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ABSTRACT  
Laboratory and geophysical tests are commonly used in site characterization. Combining these data sets based on 
empirical relationships can essentially enhance data interpretation. While in traditional approaches, the uncertainties in 
the relationship between these data sets are ignored. The Bayesian updating method is used to consider these uncertainties.  
Besides, the uncertainties due to measurement errors in the laboratory tests, particularly for preconsolidation pressure,  
are considered based on the kriging fitting method. The outcomes of kriging fitting are utilized to establish the prior 
distribution, and these outcomes are then compared against the baseline established by the trend fitting method. The 
Markov chain Monte Carlo (MCMC) algorithm is applied to incorporate the shear wave velocity measurements from a 
seismic dilatometer test to derive the posterior distribution. Bayesian updating of parameters considering measurement 
errors is able to get a more convincing design profile.  
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1. Introduction 
Multi-source data are commonly included in the 

process of site characterizations, such as geophysical, in-
situ testing and laboratory data. While these data are 
usually considered as separated information or combined 
based on determining methods in site investigation 
programs. Geophysical tests provide an economical and 
quick way to identify subsoil stratigraphy. However,  
geophysical data can only provide indirect information to 
assess material parameters.  To enhance the data 
interpretation, in-situ tests and laboratory data can be 
combined with geophysical data to interpret stratigraphic 
parameters. 

Integration of different data sets can provide more 
reliable site characterization results, reducing the 
uncertainties associated with a single measurement (e.g., 
Xie et al. 2022). Commonly this integration is done 
manually and largely based on engineering judgment and 
experience, which will result in additional uncertainties. 
Probabilistic numerical methods can be used to combine 
multi-source data and extract more comprehensive 
information. Varied types of data may have different 
units and resolutions. Probabilistic numerical methods 
such as the Bayesian updating method can be used to 
increase the resolution of stratigraphic assessments by 
combining geophysics and high-quality laboratory 
measurements (Foti 2012). Bayesian updating method is 
well suited for geotechnical data fusion, particularly 
when limited information is available. Kriging 
interpolation method is widely used to estimate the 
values in unsampled locations (Huang et al. 2016, 2018) 
based on limited data. However, kriging interpolation 
technique assumes no measurement error is incurred, 
which is not the case in geotechnical engineering. To 

consider the uncertainties due to measurement errors in 
the test data, kriging fitting method is applied to 
overcome this deficiency. 

In this paper, Bayesian updating method is used to 
combine in-situ shear wave velocity measurements and 
laboratory tests at the same location based on a real case 
study. The preconsolidation pressure values were 
obtained from constant rate of strain consolidation tests 
and the shear wave velocity data were obtained from a 
seismic dilatometer test. Related information can be 
found in the previous work in Huang et al. (2016). To 
consider the uncertainties due to measurement errors in 
the laboratory tests for the preconsolidation pressure, 
kriging fitting method is applied. The fitting results are 
used to derive the prior distribution of the 
preconsolidation pressures. Trend fitting method is also 
used as a baseline. The theory can be extended to two and 
three dimensions (Huang et al. 2018). The procedure is 
general and can be used for more realistic applications. 

2. Integration framework 
Bayesian updating method provides a useful 

framework for combining data sets by quantitatively 
analyzing uncertainties and providing safer predictions in 
risk-based design (Kelly and Huang 2015). Bayes’ 
formula can be written as Eq. (1): 

𝑃(𝜃 ∣ 𝑦) ∝ 𝑃(𝑦 ∣ 𝜃)𝑃(𝜃)  (1) 

where 𝑃(θ)is the prior probability distribution of the 
material parameters, 𝑃(𝑦 ∣ 𝜃)  is the probability of 
measurements 𝑦 conditional on the material parameters 
𝜃 , and 𝑃(𝜃 ∣ 𝑦)  is the posterior distribution of the 
material parameters updated by the measurements. 



 

2.1. Considering measurement errors in the 
prior distribution 

Kriging method can be applied to get the prior 
probability distribution of the material parameters along 
with the depth (Huang et al. 2016). Kriging is often used 
to predict the unsampled locations based on the known 
values. The Kriging method averages over the errors to 
make the predictions spatial smoother (Griffiths and 
Fenton 2008). Kriging for data with measurement errors 
is called Kriging fitting.  

