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Summary. The paper presents a numerical simulation method for two-phase flow at high
Reynolds numbers, intended to describe the development of flow instabilities (Kelvin–Helmholtz,
Rayleigh–Taylor) at the liquid-gas interface. Numerical diffusion has to be restricted to a bare
minimum. To reach this goal, several enhancements have been made with respect to the existing
CFD methods for two-phase flow: a parabolic reconstruction of the interface to suppress spurious
velocities; a structure-preserving discretization to ensure a correct discrete exchange between
potential and kinetic energy; and a two-velocity model featuring a discontinuous tangential
velocity to approximate the unresolved viscous shear layer along the interface. Examples are
presented for tips of breaking waves.

1 INTRODUCTION

The presented research originates in an engineering project concerning the transport of liq-
uefied natural gas (LNG) or liquefied hydrogen (LH2) in carrier ships. Especially the impact
of the liquid sloshing against the walls of cargo tanks is of major concern as it determines the
structural strength of the tank construction. With the recent geopolitical developments, this
application has even further increased in relevance. In the Sloshel project, research by the Mar-
itime Research Institute MARIN (Wageningen) and GTT (Paris), one of the largest designers
of LNG cargo tanks, has revealed that the peak impact force is largely determined by the insta-
bilities (Kelvin–Helmholtz, Rayleigh–Taylor) that form when the breaking wave tip approaches
the tank walls (Figure 1) [8]. Yet, existing CFD simulation methods are not able to accurately
predict these instabilities. Thus, a large project on sloshing in LNG tanks (SLING) was intiated
by MARIN, sponsored by the Dutch science foundation NWO and the offshore industry.

The scientific CFD developments in the project concerning the generation of surface instabil-
ities are described in this paper. Its main numerical challenge is to design a numerical method
that stays numerically stable, yet at the same time allows physical instabilities to form. This
implies that numerical dissipation has to be restricted to a bare minimum, whereas the dis-
cretization should take care of a correct exchange between the three forms of energy: potential,
kinetic and surface energy.
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2 NUMERICAL METHOD

2.1 Overview

The most crucial part of a simulation method for two-phase flow at high Reynolds numbers
is the way in which the fluids (e.g. LNG and its vapor) are coupled at the liquid-gas interface.
Viscous effects play a role at this interface, but result in a shear layer which is very thin and
expensive to resolve. We propose to model this shear layer with a tangential velocity disconti-
nuity, resulting in a novel and truly sharp two-velocity model. In this model, each fluid gets its
own velocity and corresponding momentum conservation law; see Section 2.3.

The resulting incompressible, two-phase Navier–Stokes equations are solved using a finite-
volume method on an adaptive 3D mesh with a staggered positioning of the unknowns, as
implemented in the in-house free-surface method ComFLOW [1]. Capillary effects due to surface
tension are included in the model, and actually play a significant role in the flow physics. In
Section 2.2 we will describe which improvements we have made in the reconstruction of the
interface.

A dimensionally unsplit geometric volume of fluid (VOF) method advects the interface. Mass
transport is performed by an extension of the Lagrangian EMFPA method of Hernandez et
al. [7] which was improved by Owkes and Desjardins [11]; see Figure 2. This results in a sharp
representation of the interface, without any occurrence of ‘overful’ and ‘underempty’ cells. The
transport of momentum is done using the same volume fluxes as used for mass transport [16].
An algebraic interpolation of the fluxes is proposed, resulting in exact mass and momentum
conservation, while obtaining semi-discrete conservation of kinetic energy, and an almost perfect
exchange with potential and (capillary) surface energy. Section 2.4 gives some more details.

Figure 1: Instabilities appear at a breaking-wave
tip shortly before impact.

Figure 2: The modified EMFPA advec-
tion method.

2.2 Reconstruction and curvature

The effects of surface tension are proportional to the curvature of the liquid-gas interface,
as a consequence of the Young–Laplace law. Therefore, simulating capillary flow sets high
requirements to the accuracy with which the reconstruction and advection of the interface is
carried out. To quantify this issue, we have performed a simulation of a circular droplet that
is being stretched and then returned to its original shape; see Figure 3 (left). The curvature at
the end of this stretching process is used to monitor the numerical errors.
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In our first simulations we have reconstructed the interface using a PLIC method [18], which
approximates the interface with piecewise linear polynomials. It has been combined with two
methods to compute the normals to the interface: the ELVIRA method of Pilliod and Pucket
[12], and the MOF method of Dyadechko and Shashkov [3]. Grid refinement has been studied
to see whether the error in the curvature goes to zero. In Figure 3 (right) the behavior of the
curvature error is shown: the error does not diminish when the grid is refined. This also happens
when a local height function (LHF) [5] is used to reconstruct the interface (not shown in the
graph). It is found that this inaccuracy is an important source for the spurious velocities that
are usually seen. Also, note that these unphysical velocities contain energy, which disturb the
energy budgets that contribute to the formation of physical instabilities.

