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Abstract. The hexahedral mixed displacement-pressure finite element of the lowest order
(H1/P0) has shown to be simple and effective during both linear and nonlinear analysis of
incompressible solids. While the discrete displacement field is generally considered to be suf-
ficiently accurate, the discrete pressure field can sometimes be heavily polluted by spurious
pressure modes. This results from the fact that the element does not fulfill the inf-sup condition.
While postprocessing techniques, such as pressure filtering or smoothing, exist to remove the
spurious pressure modes from the solution, this contribution aims on the exclusion of spurious
pressure modes from the solution a priori due to the element geometry. By employing polyhe-
dral finite element formulations on Voronoi tessellations in three dimensions, we show that the
discrete kernel of the linearized mixed bilinear form only consists of the hydrostatic pressure
mode. A spurious pressure mode is automatically suppressed due to the vertex-to-volume ratio
in the finite element mesh. These considerations hold for any arbitrary physically admissible
displacement state that can occur within a Newton-Raphson framework. A nonlinear numerical
example shows that spurious pressure modes are indeed suppressed if the type of tessellation is
changed from hexahedral to Voronoi.

1 INTRODUCTION

The mechanical behavior of nearly-incompressible materials, such as polymers or biological tis-
sue, can be described by their governing partial differential equations. Unfortunately, numerical
problems arise if the equations are approximated in a finite-dimensional subspace using the irre-
ducible form of the finite element method. As a result, the solution is severely underestimated,
commonly referred to as volumetric locking. Several improvement methods have been devel-
oped to overcome these issues, see [1, 2, 3]. Here, we focus on the imposition of the volume
constraint using a Lagrange multiplier [3] and aim to approximate the resulting displacement
and pressure fields by their lowest-order approximation, i.e. using linear displacements and
constant pressures. On most standard finite element meshes, the displacement solution gener-
ally turns out to be volumetric locking-free. The pressure field is, however, prone to display
spurious pressure oscillations, rendering the pressure field as physically meaningless. In theory,
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these problems occur because the Ladyzhenskaya-Babuška-Brezzi (LBB), or inf-sup condition,
is not fulfilled [4, 5, 6].

In this contribution, we show that it is possible to fulfill the inf-sup condition using poly-
hedral finite element formulations combined with Voronoi meshing strategies. In fact, we use
the exact same variational framework as the standard hexahedral H1/P0 element, but impose
interpolation functions based on the scaled boundary parameterization [7, 8] to discretize the
polyhedral element. Utilizing the properties of a three-dimensional Voronoi mesh, we can show
that spurious pressure modes are suppressed and further stabilization of the element is not re-
quired. We herewith extend the theory presented in [9] to three-dimensional problems. A
nonlinear numerical example is presented to show that the use of Voronoi meshes suppresses
spurious pressure oscillations and can reproduce smoother pressure fields compared to classical
mixed hexahedral finite elements.

2 LINEARIZED WEAK TWO-FIELD VARIATIONAL FORMULATION

A continuum domain Ω = Ω0 ⊂ R3 is considered in the initial configuration at t = 0. Its
boundary ∂Ω = ∂ΩD∪∂ΩN is partitioned into a Dirichlet boundary ∂ΩD ⊂ R2 and a Neumann
boundary ∂ΩN ⊂ R2. Only hyperelastic and isotropic materials are considered throughout this
work. To derive the mixed potential, the strain energy density function is split into a deviatoric
and a volumetric part according to:

W (C, J) = Wdev (C) +Wvol (J)

= Wdev (C) +
κ

2

[
Û (J)

]2
.

