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Abstract. We give an overview of MCMC capabilities in the Dakota software package
from Sandia National Laboratories, and present some Bayesian calibration results.

1 INTRODUCTION

The proper quantification of prediction uncertainties is essential to establishing the
credibility of computational models, especially for high-consequence problems. In many
cases the model parameters and their uncertainties must be inferred from experimental
data. Bayesian analysis [1, 2], in connection with Markov chain Monte Carlo (MCMC)
methods [3, 4], allows us to calibrate model parameters under uncertainty.

This paper is organized as follows. In Section 2 we briefly describe Bayesian calibration,
followed by a review in Section 3 of some of the MCMC methods included in the Dakota
software package, which is briefly described in Section 4. In Section 5 we present the
problems used in some numerical exercises, followed by the presentation of numerical
results in Section 6. We finalize the paper with conclusions in Section 7.

2 BAYESIAN CALIBRATION

Given experimental data and a computational model aimed to explain the experimental
results, Bayesian analysis offers a way to calibrate model parameters under uncertainty.
Given ny ≥ 1, nd ≥ 1, nm ≥ 1, and nobs ≥ 1, let θy ∈ Rny denote model parameters,
y : Rny → Rnobs denote the computational model, θm ∈ Rnm denote parameters for the
model form uncertainty [5], ϵmodel : Rnm → Rnobs denote the model form uncertainty,
d ∈ Rnobs denote the available experimental data, θd ∈ Rnd denote parameters for data
uncertainty, ϵdata : Rnd → Rnobs denote the uncertainty in the data, nθ = ny + nd + nm

denote the amount of all parameters, and

θ = (θy,θd,θm) ∈ Rnθ (1)

denote the full parameter vector. The Bayes’ formula then reads

π(θ|d) = π(d|θ) · π(θ)
π(d)

=
π(d|θ) · π(θ)∫
π(d|θ) · π(θ) dθ

, (2)



Ernesto E. Prudencio and John A. Stephens

where π(·) indicates a probability density function (PDF), π(θ) is the prior PDF, π(d|θ) is
the likelihood PDF, π(d) is the model evidence, and π(θ|d) is the posterior PDF. Model
evidence allows one to quantitatively rank models according to their ability to explain
given data, as well as to quantify Occam’s razor [6].

In the following we describe a typical likelihood PDF. An usual assumption is that the
errors in the data and in the model output are additive, as in

d+ ϵdata(θd) = unknown reality = y(θy) + ϵmodel(θm). (3)

Other uncertainty assumptions are also possible, e.g. multiplicative errors. In the case
of (3), if one further assumes that ϵdata(θd) and ϵmodel(θm) are independent Gaussian
random vectors with zero means and respective (positive definite) covariance matrices
Cdata(θd) and Cmodel(θm), and letting N (µ,C) denote a Gaussian distribution of mean
µ and covariance C, then one can write

d = y(θy) +N (0,Cdata(θd) +Cmodel(θm)), (4)

that is,

π(d|θ) = 1

(
√
2π)nobs

· 1√
det(C)

· e−
1
2{rT ·C−1·r}, (5)

where r = d− y(θy) ∈ Rnobs and C = Cdata +Cmodel ∈ Rnobs×nobs , with det(C) denoting
the determinant of C. It should be noted that not all nθ parameters need to be open to
calibration: some of them might be known or fixed in advance.

