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ABSTRACT  

To determine a robust geotechnical model from measurements of drilling parameters is one of the great desires of 

geotechnical investigations. Drilling parameters have the advantage of presenting very granular data (data-points every 

centimetre) much like the CPT. They allow for the identification of soil samples during the drilling process and can 

traverse all terrain types, from soft clays to hard rocks. However, interpreting each parameter, like penetration rate or 

thrust, in isolation can be challenging, as these parameters can vary greatly within each soil layer due to natural 

heterogeneity, the drill rig’s configuration and the noise introduced by the discontinuous interaction between soil and drill 

bit. Various authors propose using compound parameters such as specific energy, penetration resistance and alteration 

index alongside cautious filtering allows for a better interpretation, giving physical meaning to the measurements. These 

compound parameters have been developed from simple correlations, aiming to normalise parameters heavily influenced 

by drilling conditions or even aiming to evaluate the work or the energy spent in excavating the soil. Beyond that, many 

authors have devised algorithms to automate or standardize the interpretation of drilling logs by identifying homogenous 

zones or the probability that a given point belongs to a certain layer. This paper presents a comparison of such 

methodologies for identifying soil layers based on MWD profiles proposed in the literature. Assessment of the 

geotechnical structure may be made through different analytic and advanced statistical methods. MWD profiles from 

worksites throughout France will be used to compare and qualify these methods.  
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1. Introduction 

Ground surveying is a necessary part of any 

construction project. These surveys inform the engineers 

about the sub-soil’s physical properties, structure and any 

peculiarities that might exist, acquiring valuable data for 

the design of safe and effective structures (Cardu et al., 

2013; Reiffsteck et al., 2018). 

There are many different methodologies for ground 

surveying in situ, and the most common method in 

France is the pressuremeter test. In this test, an inflatable 

probe is lowered into a previously dug borehole and filled 

with pressurized fluids to measure the deformation of the 

material that surrounds it. Hydraulic drilling machines 

are used to create the borehole for this test and the 

machine’s parameters are often recorded, in a process 

called Monitoring While Drilling (MWD), as they can 

also provide valuable data about the soil (Girard, 1985; 

Kreziak and Pioline, 2005). 

This type of surveying is considered a destructive 

method, as soil samples can’t be recovered for later 

laboratory testing. The only result of it are the logs of the 

various machine parameters as a function of depth of the 

drill bit. The classic parameters are applied rotation speed 

and thrust and measured advance rate, rotation torque and 

drilling fluid pressure. Other values can also be recorded, 

such as reflected percussive energy, drilling fluid inflow 

and outflow or even electrical conductivity and 

radioactivity (Duchamps, 1988; Lossy, 1990; Gambin, 

1997; Nuyens et al., 2005; Reiffsteck et al., 2018). 

All these parameters are considered to have a 

qualitative significance, with correlations between their 

behaviors and the characteristics of the soil drilled or the 

way the machine was operated. The transition between 

two different soil layers is generally marked by variations 

in one or multiple drilling parameters (Reiffsteck et al., 

2018). 

To facilitate the interpretation of MWD logs and limit 

the driller’s influence over the results, multiple authors 

propose the use of combined parameters achieved 

through mathematical relations between the measured 

parameters. These parameters are designed to be nearly 

independent of operating conditions and make the 

transition between layers more evident (Reiffsteck et al., 

2018). 

2. Interpretation methodologies 

De Paoli et al. (1988) identified two different manner 

of interpreting MWD logs. The first and simplest one 

consists of qualitative comparisons between logs with the 

aid of data from previous surveying campaigns and 



 

surveys in the area. The authors explain that this can be 

done in regions of well-known geology. 

Another way of interpreting MWD logs treats them 

as measurements with physical significance. The basic 

assumption is that the drill bit reproduces in a reduced 

scale the same mechanisms that govern soil behavior in 

large scale excavations such as the construction of 

foundations (de Paoli et al., 1988). An algorithm can then 

be used to identify possible layers and lithological 

formations. 

2.1. Signal filtering and regularization 

But before using any interpretation method, Bourget 

and Rat (1995) reinforce the need for treating the raw 

data in order to achieve better results. This treatment 

consists of two processes: eliminating aberrant values 

and filtering noise. 

