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Abstract. The paper presents a technique for the localization and characterization of fractured 

zones by seismic data. The developed approach combines the diffraction imaging and 

topological analysis of diffraction images. The testing results for realistic synthetic models and 

real seismic data demonstrate the possibility of a reliable restoration of the fractured zones' 

statistical characteristics. 
 

 

1 INTRODUCTION 

The ability to locate fractures precisely and to characterize their properties is of high 

importance. Various algorithms exist to discover these microstructures through the analysis of 

diffracted/scattered elastic waves. The paper presents an application of the new method 

(Protasov et al., 2019) to the realistic synthetic and real data and describes it from the practical 

point of view. The approach is a combination of two techniques to provide recovery of fracture 

characteristics from seismic data. 

First, we develop a statistical model that adequately describes fracture systems on the 

seismic scale. The main existing approaches to statistical modeling of fracture systems are 

described (Xu and Dowd, 2010). Explicit statistical modeling of fracture networks and the 

medium permeability evaluations were carried out, for example, in (Odling et al. 2004). Here, 

we use a discrete fracture network (DFN) concept that requires an explicit spatial position, size, 

and orientation for each fracture (Xu and Dowd, 2010). Thus, the fractures' attributes (i.e., 

direction and size) are defined by corresponding statistical distributions. 

Then, for a seismic model that contains modeled fractures, we provide the diffraction 

imaging. We use 3D diffraction imaging workflows for fracture detections that include two 

main procedures: the prestack asymmetric migration procedure, a weighted data summation, 

and image spectral decomposition (Protasov et al., 2016, 2019).  

To obtain the information about the fracture parameters at the second stage, we propose an 
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original topological analysis of the diffraction images that contain fractured zones. The basis 

for such an analysis provides the observation that different amplitude levels of diffraction 

images give topologically different objects. In this situation, computational topology algorithms 

(Bazaikin et al., 2013) extract information about those objects. 

We present and discuss the numerical results for the synthetic model. Finally, the application 

to 3D real data is provided together with a focus on practical aspects. 

 

2 DFN MODELING: SEISMIC SCALE 

For the statistical modeling of a fracture system, we used the general scheme described in 

(Xu et al., 2010). Fractures are represented in the form of ellipsoids. The ellipsoid plane's 

orientation is determined by the direction of the normal parallel to the smaller axis of the 

ellipsoid. For all the models considered, the dip angle's average value is chosen equal to pi / 2, 

i.e., fractures are vertical. The average value of the dip direction and the variance of the 

deviation from this direction are selected separately for each fracture family. The fractures' 

geometric dimensions are determined by the dimensions of the main axes (or semi-axes). 

Following (Xu et al., 2010), the large axis (fracture length) L is modeled statistically. The mean 

axis (fracture width) W is determined from the simulated fracture length by specifying the 

statistical distribution L/W. The value of the smaller axis (fracture thickness) T is given as a 

constant. After modeling the fractures' geometry, the next step is to put the model on a coarse 

grid. The complexity of the problem is that the fractures' thickness is usually much smaller than 

the grid step. For each cell of a sparse grid, the indicator function's average value is calculated 

using statistical modeling. So finally, we have a fracture intensity indicator function, which is 

computed on a sparse enough grid. 

3 DIFFRACTION IMAGING: FRACTURE LOCALIZATION 

For the localization of fractured zones, we use the diffraction imaging technique that is based 

on the asymmetric migration of 3D surface seismic data proposed in the paper (Protasov et al., 

2017): 
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Here  )az,;(Image x  is the recovered function, );,;,( ssrr yxyxdata   is multicomponent 

surface seismic data in the frequency domain, and 
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gbp τ    is normal derivatives of Gaussian beams 

and their potentials at the source positions. The beams are computed by ray tracing from every 

image point (see Figure 2a), and their derivatives depend on the structural dip, azimuth, and 

opening angles (see Figure 2b).  