The description above can be extended to a case with multiple experimental data

vectors d(j) ∈ Rn
(j)
obs , 1 ≤ j ≤ ne. For instance, the ne experiments could correspond to

different experiment scenarios (e.g. different temperatures), and have different sizes n
(j)
obs

(e.g. different amounts of probes used, and/or probes used at different locations), while
the same computational model and the same parametrized model form uncertainty could
be used with different deterministic values for the scenario parameters, as well as different
output vectors in accordance to the corresponding experiments. In such case, equation
(4) is replaced by (note that θy and θm are not written with superscript “(j)”)

d(j) = y(j)(θy) +N (0,C
(j)
data(θ

(j)
d ) +C

(j)
model(θm)). (6)

Denoting Nobs =
∑ne

j=1 n
(j)
obs, Nd =

∑ne

j=1 n
(j)
d , Nθ = ny +Nd + nm, d = (d(1), . . . ,d(ne)) ∈

RNobs , θ = (θy,θ
(1)
d , . . . ,θ

(ne)
d ,θm) ∈ RNθ , and further assuming that the experiments are

independent among themselves, then equation (5) is replaced by

π(d|θ) =
ne∏
j=1

e
− 1

2

{
(r(j))

T
·[C(j)]

−1
·r(j)

}
(
√
2π)n

(j)
obs ·

√
det(C(j))

=
e−

1
2{rT ·C−1·r}

(
√
2π)Nobs ·

√
det(C)

, (7)
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where r(j) = d(j) − y(j)(θy) ∈ Rn
(j)
obs , C(j) = C

(j)
data +C

(j)
model ∈ Rn

(j)
obs×n

(j)
obs , r ∈ RNobs is the

vector formed by concatenating all r(j)’s, and C ∈ RNobs×Nobs is the block diagonal matrix
formed with all C(j)’s.

If we consider Cholesky factorization, (7) can be rewritten as

π(d|θ) =
ne∏
j=1

1

(
√
2π)n

(j)
obs

· 1√
det(C(j))

· e−
1
2
∥r̂(j)∥22 =

1

(
√
2π)Nobs

· 1√
det(C)

· e−
1
2
∥r̂∥22 , (8)

where r̂(j) = L(j) · r(j) ∈ Rn
(j)
obs , L(j) ∈ Rn

(j)
obs×n

(j)
obs is the Cholesky decomposition of C(j) =

L(j) · L(j)T , r̂ = L · r ∈ RNobs , and L ∈ RNobs×Nobs is the Cholesky decomposition of
C = L ·LT . The vector r̂ can also be seen as the vector formed by concatenating all r̂(j)’s,
and the matrix L can also be seen as the block diagonal matrix formed with all L(j)’s.

3 SOME MARKOV CHAIN MONTE CARLO (MCMC) METHODS

With the computational power increase since the 1990s, it became feasible to use
MCMC to sample the posterior PDF (2) and thus perform Bayesian calibration in situ-
ations other than those involving linear models and Gaussian distributions. Also, if one
needs to “only” calibrate parameters (as in this present paper), caring only for the ratio
between the posterior PDF values at two different samples, then the model evidence term
in (2) can be neglected. We will denote the target PDF by πtarget(·) (which is the posterior
PDF in the case of Bayesian analysis), and the chain positions by x(k), k = 0, 1, 2, . . ..

In practice the values of posterior PDFs might get very small, in which case it is
convenient to work with ln values. When using (8), one gets:

ln[π(θ|d)] = ln[π(θ)]− 1

2

{
Nobs · ln(2π) +

Ne∑
j=1

ln[det(C(j))] +
Ne∑
j=1

∥r̂(j)}∥22

}

= ln[π(θ)]− 1

2

{
Nobs · ln(2π) + ln[det(C)] + ∥r̂∥22

}
. (9)

Table 1 lists the input parameters for all methods described in this section.

3.1 Vanilla Metropolis Hastings Algorithm (MH)

The vanilla MCMC algorithm is based on [7, 8]. Given the current position x(k),
and a proposal distribution (PD) q(x(k), c) (typically a Gaussian PDF centered at x(k),
assuming values at positions c), the algorithm generates a candidate c(k) from q(x(k), ·).
The algorithm then sets x(k+1) = c(k) with probability

p = min

{
1,

πtarget(c
(k))

πtarget(x(k))
· q(c

(k),x(k))

q(x(k), c(k))

}
, (10)

otherwise it sets x(k+1) = x(k).

