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Abstract. In this study, we propose a sub-voxel learning method based on a Neural 

Operator and predict the thermal temperature field on a circuit board in unsteady heat 

conduction. CAE analysis reduces the cost of experiments using prototypes in the design 

phase. However, the computational cost is high because the number of trials increases due to 

changes in analysis conditions. Predictions made by machine learning are less accurate than 

those made by CAE analysis, but they can significantly reduce computational costs. In general, 

machine learning is difficult to extrapolate. Thus, the concept of a Neural Operator has 

attracted attention as one machine learning method incorporating physical laws. In this study, 

we propose a sub-voxel learning method based on the Neural Operator, inspired by the 

forward Euler method, and predict the thermal temperature field on a circuit board during 

unsteady heat conduction. The input data is the analysis data of the current cycle step, and the 

output data is the data of the next cycle step. Dummy temperatures were set according to the 

heat generation of each IC in the input data of the 0th cycle step, and pseudo-difference values 

were generated to extract features. The prediction accuracy of the next cycle step was 

compared with and without dummy temperatures. The results showed that the maximum 
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relative error decreased from 22.0% to 7.4%. After downsampling, the loss decreased at a 

slower rate. In addition, the number of data in the 20-40[°C] temperature field was reduced by 

more than half, and the learning cost decreased by 46.2%. 
 

1 INTRODUCTION 

In recent years, CAE analysis has been instrumental in reducing the number of experiments 

and costs in the manufacturing design process. However, high-accuracy CAE analysis 

remains computationally expensive. Our research offers a potential solution by proposing a 

machine learning method that is expected to provide accurate predictions in a shorter time 

than CAE. This could significantly reduce the computational costs associated with high-

accuracy CAE analysis.  

In general, it is challenging to predict extrapolation in regression problems. Physics-

informed machine learning (PIML [1]), a method that allows machine learning models to 

learn the governing physical laws, has attracted much attention. PIML is a method for creating 

machine learning models by incorporating basic physical laws and domain knowledge as prior 

knowledge. Neural Operator [2-6] is an example of a PIML approach. Usually, simulations of 

physical systems are solved by giving initial and boundary conditions to the governing 

equations. Approximate solutions to the governing equations are obtained using numerical 

solution methods such as the difference method or the finite element method. However, if the 

governing equations of the physical system are not given or the equations are complex, it is 

not easy to find a solution. Then, there is a method called system identification, which black-

boxes a physical system and models its behavior from data. Neural Operator is a method for 

system identification, where the physical system (partial differential equation) is modeled as a 

mapping between conditions (inputs) and solutions (outputs). 

In this study, we propose a sub-voxel [7] method that adapts the Neural Operator to the 

forward Euler method (1), aiming to predict non-stationary heat conduction. 

Forward Euler method formula: 

𝑦𝑛+1 = 𝑦𝑛 + ℎ ∙ 𝑓(𝑡𝑛, 𝑦𝑛) (1) 

2 UNSTEADY HEAT TRANSFER ANALYSIS AND GENERATION OF TRAINING 

DATASET 

2.1 Analysis model 

The board model is created and analyzed using scSTREAM, a thermo-fluid simulation 

software. Figure 1 shows an analytical model of a circuit board with dimensions of 80 mm × 

80 mm. Five IC chips are placed on the board, and the heat generation [W] of each IC is as 

follows: yellow IC: 7 [W], purple IC: 6 [W], blue IC: 5 [W], and green IC: 3 [W]. Figure 2 

shows an example of the analysis results. The training data is the thermal temperature field at 

each cycle step in the unsteady analysis. The initial temperature was set to 25°C, and the area 

around the circuit board was set to air (uncompressed/20°C). The flow field was laminar and 

incompressible, and the VF method was used for heat, taking radiation into account. An 

analytical model was created based on these conditions. After the analysis, input data design 

was conducted based on the data obtained (temperature, heat generation, IC placement, and so 

on). 
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2.2 Sub-voxel 

The predictor in our sub-voxel learning method uses local differential physical quantities 

and local material properties to compute the temperature at a given point. We propose a new 

learning method that uses subvoxels, which are containers of local physical quantities and 

material properties. The key innovation in our method is the use of the Neural Operator. This 

Operator allows the predictor to learn the physical laws by using the sub-voxel method, 

enhancing the accuracy and efficiency of our predictions. Figure 3 illustrates how the training 

data is extracted from the analyzed data using sub-voxels. 