The left-hand side of the imaging formula (1) determines the 3D spatial Fourier transform 

of the unknown function )az,;( xf    followed by its quasi-inverse: 
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 pvf   . This is not the Fourier transform's exact 

inversion because it is performed not over the whole phase space but only over its subdomain 

Xpar (the set of partial reconstruction, see Protasov et al., 2016). This subdomain is a circular 

sector that is defined by the frequency bandwidth [ω1, ω2] of the source function and the 

available range of structural dip and azimuth angles [α1, α2], [θ1, θ2] (see Figure 3): 

The structure of the partial reconstruction set, defined by (3), lies at the heart of the proposed 

method of imaging small scale heterogeneities. The main principles are explained as follows: 

by changing opening and the dip and azimuth angles of [α1, α2], [θ1, θ2], respectively, one 

changes the structure of the set of partial reconstruction and, thus, controls the geometry of 

visible and invisible elements of the geological cross-section. Specifically, any small scale 

(small scale) object such as a diffractor/scatterer, crack, fault, pinch, and so on, possesses an 

extended spatial spectrum and, thus, will be presented for a wide range of partial reconstruction 

sets. In contrast, any regular interface possesses a very narrow spatial spectrum. Therefore, one 

can easily choose the Gaussian beams' geometry that provides the partial reconstruction set 

without this spectrum (Protasov et al., 2017, 2019). 

The critical point for successful diffraction imaging is the ratio of the scattered waves' 

amplitudes to the reflected waves' amplitudes. For the proposed diffraction imaging approach, 

this ratio can achieve minimal values and varies down to 1%; however, the image's quality is 

still acceptable (Protasov et al., 2019). 

4 TOPOLOGICAL ANALYSIS: FRACTURE CHARACTERIZATION 

Let the function 𝑓: 𝑈 → ℝ  defines the diffraction image's amplitude field, where 𝑈 - a 3D 

area where we compute the diffraction image. We define the number 𝑛 – discretization level of 

the values of the function 𝑓. We define values 𝑎𝑖 = 𝑣𝑚𝑖𝑛 + 𝑖
𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛

𝑛
, 𝑖 = 0, … , 𝑛 , where 

𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 minimum and maximum values of the function 𝑓. Then we consider a set of 

excursion sets 𝑀𝑖 = {(𝑥, 𝑦, 𝑧)|𝑓(𝑥, 𝑦, 𝑧) ≤ 𝑎𝑖}, 𝑖 = 0, … , 𝑛. It is evident that excursion sets are 

nested inside each other: 𝑀0 ⊂ 𝑀1 ⊂ ⋯  ⊂ 𝑀𝑛. Therefore we can construct the absorption tree 

Γ = Γ(𝑓) (for more details, see Bazaikin et al., 2013). The geometric characteristics of each 

connected component of each excursion set are stored in the fields of the corresponding vertex 

of the absorption tree Γ. We postulate that the leaves of the tree Γ correspond to the original 

fractures or set of fractures. To calculate the fracture's geometric characteristics (or fractures 

set) corresponding to the leaf u, we find its support vertex v. Then, the characteristics of the 

vertex v will be the characteristics of the corresponding fracture.  

The main problem in applying real data is "topological noise," and merge trees are useful 

tools to do this. We use three ways to eliminate topological noise and collect the most helpful 

information from the merge tree. At first, we choose a typical amplitude interval, which is of 

most importance for physical reasons. Secondly, we erase the shortest branches of the merge 

tree corresponding to the noise of amplitude data. At third, we erase those branches which 
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correspond to fractures with too small volumes. We need to find a critical parameter of noise 

elimination related to a particular geophysical situation in every way. 

 

5 SYNTHETIC DATA EXAMPLE 

For seismic scale fracture modeling, a cluster model for the distribution of fractures is 

realized. At the first stage, families of large fractures (or fracture corridors) are modeled. Next, 

in the vicinity of each large fracture center of small fractures and their remaining geometric 

parameters are generated. Figure 1a presents the model's example with two families of large 

fractures: 80 large fractures from the first family and 120 fractures from the second family. The 

random coordinates of the centers of large fractures were generated independently and 

uniformly in the calculated region. 