For separating the random measurement errors 
associated with a particular test from the inherent spatial 
variability of the soil properties, Baecher (1982)  
proposed the following measurement error model for 
observation at  𝑥!: 

𝑿"(𝑥!) = 𝑿(𝑥!) + 𝜀(𝑥!) (2) 

where 𝑿(𝑥!) are the real soil properties at sampled 
locations, 𝜀(𝑥!)  is a site-specific zero-mean 
measurement error with known variance of 𝜎#$  for each 
measurement. 

In the kriging fitting method, the weighting 
coefficients vector can be represented as: 

𝜷 = (𝑪 + 𝑪#)%&𝒃 (3) 

where 𝑪  is the matrix of covariances between the 
known values at the sampled locations. 𝒃 is the vector of 
the covariances between the known values and the 
prediction locations. And 𝑪# is the matrix of covariances 
between measurement errors at the sampled locations. 
𝑪#  is a diagonal matrix which diagonal terms are the 
variances of measurement error 𝜎#$  represents the 
variance of the known sample values. The kriging 
variance at each location can be expressed in a matrix 
form: 

𝜎'$ = 𝜎$ − 𝜷(𝒃 (4) 

2.2. Likelihood function 

Let 𝒚)  denotes a type of observation, the likelihood 
function includes the mechanical model  𝑓(𝜽) to convert 
the measurement to the property of concern. The 
transformed results are unavoidably different from the 
actual value due to the measurement error and model 
transfer errors, which can be known as mean error 𝝁". If 
this error is assumed to be normally distributed, the 
likelihood function of measurement 𝒚 can be written as:  

𝑃(𝒚) ∣ 𝜽) = 𝜙 8𝒚!%+(𝜽)%𝝁"
0"

9 (5) 

where 𝜎" is the standard deviation of the mean error, 
and 𝜙 is the probability density function of the standard 
normal distribution. 

2.3. Posterior distribution 

Posterior distribution indicates the degree to which 
the real values are known when the new measurement is 
taken into account. The posterior distribution is often 
difficult to get the analytical representation. Therefore, 
the posterior distribution is sampled numerically by 
sampling method. MCMC is applied to sample the 

posterior distribution. In MCMC, a Markov chain is used 
to generate several steps in which a test realization is 
proposed for the posterior distribution parameters. Each 
sample is drawn from the probability distribution which 
is dependent upon the last samples. The chain will settle 
on the desired quantity which is independent of the initial 
startup implementation. The accepted realizations of the 
Markov Chain are sampled with their distribution 
corresponding to that of the posterior distribution (Beck 
and Au 2002). 

3. Case study 
A case study of combining preconsolidation pressures 

obtained from the laboratory test with the seismic data is 
provided. The real engineering data come from a soft soil 
test site in Ballina, New South Wales, Australia, which is 
operated by the Australian Research Council Centre of 
Excellence for Geotechnical Science and Engineering. 
Note that the data start from reduced level -1 mAHD to 
avoid the distortion of near-surface results. The semi-
empirical relationship is used to convert the seismic data 
into preconsolidation pressure data. Then the Bayesian 
updating method is employed to combine multi-source 
data and get the more convincing posterior data. The 
kriging fitting method is used to estimate the prior 
distribution of preconsolidation pressures with 
measurement errors. 

3.1. Prior interpretation of preconsolidation 
pressures 

The laboratory test data is treated as prior 
information. Assuming the prior data has a log-normal 
distribution cause the pressure cannot be a negative 
value. The preconsolidation pressure is assumed to 
increase with a linear trend as the baseline, which can be 
achieved by fitting with the least square method. The 
standard deviation of the detrended data is 6.39kPa. 
Kriging fitting method is applied to consider the 
laboratory test measurement errors to get a better 
estimation of the random field between known data. The 
measurement errors are assumed to be 10% (σ m  =
 0.639 kPa) of the standard deviation of the detrended 
data (Yang et al., 2022). The prior standard deviation in 
each location can be calculated based on Eq. (4). To get 
the matrix of covariances used in Eq. (4), Markov 
correlation function is used in this paper due to its 
simplicity. The Markov correlation function is shown in 
Eq. (6): 

𝜌E𝜏)2G = 𝑒3%$4!#5/(7$) (6) 

where 𝜌E𝜏)2G  is correlation coefficient between 
properties assigned to two points 𝑖 and 𝑗 in the random 
field separated by an absolute distance 𝜏)2.  