The first process consists of eliminating 

measurements that don’t represent the terrain’s reality, 

such as the readings done while the machine stops 

drilling, and another rod is added to the drill string and 

any readings from faulty sensors. Bourget and Rat (1995) 

estimate that the lowering and subsequent rise in pressure 

in the hydraulic circuits leads to false readings, and at the 

same time the percolation of the drilling fluid during the 

stoppage alters some of the soil below the drill bit. The 

authors recommend using the longest rods available for 

the drill rig and replacing any aberrant readings by 

copying those just before to erase the sudden spikes. 

The second step, filtering noise, is needed because 

the logs can be considered as the resultant of a random 

function with an average value of 0 superimposed over a 

deterministic function (Amokrane, 1988). The random 

component is produced when the drill bit breaks the soil’s 

particles and momentarily loses contact with them. This 

is more evident when drilling through coarser soils as 

they tend to have larger voids (Bourget and Rat, 1995). 

Bourget and Rat (1995) consider that this component 

carries no valuable information about the soil’s 

properties and also makes it more difficult for changes in 

the other component to be noticed. Thus, it needs to be 

eliminated or reduced. Schunnesson (1998) considers 

noise to be the largest obstacle to reliably determining 

lithology from MWD logs. Bourget and Rat (1995) 

recommend using a Fourier Transform while Kreziak and 

Pioline (2005) and other authors use a moving average or 

moving median filter to eliminate it. 

2.2. Algorithms 

The aim of the interpretation algorithms is to identify 

the soil layers. 

 Amokrane’s algorithm 

Amokrane (1988) explains that, when drilling 

through a homogenous soil layer while keeping entry 

parameters constant (thrust and rotation speed), the logs 

for the parameters that depend on the soil’s response 

(advance rate, rotation torque, fluid pressure) should be 

constant as well. Consequently, a significant change in 

those logs would indicate that the drill bit has 

encountered a new layer. 

From this, Amokrane (1988) created an algorithm 

that aims to determine these homogenous zones in a 

drilling log and their frontiers. For this, it is necessary to 

choose an acceptable statistical risk by fixing the 

maximal acceptable variability inside a layer and the 

acceptable resolution by determining the minimal 

number of readings evaluated. 

The algorithm then separates the log into blocks with 

the same number of parameter measurements. The values 

in each block are considered as independent samples of a 

population that follows a gaussian distribution. The 

blocks are then compared to determine statistically if they 

are samples taken from the same population, meaning 

they are part of the same soil layer, or if they are 

statistically different, in which case the limit between two 

lithological layers has been found. 

For this comparison, Amokrane (1988) chose the 

Aspin-Welch test as it is designed for comparing 

populations through their averages and variances. In the 

test, sets a and b composed of n1 and n2 samples 

respectively, with averages m1 and m2 and variances s1 

and s2 represent populations A and B, whose averages M1 

and M2 and variances 𝜎1 and 𝜎2 are unknown. 

Then, the square of the standard deviation between 

both sets and the value T are determined through Eq. (1) 

and Eq. (2).  

𝑠𝑑2 =
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
           (1) 

𝑇 =
𝑚1−𝑚2

𝑠𝑑
  (2) 

T is then compared against a value from Student’s t-

test, a test that determines how likely it is that two 

populations have the same average and variance when 

only samples of each population are known.  The results 

from this test are tabulated in function of the degrees of 

liberty 𝜈 and the statistical risk r chosen. The degrees of 

liberty are considered to be the closest integer to the 

inverse of: 

1

υ
=

1
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[
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Finally, the values T from the two sample sets and 

𝑇(𝜐, 𝑟) from the t-test are compared: 

• If |𝑇| ≤ 𝑇(𝜐, 𝑟) the two sets are statistically 

similar 

• If |𝑇| > 𝑇(𝜐, 𝑟) the two sets are statistically 

dissimilar 

Using this, Amokrane (1988) describes an algorithm 

in which a drilling log is initially divided into multiples 

sets with the same number of parameter readings. The 

first set is compared to the second set through the t-test 

and if they’re determined to be similar, both sets are 

merged, and the new merged-set is then compared to the 

third one. If the t-test returns negative, the first set is 

considered to be a homogenous zone and the process 

restarts with the second and third sets. This will continue 

until the algorithm reaches the last set of measurements. 