3



Ernesto E. Prudencio and John A. Stephens

MCMC Method Input Description
(Subsection) Parameter

MH (3.1) M Covariance matrix for the PD q(x(k), ·)
M Covariance matrix for the PD

DR (3.2) nstages Number of stages
scaling Method: “linear” or ”power”

b Scale parameter related to PD scaling

M(0) Initial covariance matrix for the PD
AM (3.3) nstart Number of MCMC steps to start AM

nperiod Number of MCMC steps between AM instances
α Scale parameter for the adapted covariance matrix

MALA (3.5) M Covariance matrix for the PD
τ Step size

Table 1: Input parameters for the methods (with Gaussian proposal distributions) used in this paper.

3.2 Delayed Rejection (DR)

DR is a local adaptive strategy [9, 10] for MH. The basic idea is that, within the k-th
MCMC step, one generates a candidate position c(k,i=1) in the first (i = 1) stage using PD
q1(c

(k,1), ·). If this candidate is rejected, the algorithm generates another candidate c(k,2)

in a second (i = 2) stage using a PD q2(x
(k), c(k,1), ·), and so on. In the case of Dakota,

the user provides a covariance matrix for a single PD q(·, ·), a parameter b > 0, and the
maximum number of stages nstages ≥ 1. Then, for i = 1, . . . , nstages, DR sets

qi(·, ·) =
b

i+ 1
· q(·, ·) or qi(·, ·) =

b

2i
· q(·, ·), (11)

depending if the scaling type (another input option) is “linear” or “power”, respectively.

3.3 Adaptive Metropolis (AM)

AM is a global adaptive strategy [11] for MH. The basic idea is to adapt the Gaussian
PD covariance matrix as the chain progresses. Given an initial covariance matrix M(0),
integers nstart ≥ 1 and nperiod ≥ 1, as well as a real scalar α > 0, the algorithm uses M(0)

in the first nstart steps. At the nstart-th step, the algorithm computes a new PD covariance
M using all the previous nstart chain positions, and uses αM for PD in the next nperiod

steps, when a new PD covariance is computed using the previous PD covariance and the
last nperiod chain positions. This procedure then repeats itself every nperiod steps.

3.4 Delayed Rejection Adaptive Metropolis (DRAM)

DRAM combines DR and AM into one method [12].
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3.5 Metropolis-Adjusted Langevin Algorithm (MALA)

The MALA algorithm [13, 14, 15, 16] generates candidate positions through a Langevin
dynamics using∇θ{ln[πtarget(θ)]}, and rejects or accepts them as in MH. Given the current
MCMC position x(k), and a covariance matrix M, the candidate position c(k) is sampled
form the Gaussian PD with mean x(k) + τM∇θ{ln[πtarget(θ)]} and covariance 2τM. This
candidate is then accepted or rejected using rule (10). When using MALA for Bayesian
calibration, the term ∇θ{ln[πtarget(θ)]} becomes

∇θ{ln[π(θ|d)]} = ∇θ{ln[π(θ)]} −
1

2

{
∇θ{ln[det(C)]}+

Nobs∑
k=1

r̂k · ∇θr̂k

}
. (12)

3.6 Dimension-Independent Likelihood-Informed (DILI)

The DILI algorithm [17] is currently being implemented, and it will be available in
Dakota 6.21 in November of 2024.

4 THE DAKOTA PACKAGE

The Dakota (https://dakota.sandia.gov) software package is an open-source (LGPL)
software for black-box, ensemble analysis of computational models [18]. Developed pri-
marily at Sandia National Laboratories, Dakota contains methods for forward and inverse
uncertainty quantification, global sensitivity analysis, optimization, and model calibra-
tion. Source code and pre-built binaries for Linux, macOS, and Windows are available at
https://github.com/snl-dakota/.