For one-dimensional problem, the scale of fluctuation 
is only applied to the depth direction, which is assumed 
to be 5m in this paper. Scale of fluctuation can be 
determined by fitting the autocorrelation function model 
if more data are available (Huang et al. 2018). 

  Linear trend fitting is compared with the kriging 
fitting method. From Fig. 1, it can be found that trend 
fitting cannot consider the spatial correlation between the 



 

known points and may lead to a large deviation at partial 
points. The kriging fitting method can take the 
measurement errors into consideration, which can reflect 
the prior distribution more reasonably. 

 
Figure 1. Prior distribution of preconsolidation pressures.  

3.2. Transformation between preconsolidation 
pressures and shear wave velocity 

Empirical relationship (Atkinson 2017) is used to 
correlate the preconsolidation pressure with the shear 
wave velocity (see Eq. (7)). 
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(
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9
:
𝑂𝐶𝑅# (7) 

where 𝐺;  is the small strain stiffness, 𝑝<  is 
normalizing pressure taken to be 1kpa, A, n and m are 
constants, 𝜎=(  is the effective vertical stress. 𝑂𝐶𝑅  is 
related to the preconsolidation pressure. The shear wave 
velocity is related to the 𝐺;. 

Eq. (7) was developed based on tests on reconstituted 
samples of several fine-grained soils (Viggiani and 
Atkinson, 1995). The relationship was shown to hold for 
both reconstituted and undisturbed clay under isotropic 
and anisotropic stress states not close to failure. This 
model function can be used to convert the geophysical 
data into a form that can be compared with more accurate 

laboratory test data. A relationship between 
preconsolidation pressure and shear wave velocity is 
obtained by adopting the values n = 0.9, m = 0.35 and A 
= 170 estimated from Atkinson (2017). Preconsolidation 
pressures assessed from a constant rate of compression 
tests and the ones interpreted from a seismic dilatometer 
test are compared in Fig. 2. The laboratory test data are 
considered as the prior set of material parameters and the 
seismic dilatometer data are the new observations. 

 
Figure 2. Posterior mean preconsolidation pressures using 

trend analysis as prior distribution. 

3.3. Posterior preconsolidation pressure 
results 

The posterior preconsolidation pressure results are 
highly related to the mean and standard deviation of the 
uncertainties in the seismic dilatometer data and the 
empirical model function. However, these uncertainties 
are hard to obtain for calculation.  To illustrate the 
proposed framework, small standard deviation of 
measurement errors (1kPa) is allocated to the shear wave 
velocities (Foti 2012). The posterior solution will be 
dominated by the one with smaller errors in prior 
information and measurements. 



 

The posterior preconsolidation pressure results based 
on the kriging fitting and trend analysis are shown in 
Figs. 2 and 3. 

 

 
Figure 3. Posterior mean preconsolidation pressures using 

kriging fitting as prior distribution. 

Figs. 2 and 3 reveal that the mean values of the 
posterior distributions updated from both trend fitting 
and kriging fitting methods are positioned between the 
laboratory and geophysical data. Notably, the data results 
from kriging fitting demonstrate more significant 
fluctuations in the depth direction, particularly in areas 
with laboratory test data. This observation can be 
attributed to the kriging fitting method's enhanced ability 
to leverage data from test points where available, 
effectively capturing the variability in those regions. 

4. Discussion 
The above sections demonstrated the details of 

combining multi-source data based on the Bayesian 
updating method. This framework is an enhancement of 
conventional methods based on engineering judgment 
and experience to combine multi-source data sets. 

The Bayesian updating approach can be extended to 
include data both in the horizontal and vertical directions. 
Then the material parameters can be updated based on the 
laboratory and geophysical data in two or three 

dimensions so that the spatial relationship of the material 
grid points can be considered instead of assigning 
uniform distribution to a specific stratum. The biggest 
challenge in this framework is to quantify the model 
errors. Further research for determining the model errors 
can be found in Ching et al. (2016). 

5. Conclusion 
This paper developed a framework that is well-suited 

to enhance data interpretation based on multi-source 
geotechnical data. How to consider the errors for the prior 
and measurement data are discussed. Geotechnical data 
are used consistently and based on rigorous statistical 
principles; the uncertainties of pre-consolidation pressure 
can be reduced. However, more work needs to be done in 
determining the value of measurement errors. 
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