 Moussouteguy’s algorithm 

The algorithm presented by Moussouteguy (2002) 

aims to establish a plausible lithology from both MWD 

logs and a rough estimation that can be defined by the 



 

rig’s operator or based on previous knowledge of the 

area’s geology. The final results are series of 

probabilities as a function of depth, one for each soil layer 

in the preliminary model, where each value represents 

how likely it is for that point to belong to that layer. 

The preliminary lithology is also interpreted as 

probabilities by the algorithm, and these probabilities are 

established according to the data given as a starting point. 

For each layer, its maximal depth 𝑧𝑖 is required. In 

between each of these points, the corresponding layer is 

assigned a very high probability (the author recommends 

95%) with a zone of uncertainty (𝑧𝑖𝑛𝑐) around the 

transition point where this probability decreases linearly 

and that of the next layer increases in tandem. The 

probabilities are defined by Eq. (4) to (8). 

When 𝑧 ≤ 𝑧1 −
𝑧𝑖𝑛𝑐

2
 : 

𝑝(𝑓𝑜𝑟𝑚1) = 𝑝𝑠𝑢𝑟 = 95%      (4) 

When 𝑧1 −
𝑍𝑖𝑛𝑐

2
< 𝑧 < 𝑧1 +

𝑍𝑖𝑛𝑐

2
 : 

𝑝(𝑓𝑜𝑟𝑚1) = 𝑎 ∗ 𝑧 + 𝑏1           (5) 

𝑎 =
1−(𝑁𝐹∗𝑝𝑠𝑢𝑟)

𝑍𝑖𝑛𝑐(𝑁𝐹−1)
  (6) 

𝑏1 = 𝑝𝑠𝑢𝑟 − 𝑎 (𝑧1 −
𝑧𝑖𝑛𝑐

2
)        (7) 

When 𝑧 ≥ 𝑧1 +
𝑧𝑖𝑛𝑐

2
 : 

𝑝(𝑓𝑜𝑟𝑚1) =
1−𝑝𝑠𝑢𝑟

𝑁𝐹−1
 (8) 

Where NF is the number of geological formations or 

layers. The resulting probability functions are 

represented in Fig. 1 below. 

 

 
Figure 1. Log of probabilities from the preliminary 

lithology 

The next step examines the MWD log for the 

parameter chosen, creating distribution functions for the 

entire log and for each layer separately. From these 

functions, the probabilities that a point in the log will 

have a value smaller than or equal to a given number are 

determined. These probability functions are then 

interpolated, dividing the probability axis in 50 segments 

of equal size. The interpolated functions are then used to 

calculate probability densities 𝑝(𝐷 𝑓𝑜𝑟𝑚𝑖⁄ ) for each 

layer of the preliminary lithology. 

The probability density is then multiplied by the 

probabilities corresponding to the preliminary lithology. 

To avoid values higher than one, each value is then 

normalized by dividing it by the sum of probabilities for 

that depth. 

𝑝(𝑓𝑜𝑟𝑚𝑖/𝐷) = 𝑝(𝐷/𝑓𝑜𝑟𝑚𝑖) ∗ 𝑝(𝑓𝑜𝑟𝑚𝑖) (9) 

𝑝(𝑓𝑜𝑟𝑚𝑖/𝐷)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑝(𝑓𝑜𝑟𝑚𝑖/𝐷)

∑ (𝑝(𝑓𝑜𝑟𝑚𝑖/𝐷))𝑁𝐹
𝑖=1

  (10) 

This algorithm is an iterative process, and the 

variation of 𝑝(𝑓𝑜𝑟𝑚𝑖/𝐷)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 from one iteration to 

another is the convergence criterion monitored. To begin 

a new iteration, the preliminary lithology is replaced by 

the results from the previous iteration and all subsequent 

calculations follow the same step-by-step. The 

convergence criterium 𝜖𝑘 for the kth iteration is calculated 

by Eq. (11), where NF is the number of soil layers and N 

is the number of datapoints in the original MWD log. 

Moussouteguy (2002) estimates that a satisfactory result 

has been achieved when 𝜖𝑘 ≤ 2 ∗ 10−2. 