In his PhD thesis [14], Remmerswaal has theoretically shown that this behavior is to be
expected. He also showed that to achieve grid convergence it is necessary to reconstruct the
free surface with at least second-order accuracy, i.e. using a piecewise parabolic approximation
(PPIC); see also [15]. Our numerical simulations using such a parabolic approximation com-
bined with ELVIRA, MOF and the LHF, confirm this analysis, as visible in Figure 3 (right).
The spurious energy leakage and the corresponding amount of unphysical velocities also has
significantly decreased.

Figure 3: Grid-refinement error in the curvature after stretching a droplet, using piecewise linear (PLIC,
solid lines) and piecewise parabolic (PPIC, dashed lines) reconstructions.

2.3 Two-velocity model

When the Reynolds number is large, the shear layer thickness is much less than the capillary
length scale. As the capillary scales are already expensive to resolve, also resolving viscous shear
layers becomes computationally prohibitive. Therefore, it was decided to model the interface
shear layer as a discontinuity in the tangential velocity component. Note that this is similar to
solving the Euler equations with a slip condition along solid walls.

As a result, we end up with two phases (gas and liquid) with two velocities uπ and two
pressures pπ, where π ∈ {g, l} representing gas and liquid, respectively. Jumps across the

3



Arthur E. P. Veldman and Ronald A. Remmerswaal

interface will be denoted as [[u]] ≡ ug − ul and similar for p. These jumps are treated with a
conservative multi-dimensional version of the ghost fluid method (CMDGFM) [14], which is an
extension of the GFM method of Liu et al. [10].

Technical details

The jump in tangential velocity leads to a jump in the normal pressure gradient, as explained
next. Hereto, let us start with the semi-discrete momentum equation, which for incompressible
flow can be turned into a Poisson equation:

uπ,(n+1) = uπ,∗ − δt

ρπ
∇pπ ⇒ ∇ ·

(
1

ρπ
∇pπ

)
=

1

δt
∇ · uπ,∗.

Here, uπ,∗ collects uπ,(n) and all convective, diffusive and body-force terms from the momentum
equation.

The normal velocity u
(n+1)
η ≡ uπ,(n+1) · η is

assumed to be continuous, which leads to a
jump in the normal derivative of the pressure[[

1

ρ

∂p

∂η

]]
=

[[u∗η]]

δt
.

Furthermore, the pressure has a capillary jump
across the interface due to the effect of surface
tension, given by the Young–Laplace equation

[[p]] = −σκ,

where κ is the curvature of the interface.

Figure 4: Sketch of the GFM approach for the
pressure near the interface.

Figure 5 gives an illustration of the performance of the two-velocity model. The left-hand
graph shows the velocity amplitude near the tip of a breaking wave computed on a very fine
grid and using the traditional one-velocity model; the top figure is a close-up near the wave tip.
In the middle graph the one-velocity model is applied on a coarse grid, in which the mesh size
is 32× larger. The lower graph shows much activity in the gas region, which is an entrainment
effect of the velocity of the liquid; in popular wordings, the liquid generates a ‘storm’ in the air.
Such pictures are very common in one-velocity simulations. In contrast, the righ-hand graph
shows the two-velocity solution on the same coarse grid (the grid can be recognized on the top
graph). By comparing with the left-hand graph, it is seen that the velocity field near the wave
tip is visually equal to the velocity field on the very fine grid, These simulations were done with
adaptive grid refinement, but if they were done on a uniform grid, the coarse-grid simulation
with the two-velocity model would be 324 ≈ 106× cheaper (note that also the time step can be
taken 32× larger).