(1)

As soon as a material becomes nearly-incompressible, Wvol (J) ≈ 0. Consequently, the chosen
penalty function Û (J) = J − 1 tends towards zero. The volume constraint is then incorporated
into the problem using a perturbed Lagrangian formulation [3]. The total energy potential is
extended as

Π̃ (u) = Πint − Πext +

∫
Ω

(
p Û (J)− 1

2κ
p2
)

dV, (2)

where p is the hydrostatic pressure and acts as a Lagrange multiplier. Minimization of the
potential corresponds to solving the weak formulation of the two-field saddle-point problem:∫

Ω

δE :
∂Wdev

∂E
dV +

∫
Ω

δE :
∂Û

∂E
p dV︸ ︷︷ ︸

Gu

=

∫
Ω

δuT f dV +

∫
∂ΩN

δuT t̄0 dA︸ ︷︷ ︸
δΠext

(3a)

∫
Ω

δp Û (J) −
∫
Ω

δp
1

κ
p dV︸ ︷︷ ︸

Gp

= 0. (3b)

Here, C denotes the right Cauchy-Green deformation tensor, f the body force and t̄0 the initial
boundary traction vector. The term that includes κ in Eq. (3b) disappears in case of total
incompressibility.
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Since the variational formulation includes geometrical and material nonlinearities, a Newton-
Raphson scheme is used to linearize the nonlinear problem. The linearized weak form of Eqs.
(3) in the direction of the increments ∆u and ∆p reads:

DuGu ·∆u+DpGu ·∆p = −Gu + δΠext (4a)
DuGp ·∆u−DpGp ·∆p = −Gp, (4b)

with the directional derivatives

DuGu ·∆u =

∫
Ω

δE :

(
∂2Wdev

∂E∂E
+ p

∂2Û

∂E∂E

)
: ∆E dV

+

∫
Ω

(
∂Wdev

∂E
+ p

∂Û

∂E

)
: ∆δE dV, (5a)

DpGu ·∆p =

∫
Ω

δE :
∂Û

∂E
∆p dV, (5b)

DuGp ·∆u =

∫
Ω

δp
∂Û

∂E
: ∆E dV, (5c)

DpGp ·∆p =

∫
Ω

δp
1

κ
∆p dV. (5d)

3 DISCRETIZATION USING THE SCALED BOUNDARY PARAMETERIZATION

The domain Ωh in the reference configuration is approximated using an arbitrary tessellation
into nE elements E which implies

Ω ≈ Ωh =

nE⋃
E=1

EE, (6)

with element domain EE ⊂ Ωh ⊂ R3. Likewise, the approximated boundary is referred to as
∂Ωh and the corresponding element boundary ∂EE is divided into nF faces F as

∂EE =

nF⋃
F=1

FF . (7)

Here, FF ⊂ ∂EE ⊂ R2 denotes a planar domain. The faces in the current configuration are
defined by nV spatial coordinates xV and are assigned a unique outward normal vector nF .
Non-degeneracy of the mesh indicates that nF ≥ 4 per element and nV ≥ 3 per face as each
element E must be tetrahedral at least. The scaled boundary parameterization [7] allows us
to partition the three-dimensional domain into a two-dimensional boundary domain (η, ζ) ∈
[−1, 1]× [−1, 1] and a one-dimensional scaling direction ξ ∈ [0, 1]. Practically speaking, each
polyhedron is split into its two-dimensional faces and a one-dimensional scaling direction. The
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local scaling center coordinates, denoted as X0, are herein selected to match the coordinates
of the element centroid. In order to approximate the displacement field, linear interpolation
functions are employed in all three directions, resulting in a three-dimensional interpolation
function for each node. The one-dimensional shape functions in scaling direction read

N1(ξ) = 1− ξ and N2(ξ) = ξ, (8)

where N1(ξ) is always regarded as the interpolation function of the scaling center, since ξ = 0
at the scaling center and ξ = 1 at the boundary. We consider three cases to cover all possible
nV per face. If a considered face is triangular (nV = 3) and the section thereby tetrahedral, the
shape functions of the section read

N1(ξ, η, ζ) = ξ(1− η − ζ), N2(ξ, η) = ξη, N3(ξ, ζ) = ξζ, N0(ξ) = 1− ξ. (9)

Pyramidal sections with a quadrilateral base can be treated in the same manner, leading to

N1(ξ, η, ζ) =
1

4
ξ(1− η)(1− ζ), N2(ξ, η, ζ) =

1

4
ξ(1 + η)(1− ζ),

N3(ξ, η, ζ) =
1

4
ξ(1 + η)(1 + ζ) N4(ξ, η, ζ) =

1

4
ξ(1− η)(1 + ζ),

N0(ξ) = 1− ξ.