𝜖𝑘 =
∑ ∑

1

𝑁𝐹
|𝑝𝑗(𝑓𝑜𝑟𝑚𝑖/𝐷)𝑘−𝑝𝑗(𝑓𝑜𝑟𝑚𝑖/𝐷)𝑘−1|𝑁𝐹

𝑖=1
𝑁
𝑗=1

𝑁
 (11) 

It can be said that this methodology refines the field 

report given by the driller. If their report is accurate, the 

final results will show zones where the probability for a 

given layer approaches 100%, with sudden transitions 

into another layer at depths similar to those indicated in 

the preliminary lithology. The algorithm presented in 

Moussouteguy (2002) was devised for a maximum of 4 

different layers, but here it has been adapted to work with 

any quantity. 

 Entropy 

Bourget and Rat (1995) present a simpler alternative 

method, analyzing the signal’s entropy. This parameter is 

defined in Eq. (12). 

𝐻(𝑋, 𝑧) = ∫ |
𝑑𝑋(𝑢)

𝑑𝑢
| 𝑑𝑢

𝑧

𝑧0
   (12) 

Where 𝑧0 is the reference depth at the start of the 

drilling process (can be 0 or the surface’s elevation). 

After being filtered, a log can be quickly analyzed by this 

method to highlight zones of constant variation. The 

authors explain that if the soil is homogenous, the 

readings taken will regularly increase in value as depth 

increases resulting in a linear entropy graph, and a change 

in lithology will appear in the graph as a change in slope. 

However, highly heterogeneous soils will also lead to 

changes in slope, or even sudden jumps in the graph and 

the authors recognize that there are no clearly defined 

criteria for differentiating changes due to heterogeneity 



 

and those that indicate a transition into a new lithological 

layer. 

3. Comparison and analysis 

To evaluate each of these methodologies, a synthetic 

signal with very little noise was used at first for 

calibration. Afterwards, some MWD drillings executed 

in France (more specifically in the Pays Basque region) 

in 2023 by the engineering company Fondasol. 

The drilling parameter chosen to represent each of 

these drillings was the Alteration Index 𝐼𝐴, a compound 

parameter easily calculated by Eq. (13) where 𝑃𝐸  is the 

effective thrust on the drill bit and 𝑉𝐴 is the advance rate, 

𝑃𝐸,𝑚𝑎𝑥  and 𝑉𝐴,𝑚𝑎𝑥  are the maximal values achieved by 

each parameter, and both 𝑘0 and 𝑘1 are proportionality 

constants. This parameter varies between 0 and 2, with 2 

signaling stronger soils. For these analyses, both 

constants were considered to be equal to 1. 

𝐼𝐴 = 1 + 𝑘0 (
𝑃𝐸

𝑃𝑒,𝑚𝑎𝑥
− 𝑘1

𝑉𝐴

𝑉𝐴,𝑚𝑎𝑥
 )     (13) 

But before using Eq. (13), the original recordings 

were filtered with a moving median filter as suggested by 

Kreziak and Pioline (2005) and Reiffsteck et al. (2018). 

In this method, a window moves down the log calculating 

for position n the median of all values from position 𝑛 −
𝑘 through 𝑛 + 𝑘. If this median value differs from the 

measurement at that point by more than 5%, the sensor 

reading is replaced by the calculated median. This simple 

method can quickly eliminate any aberrant values and 

reduce signal noise. For these analyses, the constant k 

was chosen to be 10. 

3.1. Synthetic signal 

The synthetic signal tested reached a depth of 5,3m 

with values every centimeter for a total of 530 

“measurements”. It was divided into distinct zones in 

which the value for each depth was given by a constant 

added to a random value between 0 and 2 to simulate 

noise. This random value was determined via software 

and had a distribution function equal to a gaussian curve. 

For the first test, the signal was divided into 2 zones with 

an abrupt transition at 2,5m, shown in Fig. 2. 

 

 
Figure 2. Synthetic 2-zone signal and the zones found by 

Amokrane's algorithm for synthetic signal 1 

Amokrane’s algorithm was able to find this transition 

point correctly. Using the same signal, Moussouteguy’s 

algorithm was tested at first with the correct transition 

depth given as preliminary lithology. The method 

converged after 2 iterations, resulting in Fig. 3, where the 

probabilities for each layer at a given depth are shown 

stacked. The test was then repeated by informing a wrong 

depth as preliminary lithology and similar results were 

found each time with the transition point at the correct 

depth, though one or two extra iterations were necessary 

then. 

