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Abstract. Based on the created generalized apparatus of vector-tensor analysis, integral
representations of the main dynamic and kinematic characteristics of the problem of viscous
gas flow around force systems of arbitrary spatial shape are constructed. The boundary value
problem of the interaction of such systems with a viscous gas flow is reduced to a system of
linear, conditioned by physical boundary conditions, boundary integral equations regarding
the kinematic and dynamic characteristics of the problem. It is proven that all the obtained
characteristics depend on the newly obtained irrotational vector potential of the momentum,
which significantly simplifies the integral representations of solutions and their  numerical
implementation.

On  the  basis  of  the  created  generalized  apparatus  of  vector-tensor  analysis,  integral
representations of the main dynamic and kinematic characteristics of the problem of the flow
of  a  viscous  gas  flow around  supporting  systems  of  satisfactory  spatial  form have  been
constructed. The boundary value problem of the interaction of such systems with a viscous
gas  flow is  reduced to  a  system of  linear,  conditioned by  physical  boundary  conditions,
boundary  integral  equations  regarding  the  kinematic  and  dynamic  characteristics  of  the
problem. It  is  proven that  all  the  obtained characteristics  depend on the  newly obtained,
vortex-free  vector  potential  of  the  momentum,  which  significantly  simplifies  the  integral
representations of the solutions and their numerical implementation.

INTRODUCTION

The main problem of  continuum mechanics is  the lack of  correct  methods for solving
boundary value problems for systems of nonlinear partial differential equations, such as, for
example,  the  system  of  Navier-Stokes  equations  of  viscous  gas  dynamics.  All  existing
attempts to create some kind of alternative mathematical models in differential forms have not
yet been crowned with noticeable success; The arsenal of linearized problems has completely
exhausted itself over the last century [1].

Currently, to solve current and popular problems of aero- hyrodynamics and gas dynamics,
various  methods  for  approximate  solution  of  boundary  value  problems  in  the  form  of
differential forms of mathematical models are widely used. Their common disadvantages are
the bulkiness and unpredictability of results, high requirements for computing resources and,
as a consequence, difficulties in solving optimization and economic feasibility problems [2].
It should be especially noted that to date, no qualitative methods have been developed for
solving systems of nonlinear differential equations of the laws of conservation of fluid and
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gas mechanics.  In  addition,  neither  the existence nor  the uniqueness  of  solutions to  such
systems can be proven [3], which raises many questions regarding the correspondence of the
results obtained in this way to the physical processes and phenomena being studied. It is for
this reason that a search is underway for models that allow the correct application of existing
numerical  analysis  methods.  Considerable  efforts  of  modern  researchers  are  aimed  at
constructing various differential forms of turbulence models, of which today there are more
than fifty, and the search continues, although the results obtained leave much to be desired [3,
4].

Based  on  the  ideology  of  the  boundary  integral  equations  (BIE)  method,  integrated
computer  technologies  seem very promising [5].  The BIE method turned out  to  be most
effective in cases of internal and external problems for unbounded areas with compact internal
boundaries. It allows direct determination of distributed aero- hydrodynamic characteristics.
Reducing a boundary value or initial boundary value problem to an integral equation or an
adequate system of integral equations allows [5, 6]:

-  reduce  the  dimension of  the  problem by one and consider  more  complex classes  of
problems than those solved by other methods;

- directly determine unknown quantities at the boundaries, without calculating them in the
entire space of motion;

-  determine  the  parameters  of  motion  inside  the  region  (pressure,  vorticity,  speed)  by
simple integration on the boundary of the region;

- reduce some hydrodynamic nonlinear problems for differential equations or systems of
differential  equations  to  a  system  of  linear  boundary  integral  equations  with  respect  to
unknown boundary values of parameters, desired problems or functions of them;

- pose and solve extreme problems that cannot be solved by any other method.
All this, of course, constitutes the advantages of the boundary integral equations method

over finite difference methods and the finite element method. That is why this method is
successfully used to solve complex engineering problems: plane and spatial, stationary and
non-stationary [5].

The relevance of  the issues  is  determined by the fact  that,  despite  the  increase in  the
number of computers and their productivity, the complexity and volume of tasks put forward
by practice are ahead of progress in the development of computer technology. Consequently,
the requirements for computational algorithms and, above all, for their efficiency, versatility
and accuracy are increasing.