Relation with one-velocity model

The relation with the one-velocity model is further illustrated by detailed simulations of the
breaking wave a shown in Figure 6(a). In Figure 6(b) we see the tangential velocity of the one-
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Figure 5: Comparison of the two-velocity model with the one-velocity model. The left-hand graph shows
the velocity around a breaking wave tip on a very fine grid. The other two graphs show results on a 32×
coarser grids: in the middle graph a one-velocity model is used, whereas the right-hand graph shows the
results of the new two-velocity model.

and two-velocity solutions, corresponding with the inset in Figure 6(a). The colored markers
depict the jump in tangential velocity for the various grid resolutions: blue symbols correspond
with the coarsest grid, red is 2× finer and green 4×, whereas black symbols correspond with an
8× finer grid. The dashed lines show the one-velocity solution, with the same color code. It is
clearly visible that on the coarser grids the shear layer is much too thick. But it also shows that
upon grid refinement the two sets of solutions converge to each other.

(a) Breaking wave overview. (b) Velocity jump.

Figure 6: Grid refinement of the one- and two-velocity solution around the interface.
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2.4 Discrete energy preservation

Convective preservation of kinetic energy Let the analytic and semi-discrete equations
for conservation of mass and momentum by given by

mass:
∂ρ

∂t
+∇·m = 0 → Ω

d

dt
ρ+Dmassm = 0,

momentum:
∂ρφ

∂t
+∇·(mφ) = ... → Ω

d

dt
(ρφ) + Cmmomφ = ...,

where Ω contains the volumes of the control volumes. Then it has been proven in [2, 16, 17] that
a close relation has to exist between discrete mass transport and discrete momentum transport.
In particular, assuming a volume-consistent scaling [16] as in the above discretization, kinetic
energy is convectively preserved if and only if

Cmmom − 1
2diag(Dmassm) is skew-symmetric.

This property has to hold for each of the phases individually, which is indeed the case for our
convective discretization as detailed in the PhD thesis [14].

Exchange between gravitational potential energy and kinetic energy Also, a correct
exchange between kinetic energy and potential energy has been pursued. This requires the
definition of a gravitational potential energy function, which influences the discretization of the
gravitational force in the momentum equation. This function is built using the first moment of
the liquid position in a cell. In turn, by demanding well-posedness of the gravitational term, it
also influences the discretization of the pressure gradient. Details of this mimetic gravity model
(MGM) can be found in Section 7.6 of the before-mentioned thesis [14].

Exchange between capillary surface energy and kinetic energy To safeguard a correct
exchange of kinetic and surface energy, a mimetic surface tension model (MSTM) is under
development; we hope to report on it at future occasions. An important ingredient is a geometric
relation between the interface area and the face and volume apertures that describe the position
of the liquid, in order to link the two types of energy (per surface area versus per volume); see
Section 4.6 of [14].

3 SIMULATIONS

3.1 Verification: Kelvin-Helmholtz with surface tension

In our first demonstration we verify whether the surface tension effects are correctly described
by our numerical model. We do so by comparing the numerical results with analytical predictions
of the evolution of (capillary) Kelvin–Helmholtz waves. For interface waves with wave length λ,
wave number k and temporal evolution e−iℵ±t, their dispersion relation is given by

ℵ± = k
ρuτ
ρ
± 2π

Tσ

√
1−We with Weber number We =

ρgρl[[uτ ]]2λ

2πσ(ρg + ρl)
,

where Tσ =
√

(ρl + ρg)λ3/2πσ is the capillary time scale. It can be seen that for large values
of the surface tension σ, i.e. low Weber numbers (We ≤ 1), the temporal frequency ℵ± is real,
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whereas for large Weber numbers (We > 1) it is imaginary (leading to exponentially growing
waves). Thus, surface tension stabilizes a Kelvin–Helmholtz instabilty when the Weber number is
sufficiently low. We have checked the dispersion relation by carrying out simulations for a range

Figure 7: The real and imaginary part of the temporal frequency ℵ± for low and high Weber numbers,
respectively: analytical versus numerical.

of Weber numbers. Figure 7 gives the comparison between the numerically found dispersion
relation and the analytical one [9, Art. 267 & 268]. In the stable range, for We < 1, the real
part of ℵTσ is plotted, whereas for We > 1 the imaginary part is plotted. Excellent agreement is
obtained, showing that the flow near the interface is very well described by our model, regardless
of the Weber number.