(10)

The third case includes every polygonal face with more than four vertices (nV > 4). Here,
the face with domain FF is partitioned a priori into triangular or quadrilateral facets and the
interpolation functions of Eqs. (9) and (10) can be applied, respectively. The lowest-order
pressure field is approximated by a constant function and is therefore constant for the entire
polyhedral element. According to [8, 10], it can be stated that volumetric locking cannot be
alleviated if a non-shared pressure degree of freedom is chosen.

Using the appropriate interpolation functions for each section and considering the finite ele-
ment assembly, Eqs. (4) are discretized as:[

Kuu Kup

Kpu −Kpp

]
︸ ︷︷ ︸

KT

[
∆û
∆p̂

]
=

[
f
0

]
−
[
ru
rp

]
. (11)

Note that Kpp = 0 in case of total incompressibility (κ = ∞).

4 STABILITY

In context of this work, we assume that the problem is coercive, indicating that the solvability
condition (see [11])

ûT
hKuuûh > 0 for all ûh satisfying Kpuûh = 0 (12)
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is fulfilled. A unique displacement field ûh is then guaranteed. Solvability of Eqs. (11) further-
more implies that [11]:

Kupp̂h = 0 only if p̂h = 0, (13)

which corresponds to the discrete inf-sup condition [12]. All nontrivial solutions to Kupp̂h = 0
are spurious pressure modes and will be determined in the next section.

5 SPURIOUS PRESSURE MODES

5.1 Push-forward operation

If we recall the directional derivative

DpGu ·∆p = b (δu, ∆p) =

∫
Ωh

δE :
∂Û

∂E
∆p dV, (14)

and apply the derivative with respect to the Green-Lagrange strain tensor as

∂Û

∂E
= 2

∂ (J − 1)

∂C
= JC−1 = JF−1F−T, (15)

Eq. (14) can be rewritten as

b (δu, ∆p) =

∫
Ωh

δE : F−1F−T ∆p JdV. (16)

A constant interpolation function is used to interpolate the pressure and a push-forward op-
eration is used to transfer the volume integral from the reference configuration to the current
configuration. The result for an element E becomes:

bE (δu, ∆pE) =

∫
Et
E

grad (δu)F : F−T dv ∆pE (17)

=

∫
Et
E

div (δu) dv ∆pE. (18)

Lastly, the divergence theorem is applied, leading to an integral over the element boundary:

bE (δu, ∆pE) =

∫
∂Et

E

δuT n da ∆pE. (19)

Following, we focus on an arbitrary vertex (⋆) in the interior of the mesh. This vertex is con-
nected to dF faces F . The approximation of one of these faces F , connected to the vertex (⋆),
is considered. The virtual displacement vector on the face F is approximated and written as:

δuh =
[
H1 H2 . . . HnV −1 H⋆

]


δu1

δu2
...

δunV −1

δu⋆

 . (20)
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Here, HV = HV (ξ, η)I3×3 includes the two-dimensional interpolation functions on the bound-
ary. Now, the approximation of Eq. (19) can be employed and the integral can be transferred to
the parameter space using the determinant of the spatial Jacobian matrix det̄j on the boundary:

bF (δuh, ∆pE) =

nV −1∑
V=1

δuT
V αV nF ∆pE︸ ︷︷ ︸

bV

+ δuT
⋆ α⋆ nF ∆pE︸ ︷︷ ︸

b⋆

. (21)

We consciously split the bilinear form into b⋆, belonging to the local node (⋆), and bV , including
the remaining vertices. Since both the interpolation functions and the determinant are strictly
positive if we consider convex faces, the following property is fulfilled:

αV = α⋆ =

∫ 1

−1

∫ 1

−1

HT
V (ξ, η) det̄j dξdη > 0 ∀ V. (22)

The three stiffness entries of each degree-of-freedom of the vertex (⋆) are solely determined by
α⋆ nF , which means that the pressure in every element that is not attached to the local node (⋆)
is uncoupled from δu⋆. This means that the investigation of the elements attached to vertex (⋆)
is sufficient in order to determine spurious pressure modes. To obtain the local stiffness matrix
K⋆

up ∈ R3×dE , we can assemble the discrete bilinear operators b⋆ for dE elements connected to
the vertex (⋆) as:

B⋆ (δu⋆, ∆pE) = δuT
⋆

[
m1 m2 ... mdE

]︸ ︷︷ ︸
K⋆

up


∆p1
∆p2

...
∆pdE


︸ ︷︷ ︸

∆p⋆

. (23)

Now that the local stiffness matrix K⋆
up is determined, we can verify Eq. (13). There must exist

dE − 3 basis vectors in the nullspace of K⋆
up since the rank-nullity theorem declares

nullity(K⋆
up) = dE − 3, (24)

if we assume that rank(K⋆
up) = 3.

