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Abstract. This paper is concerned with the modeling of power dissipation due to friction and
its relation with wear estimation in wheel–rail contact. In contact models, wear is usually
described in terms of the wear depth function. This function modifies the gap between the
contacting bodies as well as the shape of the surfaces of the wheel and rail in contact. In this
paper, besides the wear depth function, the dissipated energy, rather than the contact stress, is
taken into account to evaluate the wear impact on rail or wheel surfaces. The dissipated energy
allows us to more precisely evaluate the wear debris amount as well as the depth of wear and
its distribution along the contact interface. A two-dimensional rolling contact problem with
frictional heat flow is considered. The elasto-plastic deformation of the rail is assumed. This
contact problem is governed by a coupled system of mechanical and thermal equations in terms
of generalized stresses, displacement and temperature. The finite element method is used to
discretize this problem. The generalized Newton method is applied to numerically solve this
mechanical subproblem. The dissipated power is evaluated based on the resultant force and slip
at a reference point. Numerical results including the distribution of slip velocity, power factor
and wear rate are provided and discussed.

1 INTRODUCTION

The contact occurring between the wheel moving over the rail is characterized by high stress
in contact patch, creep distribution as well as the friction phenomenon. It can lead to the grad-
ually wear of surfaces and deterioration of wheel and rail operational conditions [1]. Rolling
contact fatigue phenomenon is frequently observed in the rolling contact. This phenomenon
caused by high alternating stress field in the contact area leads to material removal driven by
crack propagation. This phenomenon also accounts for wheel squeal noise [2]. This unpleasant
noise occurring mainly due to lateral creepage is troublesome in densely populated areas.

Wear phenomenon is described as a gradual removal or deformation of material from the
surface of solid body subjected to physical or chemical factors [1, 3]. This phenomenon may be
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generated by corrosion, repeated cyclical rubbing between two surfaces, or different chemical
factors. Although many different wear laws are formulated in literature or used in industry, they
can be divided into two groups [1]. The first approach to formulate the wear law is based on the
equations relating normal loads and the amount of the worn material. The other approach con-
sists in evaluating the volume of the worn material as proportional to energy or power dissipated
due to friction forces at the contact interface. Both approaches can be also considered either as
global or local wear laws. Global form of the wear law leads to estimation of the volume of
the worn material based on calculation of global forces and creepage along the contact interface
[1].

The wear evolution process of wheels and rails is slowly strongly nonlinear phenomenon.
From experimental or numerical tests [1, 5, 6] it follows that this process depends on many vari-
ables including operating conditions, initial profiles, contact and friction conditions, stresses
and their distribution, temperature, materials or surface properties and parameters. Since these
factors are changing during the wheel movement, so the friction coefficient as well as friction
energy are changing. Analysis of different parameters influencing the evolution of wear process
as well as the results of experiments allow the researchers to formulate many different wear pre-
diction models available in literature [1, 3, 5, 7]. Rolling contact problems with friction and/or
heat flow are intensively studied in literature [14, 15, 16].

In this paper we shall use and implement power dissipation model combined with Archard
model to compute wear rather than classic Archard model [1] only. Recall from [8, 9], since the
wear distribution updates the contact geometry, it causes that numerical modelling of contact
problems is not easy and generates interest in developing new methods. The friction is governed
by Coulomb model [1]. Moreover heat flow due to friction is also taken into account [11]. We
focus on power dissipation modelling rather than stresses as in [16]. This work develops new
approach to estimate numerically power dissipation and wear modelling in wheel - rail contact
problems and provides new insights into the research of these problems. Elasto-plastic defor-
mation of rail material is assumed. Wear estimation is based on combined power dissipation
and Archard models rather than Archard model only. The simulation of the discretized contact
problem is based on generalized Newton method [17] rather than Fastsim or Contact software
methods [19]. The update finite element mesh algorithm related to the worn material volume
rather than general type algorithm is used. Based on numerical results a few conclusions are
formulated. Contact patches obtained for elasto-plastic case are characterized by longer zones
and lower stress intensity than in the elastic case. For relative small increase of temperature the
contact patches are slightly longer than for plasto-elastic model. The power dissipated as well
as the wear rate are strongly dependent on the friction coefficient, i.e. they increase when the
friction coefficient increases.