In Figure 1, diffraction images are also presented. They were got for the range of dip angles 

[100 500] but the different range of azimuth angles: [00 3600] (Figure 1b), [-300 600] and 

[1500 2400] (Figure 2c), [600 1500], and [2400 3300] (Figure 2c). 

 

Figure 1: DFN seismic model (a) and Diffraction images in the XY plane (Z=2500 m): b – the sum of selective 

images for all azimuth angles; c – the sum of selective images for the sector of azimuth angles [-30
0
, 60

0
] and 

[150
0
, 240

0
]; d – the sum of selective images for the sector of azimuth angles [60

0
, 150

0
] and [240

0
, 330

0
]. 
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Figure 2 presents the original model with 2 families of large fractures (Fig. 2a) and the 

constructed models (Fig. 2b, 2c, 2d) using fracture characteristics recovered from the 

corresponded diffraction images (Fig. 1b, 1c, 1d) by the described topological algorithm.  One 

can visually observe wrong fracture reconstruction for the full diffraction image. Still, if the 

fracture families are differentiated on the images, then the topological algorithm recovers 

characteristics that give a similar picture. Moreover, most of these characteristics are 

statistically equivalent to the original model's characteristics (see Table 1). The number of 

recovered fracture corridors is less than the number of fracture corridors in the model. It means 

that recovery is not identical; however, the statistical distribution of the modeled fracture 

corridors and the recovered ones are very close for each of the two families. Also, the modeled 

and recovered fracture corridors' average length values are very close, and the average 

directions of the main axis are almost the same. 

 

Figure 2: DFN seismic model (a) and models recovered from diffraction images in the XY plane (Z=2500 m): b 

– from the diffraction image with all azimuth angles; c – from the diffraction image with azimuth angles [-30
0
, 

60
0
] and [150

0
, 240

0
]; d – from the diffraction image with azimuth angles [60

0
, 150

0
] and [240

0
, 330

0
]. 
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Table 1: The true characteristics and recovered characteristics from the diffraction images.  

Model Average 

length 

Average direction Number of 

fractures 

DFN family 1 401.33 (0.8669,    0.4984,   -0.0008) 

 

120 

DFN from image 

on the Figure 1d  

405 (0.8673,    0.4978,   -0.0048) 

 

83 

DFN family 2 1000.4 (0.0030,    1.0000,    0.0046) 

 

80 

DFN from image 

on the Figure 1c 

890 (0.0070,    1.0000,   -0.0018)  

 

56 

 

6 REAL DATA EXAMPLE 

We provide real data study for the area where the diffraction imaging algorithm identifies a 

fractured zone (Protasov et al., 2019). It is shown that for typical practical situations, when the 

scattered waves' amplitudes are significantly lower than the amplitudes of the reflected waves, 

the total migrated image does not give visible objects of diffraction. On the contrary, fracture 

zones are visible in the diffraction images. Moreover, if the ratio of the scattered and reflected 

waves' amplitudes is not less than 10%. The diffraction image does not contain any other visible 

(i.e., comparable amplitude) objects: residual reflections, migration noise, etc. However, 

suppose the ratio of the scattered and reflected waves' amplitudes is extremely small and varies 

within 1%, in the diffraction image, in addition to the fracture zone. In that case, other objects 

are visible (their amplitude is of the same order of magnitude as the amplitude of the target 

object). In this case, these objects are migration artifacts, the amplitudes of which are also 

approximately 1% of the amplitudes of target reflections, which is considered a good result for 

most migration procedures. 

The topological algorithm's main problem for analyzing diffraction images as applied to real 

data is "topological noise." In many ways, the appearance of such noise is due to an 

insufficiently good signal-to-noise ratio. In this case, the signal is diffracted/scattered waves, 

so it is challenging to achieve a high signal-to-noise ratio on real data. However, the author's 

algorithm for constructing diffraction images gives entirely satisfactory results, at least in this 

example. But the topological noise remains, so three methods are used to eliminate it and extract 

the most useful information from the absorption tree. First, a typical range of amplitudes is 

selected, which is the most important from physical considerations. Second, the shortest 

branches of the absorption tree corresponding to the amplitude data's noise are cut off. Thirdly, 

those branches that correspond to cracks with too small volumes are cut off. A critical parameter 

for noise elimination is found in all methods, which is associated with a specific geophysical 

situation. 