4.1 Bayesian Calibration in Dakota

Dakota follows (9) and provides interfaces to different packages, e.g. QUESO [19] and
MUQ [20]. Methods MH, AM, DR, DRAM, and MALA are all available in Dakota 6.20.

5 PROBLEMS USED FOR THE NUMERICAL EXERCISES

In this section we present the problems used in our numerical exercises.

5.1 Cantilever

Figure 1 shows the cantilever problem. It involves only one parameter (ny = 1) to be
calibrated: the Young’s modulus E (N/m2 = Pa). Given the total beam length L (m),
the horizontal cross section length wx (m), the vertical cross section length wy (m), the
horizontal force Fx (N), the vertical force Fy (N), and the resulting total displacement
δ (m), the problem is to infer E. Assuming the beam behaves elastically, we have:

δx =
4L3

Ewxwy

· Fx

w2
x

, δy =
4L3

Ewxwy

· Fy

w2
y

, δ =
4L3

Ewxwy

·

√(
Fx

w2
x

)2

+

(
Fy

w2
y

)2

. (13)
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y
x

z

L

𝐅⃗ = (Fx, Fy, 0)

𝛅 = (𝛿! , 𝛿" , 0)

wx

wy

Figure 1: The cantilever problem, with a beam of rectangular cross section.

5.2 Horizontal Sequence of Springs

Figure 2 shows the springs problem. It involves n ≥ 1 spring constants k1, . . . , kn (all in
N/m). Given the force F (N), the values of 0 ≤ nknown < n known spring constants, and
the resulting total displacement x (m), the problem is to infer the values of the n−nknown

unknown spring constants. That is, ny = n− nknown.

𝑙! 𝑙" 𝑙#

𝑙! 𝑥! 𝑙" 𝑥"

…

…

𝑙# 𝑥#

𝐹

…

…

𝑘! 𝑘" 𝑘#

(a)

(b)

𝑥 = 𝑥! + 𝑥" +⋯+ 𝑥#

Figure 2: The springs problem, with n ≥ 1.

6 RESULTS FROM THE NUMERICAL EXERCISES

In all our numerical exercises we used one experiment (ne = 1), and only model pa-
rameters were to be calibrated. That is, nd = nm = 0, and ∇θ{ln[det(C)]} = 0 ∈ RNθ

in (12). All exercises were conducted with the Dakota-MUQ interface in a Linux single
compute node: no parallelism was used. Table 2 lists the input parameters and some

6
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output information for all tests.

Input Problem and MCMC Method
Parameters Cantilever Springs 1D Springs 2D Springs 3D
and Output DRAM MALA DRAM MALA DRAM MALA DRAM

# samples 5,000 10,000 10,000 10,000 100,000 100,000 1,000,000

x(0) 2.e11 2.e10 3.e3 3.e3 3.e3 3.e3 3.e3

M(0) or M 1.e16 1.6e19 4.e6 9.e9 4.e6·I2×2 9.e9·I2×2 4.e6·I3×3

nstages 2 − 2 − 2 − 2
scaling Power − Power − Power − Power

b 1.2 − 1.2 − 1.2 − 1.2
nstart 20 − 20 − 20 − 20
nperiod 20 − 20 − 20 − 20
α 0.1 − 0.1 − 0.1 − 0.1
τ − 0.01 − 5.e-7 − 5.e-7 −

run time (s) 4.7 13.8 9.9 21.8 128.2 211.2 1372.6
# calls 6,263 40,000 12,909 40,000 166,299 400,000 1,833,581
# new 6,263 20,000 12,909 20,000 166,299 200,000 1,833,581

# duplicated 0 20,000 0 20,000 0 200,000 0

Table 2: Input parametes and some output information related to the numerical results in Section 6.
I2×2 and I3×3 indicate identity matrices.