5.2 Minimum of the number of intersecting elements

The easiest way to exclude basis vectors from the nullspace of K⋆
up is to reduce the number of

columns in the matrix. Therefore, we assume that we can construct a mesh in which any interior
vertex (⋆) is attached to dE = 4 elements. From now on, it is assumed that a non-degenerate
Voronoi mesh is used, which fulfills this criterion. Recalling the rank-nullity theorem, one
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nontrivial nullspace vector now exists. The system of equations in Eq. (23) with dE = 4 then
leads to:

B⋆ (δu⋆, ∆pE) = δuT
⋆

[
m1 m2 m3 m4

]︸ ︷︷ ︸
K⋆

up


∆p1
∆p2
∆p3
∆p4


︸ ︷︷ ︸

∆p⋆

. (25)

with

m1 =α⋆,1n1 + α⋆,2n2−α⋆,6n6, (26a)
m2 =α⋆,3n3 − α⋆,2n2+α⋆,4n4, (26b)
m3 =α⋆,5n5 − α⋆,1n1−α⋆,4n4, (26c)
m4 =α⋆,6n6 − α⋆,3n3−α⋆,5n5. (26d)

Here, it can be observed that 6 normal vectors occur, which belong to the dF = 6 faces inter-
secting in the local node (⋆) of the Voronoi mesh. In order to find the only nullspace vector ∆p⋆

s

of K⋆
up, a sequence of elementary row operations are used to bring the matrix into the reduced

row echelon form (RREF):

R = RREF
(
K⋆

up

)
=

1 0 0 R14

0 1 0 R24

0 0 1 R34.

 (27)

R14, R24 and R34 are determined as

R14 =
(m2 ×m3) ·m4

(m1 ×m2) ·m3

(28a)

R24 = −(m1 ×m3) ·m4

(m1 ×m2) ·m3

(28b)

R34 =
(m1 ×m2) ·m4

(m1 ×m2) ·m3

. (28c)

Here, we exclude the case in which (m1 ×m2) ·m3 = 0. It turns out that R14 = R24 = R34 =
−1. From this, we determine the only nullspace vector as the hydrostatic pressure mode:

∆p⋆
s =

[
∆p̌ ∆p̌ ∆p̌ ∆p̌

]T
. (29)

Since the aim of this work is the comparison between different element meshes regarding spu-
rious pressure modes, the number of elements that are attached to the inner vertex (⋆) can vary.
Note that the number of nullspace vectors in K⋆

up increases linearly with the number of ele-
ments intersecting in one inner local node (⋆). On hexahedral meshes with dE = 8, there exist
a total of 5 nullspace basis vectors. It can be shown that these can be combined to obtain a pure
checkerboard mode.
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6 NUMERICAL EXAMPLE

A semicircle with quadratic cross section is considered (see Fig. 1(A)). The body is described
by a Neo-Hookean nearly-incompressible material law with Young’s modulus E = 100 and
Poisson’s ratio ν = 0.4999. The boundary conditions are visualized in Figure 1(A). At X3 = 0,
homogeneous displacement boundary conditions are prescribed in the X2- and X3- directions.
At X1 = 0, the displacement is prescibed asū1

ū2

ū3

 =

 0
−3.75
−7.5

 . (30)

We take advantage of the symmetry of the problem, so that it is sufficient to construct only
half of the arc. In order to construct the curved mesh with different mesh patterns, the nodal
coordinates X̂1, X̂2 and X̂3 of a reference cuboid with dimensions B = 2, D = 2, H = 9π

2
are

transformed according to

X1 = X̂1 cos

(
X̂3

R

)
+R and X3 = X̂3 sin

(
X̂3

R

)
, (31)