2 WHEEL-RAIL CONTACT PROBLEM

Let us consider two-dimensional rolling contact problem (see Fig. 1). The rail strip occupies
two-dimensional domain Ω ⊂ R2 and is located on a rigid foundation. The strip is subject to
elasto-plastic deformation by the wheel rolling along the upper surface of the strip and pressed
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Figure 1: Rolling contact problem.

into it. Geometrical parameters h > 0 and r0 > 0 denote, respectively, the height of the strip
and the radius of the wheel. Since the wheel is pressed into the strip it means that the distance
h0 of wheel axis from rail upper surface satisfies geometrical condition h0 < h + r0. The strip
is assumed to be suitably long, i.e., it has much bigger length comparing to the wheel radius
r0. The strip is clamped along both vertical edges. By Γ we denote the boundary of domain
Ω. It consists from two sub-boundaries Γ0 and ΓC such that their intersection is an empty set.
The contact between the wheel and the strip appears along the boundary ΓC and is described by
imposed contact non-penetration and friction conditions. Denote the strip displacement and its
absolute temperature by u and θ, respectively. Both functions are dependent on spatial variable
x = (x1, x2) ∈ Ω and time variable t ∈ [0, T ], T > 0 is a given constant, i.e. we shall write u =
u(x, t) = (u1, u2) and θ = θ(x, t). The strip deformation under moving loading is characterized
in terms of Cauchy stress tensor and linearized strain tensor [20] denoted, respectively by, σ =
{σij}, i, j = 1, 2, σij = σji and εe(u) = {εeij(u)}. The Cauchy stress tensor and the elastic
strain tensor are related by the Hooke’s law. Strip mass density we shall denote by ρ. Moreover,
λ as well as γ are Lamé coefficients of the strip material [19, 20]. The thermal expansion and
the heat capacity coefficients are denoted by α and cp, respectively. Moreover by div σ(u) we
denote the divergence operator div σ(u) of stress. The elasto-plastic deformation of the strip is
governed by the additive small strain plasticity model [20]. Von Mises yield function is used to
define the set of admissible stresses. The stress σ is assumed to satisfy the consistency condition
[20]. For a given temperature θ, the displacement u, the stress σ satisfies in domain Ω and in
time interval (0, T ) the governing equation:

ρcp
∂2u

∂t2
= divσ − α(3λ+ 2γ)∇θ, (1)

The following boundary conditions are imposed on the displacement u:

u = 0 on ΓC and σ · n = F on ΓC . (2)
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Normal traction vector F = (F1, F2) is a priori not known. This vector follows from conditions
of non-penetration and friction imposed on contact sub-boundary ΓC [8, 14].

u2 + h̃r + w ≤ 0, F2 ≤ 0, (u2 + h̃r + w)F2 = 0. (3)

|F1| ≤ µ|F2|, F1du1 ≤ 0, (|F1| − µ|F2|)du1 = 0, (4)

In (3), h̃r and w denote, respectively, the gap between the wheel and rail as well as wear depth
function. From contact geometry it follows that the gap function is equal to h̃r = h − h0 +√
r20 − (u1 + x1)2. The wear depth function w is determined on the contact interface on obeys

Archard’s law (12). µ is a friction coefficient. Due to the work of friction forces the heat energy
is generated during the wheel movement. In turn it generates the changes of the rail temperature
θ. We assume that the heat transfer is due to conductivity only. Since the wheel moves along
the rail this heat flow is also not stationary. So, the strip temperature evolution is determined by
non stationary heat conductive equation. Let us denote by κ̄ a thermal conductivity coefficient.
Therefore, temperature θ in (1) in time interval (0, T ) and in the strip domain Ω is governed by
heat conduction equation:

ρcp
∂θ

∂t
= κ̄4 θ. (5)

In time interval (0, T ) the temperature function θ satisfies also the boundary condition along the
boundary Γ:

κ̄
∂θ

∂n
= Q on ΓC and κ̄

∂θ

∂n
= 0 on Γ0. (6)

Heat flux function Q is generated due to frictional force. This function is determined by the
friction coefficient, friction force, sliding velocity. It also depends on the thermal material
resistance coefficient. We shall assume function Q is stationary.