The mathematical  model  proposed in the work for the process of  viscous gas flowing
around a carrier system is a linear system of boundary integral equations, for which these
issues are also resolved due to the assumed convergence of the computational process.

In connection with the above, the issue of generalization and extension of the method of
boundary integral equations to boundary value problems of aerodynamics and gas dynamics
with  the  construction  of  algorithmic  foundations  for  the  software  for  implementing  this
method is relevant.

1 GENERALIZED VECTOR-TENSOR ANALYSIS

The theoretical study of physical processes is based on the construction of corresponding
mathematical models that do not contradict the physical laws. In continuum mechanics, the
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main mathematical apparatus is vector-tensor analysis. But along with the existing results, in
this case there arises a natural need for a significant generalization of classical results in terms
of both differential formulas and integral theorems.

1.1 Differential operations with vector-tensor functions

For further development of the method of boundary integral equations for the purpose of
solving  boundary  value  problems  of  the  dynamics  of  a  viscous  gas,  the  following
generalizations of the differential operations of vector-tensor analysis take place, proven in
[6], in the case when the functions φ and the components of the vectors A, B, G, as well as
tensors  G  and  П have  the  necessary  differential  properties  in  three-dimensional  physical
space.

First, it is necessary to introduce the standard tensor unit, which in a Cartesian basis has
1 0 0

0 1 0

0 0 1

   Ι ii jj kk (1.1)

as well as tensor operators: gradient vector G
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Then the following, either obvious or easily provable, but extremely necessary for further
generalizations of differential formulas of vector-tensor analysis, take place:

( , ( φ)) φ;  I (1.41)
[ , φ] [ , φ];  I I (1.42)
( ,[ , ]) [ , ];  I G G (1.43)

   *, , , ;      I G G I G (1.44)

  *, , ,     I G G G (1.45)

where
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                          
G i j k (1.5)

is ordinary vorticity vector.
Thus, the main differential formula of classical vector analysis takes the form:

    * *( , ) , , ( , )               G G G G G G G . (1.61)

And besides this, since

(1.62)

For the purpose of further use, it is advisable to generalize some differential operations
with two vector-tensor functions, which will differ somewhat from the classical ones due to
the possible presence of tensor B:

     *, , , ;    A B A B A B (1.7)

[ ] ( )( ) ( ) ( ) ( )

[ ]( ) [ ]( ) [ ]
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, , , , , , , , ,
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Ι A B A Ι B A B

é ùÑ = Ñ - Ñ - Ñ + Ñ =ë û
é ù é ù é ù= Ñ - Ñ + Ñë û ë û ë û

(1.8)

also for the purpose of further application in integral theorems from (1.8) we have:

[ ]( ) [ ]( )( ) [ ]( )( )( ), , , , , , , , , , , ;n A B n Ι A B A n Ι Bé ù é ù é ùÑ = Ñ - Ñë û ë û ë û (1.9)

      *, , , , , , ,         n A B n A B n B A (1.10)

where B* = Bx i + By j + Bz k.

1.2 Integral theorems of generalized vector-tensor analysis

All known integral representations of solutions to classical boundary value problems of
mathematical  physics  are  based  on  integral  theorems  of  vector  analysis  known  as  the
Ostrogradsky-Gauss and Stokes-Green theorems.

First, the Ostrogradsky-Gauss theorem
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when using  expressions  (1.4),  it  can  be  constructed  in  several  ways,  taking into  account
algebraic operations with tensors:
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(1.115)

And finally,  we have the following generalized classical  Ostrogradsky-Gauss  theorems
related to self-adjoint second-order differential operators:

(1.12)

(1.13)

where tensor B* is the conjugate of tensor B.
Stokes formulas for vector-tensor expressions (1.7, 1.8) take the following form:

(1.14)

(1.15)

1.3 Conservative forms of laws of conservation of viscous gas dynamics and vector 
momentum potential

Science has its own temples, on which many generations of our predecessors worked. Over
the years, their branches have grown and reached canonical status; among them, there is also
potential  theory.  The  focus  is  on  developing  methods  that  can  open  the  way  to  solving
problems that were previously inaccessible.