3.2 Breaking wave tip at various scales

In the following example we show the influence of surface tension on the onset of instabilities.
The test case concerns a breaking wave, computed at various scales s ranging from 40 down to
5. With increasing s the geometric length scale λ1:s decreases. As a consequence, the influence
of surface tension is largest at the larger values of s. This also shows in Figure 8 which depicts
the evolution of the wave tip at various values of s. At the largest scale 1 : 40 the interface stays
nicely smooth, at smaller scales instabilities develop, culminating in the smallest scale 1 : 5.

3.3 Comparison with other codes

Next we show detailed results from our two-velocity model of the flow near a breaking wave
tip in the simulation of a large gas pocket impact (LGPI) [4] at a scale 1:40. The typical length
scale is λ1:40 = λ/40 = 0.5 m. The computational grid starts with a uniform basis grid with
h0 = λ1:40/80. Near the wave tip it has been refined with 7 levels, which results in a smallest
mesh width given by h ≈ 10−4 λ1:40 ≈ 5× 10−5 m.

Our results have been compared with those of two other CFD methods: the CADYF code
developed at the University of Montreal [6], and the Basilisk code developed in Paris [13].
CADYF is an arbitrary Lagrangian Eulerian (ALE) finite-element method. The mesh is adapted
according to an error estimate, resulting in a minimal mesh size of h ≈ 2× 10−4λ1:40 ≈ 10−4 m.
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Figure 8: Evolution of the tip of a breaking wave at various scales: the larger the scale, the more
influence from surface tension.

Basilisk is an open source finite-volume method based on an adaptive quad/oct-tree mesh. For
Basilisk we consider an underlying coarse grid with mesh width h0 = 2−7λ1:40, and we used up
to 6 levels of additional mesh refinement, resulting in h = 2−13λ1:40 ≈ 6× 10−5 m.

Figure 9: Comparison between three different CFD methods of the vorticity near the tip of a breaking
wave in a large gas-pocket impact (LGPI).

Thus, near the wave tip, the three codes have a comparable grid size, allowing for a fair
comparison. Figure 9 shows the y-component of the vorticity for the three simulations. Es-
pecially the agreement between ComFLOW and CADYF is excellent. The latter is slightly
more diffusive, which is due to the (small amount of) numerical diffusion which is common in
finite-element simulations. Above the wave tip the Basilisk results are different from these two
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simulations, but below the tip Basilisk shows similar oscillations as ComFLOW (which are not
visible in the CADYF results).

3.4 Rayleigh–Taylor instability

Our final example concerns three-dimensional flow. When a wave tip is progressing forward
it is accelerating, with the heavier fluid (liquid) behind the lighter fluid (air). This situation
is comparable when we consider the gravitational acceleration with the heavier fluid above
the lighter one. That means that also along such an accelerating wave tip a Rayleigh–Taylor
instability can develop, and the analytical formula for the most unstable wave length does apply
[9, Art. 267]:

λRT =
2π

kRT
=

√
12π2σ

(ρl − ρg)g · η

Figure 10 shows a snapshot of the simulation. The wave length of the observed instabilities is
found consistent with the above analytical formula.

Figure 10: Development of a Rayleigh–Taylor instability along the tip of an accelerating breaking wave.

4 CONCLUDING REMARKS

In the manuscript we have discussed the numerical simulation of two-phase flow, in high-
Reynolds number applications featuring the development of instabilities. This creates a balanc-
ing act between numerical stability and numerical diffusion. To reduce the amount of numerical
diffusion most of the numerical ingredients in the CFD method had to be refined. In particular,
we have introduced:

- a parabolic reconstruction of the liquid-gas interface;

- a structure-preserving discretization with exact exchange between all three forms of energy;

- a two-velocity model to circumvent the resolution issues of the interface shear layer.

Whereas the traditional one-velocity model results in an artificial thickening of the shear layer,
the two-velocity model instead sharply and accurately approximates the unresolved shear layer
with a velocity discontinuity. We do not neglect viscous stresses altogether, and in fact mesh
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refinement of the two-velocity model yields the same solution as obtained with the one-velocity
model. Our approach greatly reduces the required number of grid points (i.e. computational
cost), making simulations of breaking wave impacts better affordable.

The proposed numerical method has been validated using several academic flow problems of
surface instabilities (Kelvin–Helmholtz, Rayleigh–Taylor), and was applied to several wave im-
pact problems (e.g. sloshing in liquid storage tanks). Validation experiments featuring impacting
breaking waves are underway at MARIN.
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