Then we describe these methods in more detail below. Let us consider the function f as the 

amplitude of a three-dimensional diffraction image X . Then f is represented by values in each 

elementary volume X . Let us define minf  and maxf  the minimum and maximum values of the 

amplitudes X  minmax fff  . The first parameter we used was the filtering level N . Further, 
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for each, N0,1,...,i   we introduce iX , which should consist of those elementary volumes v  

for which  /N.if+ff(v) min   It is clear that a higher filtration level gives a more detailed 

picture of the function levels' topological properties f . 

To eliminate noise with negligible amplitude, we must select a threshold parameter critAmp  

from 0% to 100%. Then we need to shrink the absorption tree, i.e., glue all vertices 

(respectively, all branches) belonging to the same level i , if critAmp /Ni)-(N100  . The rest 

of the tree structure remains unchanged. This procedure assumes that all branches with an end-

vertex amplitude greater than  /100Ampff critmax  . If we consider each branch of the 

absorption tree as a fracture, we remove those fractures whose minimum amplitude values are 

too small. The more critAmp , the less fractures in the absorption tree (see Figure 3).  

 

Figure 3: Fractures extracted from the same image (a) with different threshold values of the amplitude: = 50% 

(b), 70% (c), and 90% (d). 

The number of elementary volumes measures the last parameter of noise reduction. We 

delete all the absorption tree nodes with the volume of connectivity components less than Vol  

with all the branches containing such nodes. The more Vol , the less cracks in the absorption 

tree (see Figure 4).  
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Figure 4: Fractures reconstructed from the same image (a) with different threshold values of the volume (in 

elementary volumes): = 50 (b), 200 (c) and 500 (d). 

In the synthetic data study, we determine the necessity to give an azimuthal decomposition 

of the full diffraction image.  Analyzing azimuthal diffraction images and their sum, we divide 

them into four sectors (Figure 5, left): vicinity of 00, vicinity of 450, vicinity of 900, and 1350. 

Then we apply the described above topological algorithm to each azimuthal image. As we 

mentioned above, the main problem in application to real data is "topological noise." So, we 

provide the described strategy to provide a stable and reliable solution. The result of the 

application one can observe on the right of Figure 5. The black lines are the recovered fractures. 

One can observe the correspondence between image, i.e., amplitudes distribution, and the 

recovered fractures, i.e., black lines. We underline that there are three fractures families with a 

rather significant number, while one more (vicinity of 900) is not representative. Therefore, we 

think that these three families' statistical parameters are appropriately reconstructed (the strong 

argument is the synthetic example) and can be used for fracture modeling. Simultaneously, the 

4th one (vicinity of 900) should be calibrated better (Table 2). Though other families are 

representative, their parameters should also be calibrated by the well data.  
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Figure 5: The horizontal section at the level of the fractured zone. Selective images and the recovered fractures 

(black lines) for sectors: a) vicinity of 00, b) vicinity of 450, c) vicinity of 900, d) vicinity of 1350. 

Table 2: The fracture characteristics recovered from the images decomposed by azimuthal sectors.  

Model Average 

length 

Average azimuth direction Number of 

fractures 

DFN from image 

vicinity of 00 

500 m 10 

 

2493 

DFN from image 

vicinity of 450  

499 m 230 

 

1164 

DFN from image 

vicinity of 900 

668 m 700 

 

191 

DFN from image 

vicinity of 1350 

469 m 1780 

 

469 

 

7 CONCLUSIONS 

The paper has presented a combination of diffraction imaging and topological analysis of 

the diffraction images that recover the fractured zone and their characteristics. The numerical 
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results on synthetic data show a reasonable reconstruction of the fracture corridors' statistical 

distribution, an average value of the fracture corridors length, and an average value of the 

fracture corridors directions. The numerical results on the real data show that the described 

algorithmic combination can reconstruct the fracture zone and characterize them. Better 

confirmation and more arguments about the practical application of the approach could be 

obtained by introducing well data, i.e., core analysis and FMI data. 
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