6.1 Cantilever

We used L = 1 m, wx = 0.01 m, wy = 0.02 m, Fx = 3 N , and Fy = 3 N . For mimicking
the experimental results we used E = 69 GPa (Aluminum) and formulas in (13), set the
measured total displacement equal to 8.9 mm, and set the additive measurement noise
as N (0, 1.e − 6 m2). For prior PDF we used uniform U(1.e10, 5.1e11). Results and
comments are presented in Figure 3.

6.2 Horizontal Sequence of Springs (One-Dimensional Parameter Space)

We used n = 10, nknown = 9, all nknown known spring constants equal to 2.e4 N/m,
and F = 1 N . For mimicking the experimental results we used the unknown spring
constants equal to 2.e4 N/M , set the measured total displacement equal to 5.1 mm, and
set the additive measurement noise as N (0, 2.25e−8 m2). For prior PDF we used uniform
U(1.e3, 1.e5). Results and comments are presented in Figure 4.

7
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Figure 3: Results for the cantilever problem, using DRAM (left) and MALA (right). The histograms
are normalized so that that maximum value is 1. We see that both histrograms follow well the true PDF,
although the histogram obtained with DRAM follows the true PDF better, even though the amount of
requested samples with DRAM was half the amount requested with MALA (see Table 2).
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Figure 4: Results for the one-dimensional springs problem, using DRAM (left) and MALA (right). The
histograms are normalized so that that maximum value is 1. We see that the histogram obtained with
DRAM follows the true PDF much better. The MALA algorithm seems to get attracted to the “peak”
region, having difficulty to explore the “tail” region.

6.3 Horizontal Sequence of Springs (Two-Dimensional Parameter Space)

We used n = 10, nknown = 8, all nknown known spring constants equal to 2.e4, and
F = 1 N . The experimental data was mimicked as in Subsection 5.1. For prior PDF we
used uniform U((1.e3, 1.e5)2). Results and comments are presented in Figures 5 and 6.
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Figure 5: The two-dimensional surface of the analytical likelihood PDF in the two-dimensional springs
problem. The two figures refer to different points of view of the same surface. We will refer the region of
highest PDF values as the “peak” or “wing” region. As in the one-dimensional case (Figure 4), we see
that the two-dimensional PDF is practically zero away from the peak region.

6.4 Horizontal Sequence of Springs (Three-Dimensional Parameter Space)

We used n = 10, nknown = 7, all nknown known spring constants equal to 2.e4, and
F = 1 N . The experimental data was mimicked as in Subsection 5.1. For prior PDF we
used uniform U((1.e3, 1.e5)3). Results and comments are presented in Figure 7.

7 CONCLUSIONS

In this paper we presented Bayesian calibration results obtained with the Dakota 6.20
package and its interface to MUQ.Working with low-dimensional problems, before advanc-
ing to high-dimensional ones, helps researchers to better understand MCMC algorithms
and gain an intuition about pros and cons of different methods. In our experiments,
DRAM explored the posterior PDF surfaces better than MALA, which requires a careful
study for the proper setting of the input parameters M and τ . As a final remark, we
envision future versions of Dakota consistently adding python interfaces to its algorithms.
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F1=10 N, data=Gauss(0.0051,2.25e-08)

dr=2,Power,1.2, am=20,20,0.1, x (0) = (3.e3,3.e3), burn-in = 0, # samples = 100k
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Figure 6: Results for the two-dimensional springs problem. The two figures on the top refer to different
points of view of the two-dimensional histogram obtained with DRAM. Comparing them to Figure 5, we
see that the two-dimensional histogram captures well the true PDF surface. The bottom-left figure is the
marginal histogram for parameter k1. Comparing to Figure 4, we see that the marginal PDF has a clear
non-zero value away from the peak region, and that the peak region gets thinner and moves a bit closer
to the origin. The bottom-right figure shows the two-dimensional histogram obtained with MALA. The
same issue we observed in Figure 4 is more pronounced here: the algorithm seems to get attracted to the
central portion of the “wing” region and has difficulty to explore its two sides.
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