Figure 1: (A) Problem description (B) Transformation of a cuboidal mesh to the considered curved mesh.

where the reference coordinate system X̂i is placed in the center of the cuboid’s face at X3 = 0.
Note that the coordinates in the X2-direction remain unchanged. The transformation bends the
domain into a semicircle with radius R = 9. This allows us to construct any arbitrary mesh
on the cuboid and map this mesh to the semicircle. We compare the occurrence of spurious
pressure modes in our polyhedral finite element formulation on two different meshes. Both
meshes are constructed using a 3D Voronoi meshing algorithm in the reference domain. The
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Figure 2: Deformed configuration discretized by meshes based on ŜHCB (left) and ŜHEX (right).

hexahedral discretization with a total of 1024 elements can be obtained by constructing a regular
grid of Voronoi sites referred to as the set ŜHEX, which is defined as

ŜHEX =

{
−7

8
, −5

8
, ...,

7

8

}
×
{
−7

8
, −5

8
, ...,

7

8

}
×
{
9π

64
,
27π

64
, ...,

279π

64

}
. (32)

Here, eight elements are attached to a node in the interior of the mesh. Additionally, a bitrun-
cated cubic honeycomb (HCB) pattern is chosen with the following seed point arrangement:

ŜHCB = Ŝ1
HCB ∪ Ŝ2

HCB (33)

with

Ŝ1
HCB =

{
−3

4
, −1

4
,
1

4
,
3

4

}
×
{
−3

4
, −1

4
,
1

4
,
3

4

}
×
{

9π

136
,
27π

136
, ...,

603π

136

}
(34a)

Ŝ2
HCB =

{
−1, −1

2
,
1

2
, 1

}
×
{
−1, −1

2
,
1

2
, 1

}
×
{
0,

9π

68
, ...,

9π

2

}
. (34b)

The combination of these subsets ensures a maximum of four intersecting Voronoi elements
for each individual node, which should suppress spurious pressure modes. The deformed con-
figuration is depicted in Figure 2 for both mesh patterns, respectively. The discrete pressure
fields are shown in Fig. 3. It can be recognized that the hexahedral mesh displays an oscil-
latory behavior, whereas the pressure on the honeycomb mesh is smooth and no pollution of
the pressure solution is recognizable. Moreover, the pressure increment is observed in each
Newton-Raphson iteration (i = 1, 2, 3, 4, 5, 6) of the last load step (k = 5). The results along
the inner radius at the edge X2 = −1 are shown in Figure 4. It should be noted that the angle is
zero at (X1 = 8, X3 = 0) and equal to π/2 at (X1 = 0, X3 = 8). The stabilization effect of
the honeycomb mesh is clearly visible in each Newton-Raphson iteration.

9



B. Sauren, E. Oheim and S.Klinkel

Figure 3: (A) - Bottom view onto the observed arc with prescribed displacement ū. Honeycomb (HCB) dis-
cretization and corresponding pressure field (left), hexahedral (HEX) discretization and corresponding pressure
field (right). (B) - Total pressure distribution along the inner radius at R = 8.

Figure 4: Pressure increment ∆pi along the inner radius during each Newton-Raphson iteration (i = 1, 2, 3, 4, 5, 6)
of the 5th load step (k = 5).

10



B. Sauren, E. Oheim and S.Klinkel

REFERENCES

[1] S. Reese and P. Wriggers, “A stabilization technique to avoid hourglassing in finite elastic-
ity,” International Journal for Numerical Methods in Engineering, vol. 48, no. 1, pp. 79–
109, 2000.

[2] J.-C. Simo and F. Armero, “Geometrically non-linear enhanced strain mixed methods and
the method of incompatible modes,” International Journal for Numerical Methods in En-
gineering, vol. 33, no. 7, pp. 1413–1449, 1992.

[3] U. Brink and E. Stein, “On some mixed finite element methods for incompressible and
nearly incompressible finite elasticity,” Computational Mechanics, vol. 19, no. 1, pp. 105–
119, 1996.

[4] O. A. Ladyzhenskaya, “The mathematical theory of viscous incompressible flow,” vol. 76,
1969.
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