 
Figure 3: Example of placing sub-voxels. 

2.3 Input data design 

Figure 4 shows the input data design. The sub-voxel consists of 5 x 5 x 7 voxels. The main 

input parameters are temperature, difference calculation, and physical property values. The 

values are for first and second-order difference calculation and relative positions between IC 

and a center of sub-voxel. The first layer is temperature in sub-voxels. 

The second layer is the temperature difference from the center of the sub-voxel in the x 

component. The third layer is the temperature difference from the center of the sub-voxel in 

the y component. The fourth layer consists of three physical properties. The first is the heat 

generation of 5 IC chips. The second is the distance vector between the sub-voxel center and 5 

ICs. The third is the coordinates of heat sinks. The fifth layer is the second-order difference in 

the x component. The sixth layer is the second-order difference in the y component. The 

 

       

Figure 1: Simulation model of a circuit board                         Figure 2: Temperature distribution 

with five IC chips.                                                                      analyzed by scSTREAM.                                                  
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seventh layer consists of three physical properties. The first is coordinating the coordinates of 

five high-heat capacity bodies. The second is the heat generation of five IC chips. The third is 

with or without a heat sink. 

 

3 UNSTEADY HEAT TRANSFER PREDICTION METHOD 

The network of the predictor consists of a two-dimensional convolutional neural (2D-

CNN). Figure 5 shows the network configuration. Three all-combining layers are inserted 

after the convolutional layer in a centered manner. This auto-encoder structure compresses 

and restores information to remove noise and improve learning efficiency. 

 

 

 

 

Figure 5: Network configuration for 2D-CNN. 

 

 

Figure 4: Input data design. 
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Hyperparameters of the predictor composed of 2D-CNN are shown in Table 1. 

Table 1: Hyperparameter for 2D-CNN. 

 

4 SETTING DUMMY TEMPERATURES AND PREDICTION RESULT 

A predictor was created to predict the temperature at the fifth cycle step based on the 

analysis data of the 0th cycle step. The number of measurement points on the circuit board 

was 1225, of which 1085 were training data, and 140 were validation data. Both the training 

and validation datasets were equally spaced on the circuit board. Figures 6 and 7 show the 

absolute error for each measurement point on the circuit board. Figure 6 shows the predicted 

results before downsampling, and Figure 7 shows the results after downsampling. 

 

Table 2 shows the maximum relative error with and without dummy temperature. 

Table 2: The maximum relative error. 

 

Figure 6 and Table 7 show that the prediction accuracy error becomes lower when dummy 

temperatures are included. This is because the temperatures on the substrate at the 0 cycle step 

were all 20°C, and the difference value was 0, making it difficult to extract the feature values. 

Activation function tanh Learning rate 5.0×10^-7

Optimization technique Adam Filter size (3,3,7)

Loss function MSE Pooling size (2,2,2)

Dropout 0.15 Convolutional layer 512-512-512

ResNet off Dense layer 256-128-256

Without dummy temperature With dummy temperature

Maximum relative error [%] 22.010 7.429

                                   

Figure 6: Absolute error without dummy temperature. Figure 7: Absolute error with dummy temperature. 
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5 DOWNSAMPLING AND PREDICTION RESULT 

The training data consisted of the input values from the 0, 5, 10, and 15 cycle steps and the 

reference values from the 5, 10, 15, and 25 cycle steps. For the validation data, the input 

values are the analysis values of the 0, 5, 10, and 15 cycle steps, and the output is the 

temperature of the next cycle step. For the validation data, the input values are the analytical 

values of the 0, 5, 10, and 15 cycle steps, and the output is the temperature of the next cycle 

step. 

