computed by Algorithm 1.

N L2 rel. error H1 rel. error Wall-clock time (sec)

1× 1 7.6186e-03 3.3764e-02 11020.72

2× 2 7.4366e-03 5.7018e-02 315.94
4× 4 5.8671e-03 5.6910e-02 20.61
8× 8 4.6123e-03 2.2875e-02 4.56
16× 16 6.0091e-04 4.8583e-03 14.10

Table 4: Relative L2 and H1 errors of the solutions of a 2D plate bending problem. N denotes
the number of subdomains and the case of N = 1 × 1 is the ELM solution. For N > 1, the
solutions are computed by Algorithm 1.

N L2 rel. error H1 rel. error Wall-clock time (sec)

1× 1 8.7574e-09 1.2857e-07 11105.85

2× 2 1.1559e-08 1.6362e-07 322.29
4× 4 6.9948e-09 1.1603e-07 21.93
8× 8 3.6260e-08 7.3627e-07 3.74
16× 16 4.7774e-07 5.5870e-06 5.55

ratio ν, the flexural rigidity is given by D = EH3/12(1 − ν2). The equation for the simply
supported plate is given by

∆2u =
q

D
in Ω = (0, 1)2,

u = 0 on ∂Ω,

∆u = 0 on ∂Ω,

where q is the transversal load. The transmission conditions are continuity in u and ∆u and
their normal derivative across the interface. We solve the equation with q = sin(πx) sin(πy),
E = 107, H = 10−3, and ν = 0.3, and the exact solution is u = sin(πx) sin(πy)/4π4D. Table 4
presents the relative L2 and H1 errors of the results of Algorithm 1.

5 Conclusion

In this paper, we proposed a novel nonoverlapping domain decomposition method for ELM
that is suitable for distributed memory computing. Motivated by substructuring methods in
numerical analysis, a local neural network was defined in each nonoverlapping subdomain and

10

Chang-Ock Lee, Youngkyu Lee and Byungeun Ryoo

an auxiliary variable uΓ at the interface was introduced. The coefficients of the last layer of
local neural networks were eliminated using Schur complements, which gave a reduced system
for uΓ. After that, uΓ was obtained by solving the system, and the coefficients of the last layer
of local neural networks were obtained using the auxiliary variable uΓ in parallel. We also
presented an initialization technique when the local neural network is equipped with a shallow
neural network. Numerical experiments demonstrated the practical efficacy of the proposed
nonoverlapping method when large number of neurons are used. We expect that the proposed
nonoverlapping DDM can be efficiently utilized for training ELMs with a large number of
neurons through distributed parallel computation. As a future direction, it would be interesting
to achieve scalability by either introducing a coarse problem or developing a preconditioner.

REFERENCES

[1] Barron, A.R., “Universal approximation bounds for superpositions of a sigmoidal function",
IEEE Transactions on Information Theory, Vol. 39, 1993, pp. 930-945.

[2] Bramble, J.H. and Pasciak, J.E. and Schatz, A.H., “The Construction of Preconditioners for
Elliptic Problems by Substructuring. I", Mathematics of Computation, Vol. 47, 1986, pp.
103-134.

[3] Dalcin, L. and Fang, Y.L.L., “mpi4py: Status Update After 12 Years of Development",
Computing in Science & Engineering, Vol. 23, 2021, pp. 47-54.

[4] Dolean, V. and Jolivet, P. and Nataf, F., An introduction to domain decomposition methods:
algorithms, theory, and parallel implementation, SIAM, Philadelphia, 2015.

[5] Dong, S. and Li, Z., “Local extreme learning machines and domain decomposition for
solving linear and nonlinear partial differential equations", Computer Methods in Applied
Mechanics and Engineering, Vol. 387, 2021, pp. 114129.

[6] Dwivedi, V. and Srinivasan, B., “Physics informed extreme learning machine (PIELM)–a
rapid method for the numerical solution of partial differential equations", Neurocomputing,
Vol. 391, 2020, pp. 96-118.

[7] Farhat, C. and Roux, F.X., “A method of finite element tearing and interconnecting and its
parallel solution algorithm", International Journal for Numerical methods in Engineering,
Vol. 32, 1991, pp. 1205-1227.

[8] Hestenes, M.R. and Stiefel, E., “Methods of Conjugate Gradients for Solving Linear
Systems", Journal of Research of the National Bureau of Standards, Vol. 49, 1952, pp.
409-436.

[9] Huang, G.B. and Chen, L. and Siew, C.K., “Universal approximation using incremental
constructive feedforward networks with random hidden nodes", IEEE Transactions on
Neural Networks, Vol. 17, 2006, pp. 879-892.

11

Chang-Ock Lee, Youngkyu Lee and Byungeun Ryoo

[10] Huang, G.B. and Wang, D.H. and Lan, Y., “Extreme learning machines: a survey", Interna-
tional Journal of Machine Learning and Cybernetics, Vol. 2, 2011, pp. 107-122.

[11] Huang, G.B. and Zhu, Q.Y. and Siew, C.K., “Extreme learning machine: theory and
applications", Neurocomputing, Vol. 70, 2006, pp. 489-501.

[12] Igelnik, B. and Pao, Y.H., “Stochastic choice of basis functions in adaptive function
approximation and the functional-link net", IEEE Transactions on Neural Networks, Vol. 6,
1995, pp. 1320-1329.

[13] Liu, H. and Xing, B. and Wang, Z. and Li, L., “Legendre neural network method for several
classes of singularly perturbed differential equations based on mapping and piecewise
optimization technology", Neural Processing Letters, Vol. 51, 2020, pp. 2891-2913.

[14] Panghal, S. and Kumar, M., “Optimization free neural network approach for solving
ordinary and partial differential equations", Engineering with Computers, Vol. 37, 2021, pp.
2989-3002.

[15] Pao, Y.H. and Park, G.H. and Sobajic, D.J., “Learning and generalization characteristics of
the random vector functional-link net", Neurocomputing, Vol. 6, 1994, pp. 163-180.

[16] Paszke, A. and Gross, S. and Massa, F. and Lerer, A. and Bradbury, J. and Chanan, G.
and Killeen, T. and Lin, Z. and Gimelshein, N. and Antiga, L. and Desmaison, A. and
Kopf, A. and Yang, E. and DeVito, Z. and Raison, M. and Tejani, A. and Chilamkurthy, S.
and Steiner, B. and Fang, L. and Bai, J. and Chintala, S., “PyTorch: An Imperative Style,
High-Performance Deep Learning Library", Advances in Neural Information Processing
Systems, 2019.

[17] Raissi, M. and Perdikaris, P. and Karniadakis, G.E., “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations", Journal of Computational Physics, Vol. 378, 2019, pp.
686-707.

[18] Siegel, J.W. and Xu, J., “Approximation rates for neural networks with general activation
functions", Neural Networks, Vol. 128, 2020, pp. 313-321.

[19] Toselli, A. and Widlund, O., Domain Decomposition Methods – Algorithms and Theory,
Springer, Berlin, 2005.

12

	INTRODUCTION
	PRELIMINARIES
	Nonoverlapping domain decomposition methods
	Universal approximation theorem for extreme learning machines

	SCHUR COMPLEMENT SYSTEM FOR ELM
	NUMERICAL EXPERIMENTS
	Initialization of parameters of the hidden layers
	Application to PDEs
	2-D Poisson equation
	2-D Poisson equation with a variable coefficient
	Plate Bending

	Conclusion