 

 
Figure 3. Probabilities calculated by Moussouteguy's 

algorithm for synthetic signal 1 

A second synthetic signal was then tested, this time 

with 3 distinct zones. Once again, Amokrane’s algorithm 

found the transition points correctly, Fig. 4, and 

Moussouteguy’s algorithm converged after 3 iterations, 

Fig. 5, with clear transition points at the correct depths. 

 

 
Figure 4. Synthetic 3-zone signal and the zones found by 

Amokrane's algorithm for synthetic signal 2 

The entropy method couldn’t be tested with these 

synthetic signals as the noise present in those followed a 

normal distribution and was, by consequence, almost 

constant. This means that the entropy of both signals 

formed one single straight line. The entropy method was 

evaluated in the following tests. 



 

 
Figure 5. Probabilities calculated by Moussouteguy's 

algorithm for synthetic signal 2 

3.2. Real MWD profiles 

The first MWD log examined was came from a 

project in Bayonne, a city in the French region of Pays 

Basque, close to the Spanish border. According to the 

driller’s report, the local lithology consisted of 5 layers: 

a layer of landfill from a previous construction, clayey 

silt, clayey sand, another layer of clayey silt and finally 

marl with the changes in lithology estimated to occur at 

the depths of 1.1, 8.1, 18.7 and 25.5 meters. 

Amokrane’s algorithm divides the drilling’s 

alteration index into 19 zones that it considers 

homogenous, as shown in Fig. 6. Calibrating the code to 

reduce its sensitivity to signal variations doesn’t reduce 

the number of zones in the final result. Even though the 

algorithm overshot the number of soil layers found in 

situ, some of the limits it determines are at the same depth 

or a few centimeters apart from the depths estimated by 

the driller. This indicated that while the t-test is too 

sensitive to random fluctuations and tends to divide the 

drilling log into too many layers, the methodology is 

capable of finding the actual transitions between layers 

with good accuracy. 

 

 

 
Figure 6. Alteration index and subdivisions determined by 

Amokrane's algorithm for survey 1 

Giving the same signal to Moussouteguy’s algorithm 

and using the drillers report as the preliminary lithology 

needed for the method, convergence is reached after 2 

iterations. As seen in Fig. 7, there are some areas of 

uncertainty and some artifacts like the ones seen when 

testing the synthetic signal, but the final graph can still be 

very easily interpreted. The first depths at which the 

probability for each layer approach 1 very closely match 

those informed by the driller. 

Table 1 shows the depths in meters estimated in situ, 

the limits between homogenous zones estimated by 

Amokrane’s algorithm that are closer to the estimations, 

and the transitions in probability determined by 

Moussouteguy’s algorithm. 

 

 
Figure 7. Figure 7. Probabilities calculated for each point 

in the drilling log of belong to a given soil layer for survey 1 

 

Table 1. Depth of each layer as determined in situ and by 

the two tested methods 

Layer Driller’s 

report 

Amokrane’s 

algorithm 

Moussouteguy’s 

algorithm 

1 1.10 1.05 1.09 

2 8.10 8.03 8.21 

3 18.70 18.66 18.92 

4 25.50 26.65 25.60 

5 30.20 30.20 30.20 

 

Another survey was then examined. The area 

surveyed was in Hendaye, a small town in the Spanish 

border, still in the Pays Basque region. After reaching the 

depth of 9.7m, the driller reported a thin, 0.7m, layer of 

clay covering a rock formation. Amokrane’s method 

divides the log of alteration index into 10 zones 

considered homogenous, presented in Fig. 8. As with the 

previous example, the limit between two of these zones 

very closely matches with the depth estimated in situ for 

the change in lithology. 

 



 

 
Figure 8. Alteration index and subdivisions determined 

by Amokrane's algorithm for survey 2 

For the same signal, Moussouteguy’s algorithm 

converges after 3 iterations, with the result presented in 

Fig. 9. Although the two different layers have very 

distinct intervals with no overlap, as was the case in 

survey 2, the algorithm attributes to the lowest values of 

layer 2 a high probability of belonging to layer 1.  