5.1 Analysis model of the training and validation dataset 

The training data was created based on an analytical model with regular IC placement 

relationships for interpolation. Figure 8 shows the analytical model. The circuit board on the 

left is the analytical model used for the validation data, and seven analytical models for the 

training data were created based on the IC placement relationship of the analytical model for 

the validation data. Downsampling is a technique that reduces data for the majority of classes. 

It can improve prediction accuracy for minority classes by eliminating bias in the number of 

data between classes. 

 

5.2 Downsampling and prediction result 

Table 3 shows the number of data and learning costs when downsampling temperature data 

at 20-40[°C]. 

Table 2: Number of data and training time in the range of 20-40[°C]. 

 

Table 3 shows that after downsampling, the number of datasets at 20-40[°C] is reduced, 

and the learning cost is lower. 

 

Number of datasets : 20-40[℃] Total Percentage[%] Training time[s/epoch]

Before 26329 34300 76.8 93

After 7904 15875 49.8 50

 

Figure 8: Creating an analytical model for interpolation. 
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The optimizer is Adam, the batch size is two, and the learning rate is  . ×   −7. The 

training dataset was trained for 10,000 epochs. Figure 9 shows the loss transition, and Figure 

10 shows a comparison of reference and prediction, both before downsampling. In addition, 

the learning cost decreased by 46.2%. 

 

Figure 9: Transitions of validation and training losses.     Figure 10: Comparison of reference and prediction. 

The optimizer is Adam, the batch size is two, and the learning rate is  . ×   −7. The 

training dataset was trained for 10,000 epochs. Figure 11 shows the loss transition, and Figure 

12 shows a comparison of reference and prediction, both after downsampling.  

 

 

Figure 11: Transitions of validation and training losses.    Figure 12: Comparison of reference and prediction. 

Figures 9 and 11 showed a slower rate of loss reduction after downsampling. This is due to 

the reduced bias of the training data in the low-temperature field. 

6 CONCLUSIONS 

- We proposed a sub-voxel learning method based on the Neural Operator and were 

able to predict the temperature field on the circuit board in unsteady heat conduction. 

- We created a predictor that interpolates by regularly placing ICs on the analyzed 

circuit board model. 

- The learning cost was significantly reduced by downsampling the data in the low-

temperature range of 20-40[°C]. 

- In the future, we will build a predictor that continuously predicts the temperature at 

each cycle step from the initial analysis conditions. 

      

      



T. TSUKIJI, Y. WADA, Y. IWATA, M. IRIKIIN and Y. INAGAKI 

 8 

REFERENCES 

[1] George, E.K. Ioannis, G.K. Lu, L. Paris, P. Sifan, W. and Liu, Y. Physics-informed 

machine learning. Nature Reviews Physics. (2021) 3:422–440. 

[2] Lu, L. Pengzhan, J. Guofei, P. Zhongqiang, Z. and George, E.K. Learning nonlinear 

operators via DeepONet based on the universal approximation theorem of operators. 

Nature Machine Intelligence. (2021) 3:218-229. 

[3] Kamyar, A. Nikola, K. Zongyi, L. Miguel, L.S. Jean, K. and Anima, A. Neural operators 

for accelerating scientific simulations and design. Nature Reviews Physics. (2024) 6:320-

328 

[4] Kazuma, K and Syed, B.A. Deep neural operator-driven real-time inference to enable 

digital twin solutions for nuclear energy systems. Scientific Reports. (2024) 14, Article 

number: 2101 

[5] Ivan, Z. Simone, V. and Marco, P. Adaptive physics-informed neural Operator for coarse-

grained non-equilibrium flows. Scientific Reports. (2023) 13, Article number: 15497 

[6] Ethan, P. Stephen, G. George, E.K. and Themistoklis, P.S. Discovering and forecasting 

extreme events via active learning in neural operators. Nature Computational Science. 

(2022) 2:823-833 

[7] Takumi, T. Yoshitaka, W. Yukihiro, I. Miyoko, I. and Yoshihisa, I. Prediction of 

Temperature by Machine Learning Using Sub-Voxels Input Data-Structure. 2nd IACM 

Mechanistic Machine Learning and Digital Engineering for Computational Science 

Engineering and Technology (MMLDE-CSET). (2023) 