2.1 Wear evaluation models

We shall consider abrasive wear only. In this type of wear the worn material in the form
of wear debris is assumed to be shifted away from the gap between the bodies. The worn and
removed material updates the location and geometry of the contacting surfaces. It implies that
the position and shape of the contacting surfaces is also updated. The modification of contact
interface leads finally to update of tangential and normal forces along the contact patch. In turn,
it causes the modification of wear process and gap between the bodies. Due to this complex
relation between contact geometry and forces modelling of the contact problems with wear is
recognized as challenging task [8].

2.1.1 Dissipated energy wear model

In literature there are proposed many wear laws based on evaluation of the dissipated energy
due to work of the friction force. These formulations include, among others, Zobory, Krause-
Poll, BRR and USFD wear laws [1, 5]. In this approach the removed material volume V ol is
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estimated. The amount of the removed material directly depends on the frictional work and is
calculated using the formula:

V ol =

{
αfEf Pf/A ≤ πlim

ksmαfEf otherwise
(7)

where ksm > 0, A > 0 and πlim > 0 denote a proportionality constant, contact patch area and
a threshold value, respectively. In (7) the estimated experimentally wear constants αf > 0 and
αs = ksmαf > are associated, respectively, with mild and severe wear regimes. The frictional
workEf may be estimated from the frictional power Pf and time integration step4t as follows:

Ef = Pf 4 t and Pf = Tγ · V = (| Fxζ | + | Fyη | + |Mzω |) · V (8)

The power Pf is calculated as the product of velocity V as well as force F = [Fx, Fy] and
creepage ζ = [ζx, ζy] consisting from longitudinal and lateral components. Moreover in 3D case
the product of spin momentMz and spin creepage ω is added. The energy wear coefficient αf is
determined experimentally [1] and belongs to rail material parameters. Its range of applicability
is large [1]. In order to evaluate the total dissipated energy Ef let us consider first one cycle of
the movement of the frictional force F1 from point x1min to point x1max of the contact interface
during time interval (t−4t, t). Using formula (4), the energy Ef i dissipated in one slip cycle
i is equal to the product of friction force and sliding distance according to the formula:

Ef i =

∫ t

t−4t

| F1 | dx1 =

∫ t

t−4t

µ | F2 | dx1 = µ | F2 | (x1(t)− x1(t−4t)), (9)

Since in formula (9) the history of sliding displacement is used, it makes it very useful in energy
modelling for bodies in contact subject to plastic deformation. Summing energies dissipated in
each cycle we obtain the formula describing the total dissipated energy Ef as equal to

Ef = αf

∑
i

Ef i (10)

We shall refer to the system (9)-(10) as the description of the global dissipated energy method
[8].

2.1.2 Wear depth evaluation

Nowadays, Archard’s wear law [7] seems to be most frequently used wear law. According
to it the volume of the worn material is dependent on the wear coefficient, normal force and
sliding velocity divided by the hardness of the softer contact material. The wear coefficient is
calculated experimentally. In literature can be found different estimations of wear coefficients.
In USFD wear model the wear rate is the function of Tγ index. The wear rate is linear and
constant for small and medium values of this index, respectively, and is rapidly increasing for
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high values of this index. From the local wear analysis [8] it follows that the local wear depth
function w = w(x) can be estimated from the total dissipated energy:

w = αwEf . (11)

The local energy wear coefficient αw > 0, appearing in (11) as proportionality coefficient,
is determined experimentally and belongs to rail material parameters [1]. This coefficient is
usually set as equal to αw = αf , especially for a unit contact patch [1]. From (9) and (11) we
may estimate also the wear rate function dw as equal to

dw = αwµ | F2 | du1. (12)

The wear rate law (12) relating the increment of the wear depth with longitudinal velocity du1,
normal pressure F2 represents the classical Archard wear law [7]. This function appears also
in the condition (3) and can be called the inner variable. Since it updates the gap between the
bodies in contact, so it also updates the solution of contact problem (1)-(4). The system (1)-(6)
and (10)-(12) consisting from equations as well as equality and inequality type boundary con-
ditions governs the thermo-elasto-plastic wheel-rail contact problem in terms of displacement,
generalized stresses and temperature. In order to estimate the dissipated power and wear we
shall solve it numerically. Finite element and finite difference methods have been used to obtain
finite dimensional formulation of this system.