This tendency was also observed in the tests with 

synthetic signals, where the lowest values of a layer with 

higher average are given high probabilities of 

representing a preceding layer of lower average values. 

This may create uncertainties if the algorithm runs for too 

much iteration, creating multiple points where the 

probability shifts back and forth between two layers and 

reducing legibility as seen in Fig. 10. 

 

 
Figure 9. Probabilities calculated for each point in the 

drilling log of belong to a given soil layer for survey 2 

For the signal used in Fig. 10, the driller’s report 

indicates the existence of a layer of fill up to 0.5 meters, 

clay between 0.5 and 1.7 meters clearly discernible in 

Fig. 10 then followed by a layer of decomposed rock 

between 1.7 and 8.2 meters and fissured rock below that. 

Layers 3 and 4 occupy very similar intervals, see Fig. 11, 

which confuses the algorithm and leads to the sections in 

layer 3 where layer 4 receives a high probability. There 

is also a section of lower alteration index, visible in Fig. 

11, that is interpreted as being part of layer 1, even though 

those values are higher than those found in the actual 

layer 1. 

 

 
Figure 10. Probabilities calculated for each point in the 

drilling log of belong to a given soil layer for survey 3 

The combination of these two factors can make it 

difficult to interpret the results given by the method and 

cause uncertainty about the depth at which one given 

layer transitions into the next. 

 

 
Figure 11. Alteration index and subdivisions determined 

by Amokrane's algorithm for survey 3 

As Bourget and Rat (1995) don’t specify which 

parameter’s log would be best suited to be analyzed by 

their entropy method, all base parameters were 

investigated for the 3 surveys previously presented. In all 

three cases, the entropy of the advance rate showed the 

best fit to the reported lithology and downward thrust 

correlated well for survey 1 while effective thrust did the 

same for survey 2. Their graphs are shown in Figs. 12, 13 

and 14 normalized so that their maximal values are equal 

to 1.0 and alongside the site’s lithology. 

But even in these cases, the changes in slope don’t 

always line up exactly with the depth indicated in the 

report. At other points, the entropy curves change in 

slope in the middle of a given layer, as shown by Fig. 13 

at the depth of 6m, which could be misinterpreted as the 

transition into a new layer if the lithology determined in 

situ wasn’t known. Some transitions aren’t very 

noticeable as well, i.e. between layers 3 and 4 in Fig.12.  

A more robust methodology must be defined around 

this concept of entropy to eliminate these uncertainties. 

Which parameter to investigate through this method also 

merits further investigation, as only a few parameters 

correlated well in the cases examined. Perhaps a 



 

compound parameter would be better suited for it, or the 

joint analysis of multiple curves. 

 

 
Figure 12. Reported lithology, advance rate and 

normalized entropy of survey 1 

 

 
Figure 13. Reported lithology, advance rate and 

normalized entropy of survey 2 

 

 
Figure 14. Reported lithology, advance rate and 

normalized entropy of survey 3 

 

4. Conclusions 

Three interpretation methods for MWD logs were 

evaluated in this paper via comparison with the 

lithologies estimated in situ by the driller. The results 

correlated well, but improvements are necessary. The 

first method, presented in Amokrane (1988), needs to be 

less sensitive to random fluctuations in order to subdivide 

the examined log into only a few layers. 

Moussouteguy’s algorithm needs to be amended to 

remove uncertainties when two soil layers have similar 

averages and around the lowest values found in each 

layer. These issues stem from the use of multiple 

distribution functions to calculate probabilities. 

If these issues are fixed, perhaps both methods could 

be used in conjunction, with Amokrane’s algorithm 

providing the preliminary lithology required by 

Moussouteguy’s. 

The analysis of the signal’s entropy showed good 

correlations with the reported lithologies in all three 

surveys, but only when the drill bit transitioned from 

softer into stronger soils. The choice in signal used for 

this also needs to be better examined, as many drilling 

parameters had little to no correlation with lithology. As 

it is presented in Bourget and Rat (1995), the method is 

not sufficiently defined to allow for its automation. 

Future work in this subject will continue to use real 

drilling logs to validate and improve these 

methodologies. Possible correlations between drilling 

parameters and soil properties will also be evaluated. 
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