3 NUMERICAL ALGORITHM

In the literature, there are many proposed numerical models and methods to implement wear
laws as well as to calculate wheel–rail energy dissipation and wear (see the references in re-
view papers [1, 5]). All these approaches are facing and trying to solve the same challenges
consisting in the mutual dependence between the simulated dynamical model and rail or wheel
profiles altered due to wear. Nowadays, most frequently, a two-step approach is used. First, for
a given profile, a vehicle dynamic problem is solved and then updated due to the wear geometry
of profiles being calculated. Next, for a given updated profile from the previous step, a dynamic
problem is solved.

In the rolling contact problem (1)–(6) and (10)–(12), the calculated contact traction and wear
depth depend on the thermal distortion of the wheel and the rail strip. On the other hand, the
heat flow as well as the temperature achieved by the strip directly depend on contact pressure
and on the rail profile. So, it is a system of coupled equations governing the thermo-elasto-
plastic contact problem. Numerically, either we can solve mechanical and thermal equations
simultaneously, i.e., in the same time instant, or we can decouple this system of equations and
solve them sequentially in time. Since the second strategy is easier to implement, it has been
used.

The wear evaluation algorithm in time instant t and the consecutive time instant t+dt, where
dt denotes the time increment, is displayed on Figure 2. Assume the temperature θt at time t
is given. For time t, the mechanical subsystem (1)–(4) is solved and normal contact traction
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Calculate tractions Ft

and wear wt
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temperature θt+dt

|θt+dt -θt| ≤  ε

t=T

θt = θt+dt

N

N

t=t+dt

Update rail profile 

Stop

Initial data 

Figure 2: Wear evaluation algorithm.

F t
2 and wear wt are evaluated. Based on it, the computations in the next time instant t + dt

are executed. In this step, the thermal system (5) and (6) is solved, and the temperature θt+dt

at time t + dt is calculated. The heat flux Qt+dt at time step t + dt in (6) is calculated as a
time instant from formula Qt+dt = µV F t

2 using traction force calculated in the previous time
step. The solution of the thermo-mechanical system is stopped if the difference in temperatures
calculated in consecutive time instants satisfies:

| θt+dt − θt |≤ ε, (13)

for a given suitable small ε > 0. The stopping condition (13) means that the temperature has
reached a stable state and is almost constant. In the case that this condition is not satisfied,
for a new calculated temperature θt+dt at time step t + dt, the mechanical subsystem (1)–(4) is
solved. When the thermo-mechanical system (1)–(6) is solved, the worn volume material V olt

is evaluated based on (9)–(12) and an update of the rail profile is calculated.

4 NUMERICAL RESULTS

The distribution of the dissipated power and temperature as well as the evolution of the wear
depth and the worn material in the wheel–rail system (1)–(12) were estimated numerically. The
MATLAB programming environment was used to realize computations. Domain Ω occupied
by the strip was taken as rectangular in R2:

Ω = {x = (x1, x2) ∈ R2 : x1 ∈ (−a, a), x2 ∈ (0, b)}. (14)

with a = 20 and b = 10. The finite element method was used to replace domain Ω with finite
elements. It was divided into 1240 quadrilateral elements. Each element had eight nodes. The
mesh was adapted to ensure good accuracy. In the contact area, the finest mesh was used. Far
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Figure 3: Slip velocity distribution over the strip.

from this area, the mesh was coarser. In the computations, the velocity V , radius of the wheel r0
and the friction coefficient µ were, respectively, set to V = 25 m/s, r0 = 0.46 m and µ = 0.5. The
thermal resistance coefficient r = 1000 KNs/J was used. A force equal to 96 kN was applied to
what is equivalent to the penetration of the wheel equal to δ = 0.1 · 10−3 m. The temperature
of the outside air was set to θg = 20 ◦C.

4.1 Distribution of Dissipation Power

Figures 3 and 4 display, respectively, the slip velocity and power factor distributions in the x1
direction along the contact interface. Figure 3 shows the slip velocity distribution. This graph
indicates that this velocity is nonsmooth. It is rapidly increasing to reach the maximum value
and next rapidly decreasing to zero. Reports in [19] indicate that the calculation of this velocity
is strongly dependent on the mesh size. The power factor pw along the x1 axis is defined as
follows:

pw(x1, x2) = p(x1, x2) · v(x1, x2), (15)

where p and v denote, respectively, contact pressure and slip velocity. The power factor (15)
measures the power dissipated but is slightly different than the product of tangential stress and
slip velocity. The contact pressure is calculated based on (1)–(8). The friction power appears
when the wheel enters the contact zone, increases to reach the maximum and next decreases to
zero when the wheel goes outside the contact zone. As reported in [19], the transversal stress is
higher for the elastic than for the elasto-plastic model. For these two materials, the peaks of this
stress are also differently located. The contact zone is longer for elasto-plastic than for elastic
materials. The distributions of slip velocity as well as power factor displayed in Figures 3 and 4
are in accordance with physical reasoning and are comparable to distributions obtained in [19]
using other methods.
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Figure 4: Power factor distribution on the contact patch.
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Figure 5: Wear depth distribution.

4.2 Wear Depth Distribution

The wear depth distribution over the contact patch, displayed in Figure 5, was calculated
using (7)–(12). When the contact starts, the wear depth grows smoothly and quickly, and a
large amount of worn material is removed. When the wheel is approaching the end of the
contact zone, the wear depth function rapidly decreases.

Remark: due to the regular wear map, this graph is also regular. Discontinuous wear maps
may also generate discontinuous wear depth distributions. Figure 6 displays the dependence
of the power dissipation on the friction coefficient. The amount of dissipated power is strongly
correlated with the change in the friction coefficient. For higher values of the friction coefficient,
the dissipated energy amount is also higher. It implies that the creep force and creepage are also
increasing when the friction coefficient is increasing. Since the wear rate is strongly dependent
on the power dissipation by means of the friction work, the dependence of wear on the friction
coefficient is similar to that found in the power dissipation results in Figure 6. The data in
Figure 7 confirm this expectation.
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Figure 6: The dependence of power dissipation on friction coefficient.

The method to solve the mechanical subsystem (1)–(4) is quickly convergent. It required 30
iterations to find the solution of this system. At the beginning of iterations, the active sets were
calculated not precisely, and they changed during iterations. Closer to the final solution, these
sets were stable, which ensures convergence.

5 CONCLUSIONS

Besides Archard’s wear model, in the paper, the power dissipation approach has been used to
estimate the wear phenomenon and its impact on wheel–rail elasto-plastic contact with frictional
heat flow. This approach combined with the application of semi-smooth Newton and Cholesky
methods to numerically solve contact problems allows us to follow the modification of the dis-
sipated power, the wear depth distributions as well as the location of the contact surfaces. From
numerical results, it follows that, in the elasto-plastic case, the calculated contact patches are
longer than in the elastic case. Moreover, the contact stress is also lower than in the elastic case.
The power dissipated as well as the wear rate are strongly dependent on the friction coefficient.
Moreover, the obtained results confirm the robustness and efficiency of the proposed method,
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Figure 7: The wear rate as a function of friction coefficient.
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including the update of the contact interface location and geometry, in estimation of the wear
distribution along the contact patch. On the other hand, this research indicates problems which
are not fully clear and will be the subject of future research. The dependence of the wear pro-
cess on hardening as well as temperature and material parameters requires additional research.
The computations for 3D wheel–rail contact are planned to be executed. Future research will
also include the treatment and investigation of the wear evolution process in terms of the shape
optimization problem. The location and shape of the contact area may be considered as a design
variable [21]. The volume of the worn material or the dissipated power may be chosen as an
optimization criterion. The calculated wheel or rail parameters will ensure the minimal volume
of the removed material.
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