Potential theory is a branch of mathematical physics that developed in connection with the
theory of  classical  boundary conditions of mathematical  physics  (Laplace's  equation,  heat
conduction, wave equation, and others). Obviously, the first essential step was related to the
study of potential flows of an ideal incompressible fluid. The set of such currents turned out to
be  quite  wide,  and  the  mathematical  possibilities  of  their  research  were  almost  infinite.
However,  all  attempts  to  eliminate  well-known  paradoxes  within  the  theory  of  an  ideal
incompressible fluid turned out to be fruitless, which proved the deficiency of this theory.
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The most proven and tested mathematical model of fluid and gas mechanics is the system
of conservation laws in differential form, which contain the law of conservation of mass or
the equation of non-discontinuity

( ) ( ) ( ), 0; , , 0;  V V VÑ = Ñ + Ñ = (1.16)

and the law of conservation of momentum

{ }( ), p 0,VV Ι TÑ + - = (1.17)

where  ijT is the strain rate tensor, the elements of which are calculated according to the

formulas:
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The system of  equations  (1.16  –  1.17)  is  also  known as  the  system of  Navier-Stokes
equations  [1  –  3].  It  is  advisable  to  supplement  this  system  with  the  obvious  law  of
conservation of vorticity: 

( ), 0.ΩÑ = (1.19)

The momentum conservation law (1.17) reflects the conservatism of the momentum tensor
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(1.20)

which is naturally associated with the vector potential Ψ
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taking into account the expression (1.44).
The symmetry of the momentum tensor (1.20): Пij = Пji:
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proves the vorticity of the potential Ψ:
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and its conservatism (1.17), using (1.43)

( ) ( ) [ ], , , , ,Π Ψ Ψ Ψé ùÑ =D -Ñ Ñ =- Ñ Ñë û
establishes, so to speak, the law of conservation of momentum potentiality

[ ], , 0.Ψé ùÑ Ñ =ë û
(1.24)

Here we also note that the expression

( ) ( ) ( ) ( )2, , , 3 2 , ,x y z V p=i Π j Π k Π Ψ+ + = + - Ñ
proves the following property of the vector potential Ψ:

( )
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1.4 Fundamental solutions of differential operators

The construction of integral representations of solutions to boundary value problems of
continuum mechanics using integral theorems of vector-tensor analysis is based on the use of
fundamental solutions of the corresponding differential operators associated with the problem
being solved.

Due  to  the  fact  that  integral  theorems (1.12,  1.13)  transform volume integrals  from a
combination  of  second-order  operators  into  surface  ones,  it  is  necessary  to  represent  the
conservation laws (1.16, 1.17, 1.19) in the same form: ( ), 0,AÑ Ñ = , where

( )
;

;

.
i i= x, y, z

V

A Π

Ω

ìïïïï=íïïïïî

(1.26)

The conservation law for the vector potential of momentum (1.24) is obtained in the form
corresponding to the integral theorem (1.13).

Let us bring into consideration a tensor  ,   Γ G , such that

   , 0 ,    Γ G , (1.27)

and
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       , , , , , .              Γ G G G (1.28)

where  φ is  the known fundamental solution of the Laplace equation,  and the vector  G is
precisely determined by equation (1.27). For example,
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Acting on the tensor Г with the operator from (1.26), we successively obtain:
Ñ(Ñ, G(|x-y|)) = Ñ(Ñ, Ij) - Ñ(Ñ, [I, G]) = IDj - [I, DG] + [Ñ, (I (Ñ, G))] =

= IDj - [I, DG] + [I, Ñ(Ñ, G)] = IDj - [I ,[Ñ, [Ñ, G]] = IDj + [I, [Ñ, (Ñj)]] = Idj;  (1.30)
i.e., the tensor Г corresponds to the conditions for the existence of a fundamental solution of
the operators of conservation of mass, momentum and vorticity.

As for the operator of conservation of the vector potential of momentum, we have:

    , , , , 0,             Γ G Ι G (1.31)

which proves that the tensor Γ is also fundamental in the case of operator (1.24), if we use the
vector from (1.29), constructed specifically for this case.

Additionally, the Cartesian components of the tensor G are  , 0 G :
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has the following properties:
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2 STATEMENT OF THE BOUNDARY VALUE PROBLEM OF VISCOUS GAS 
FLOWING AROUND LOAD-BEARING AERODYNAMIC SYSTEMS OF 
ARBITRARY SPATIAL SHAPE.

The formulation of the boundary value problems of the flow of a viscous gas flow around
supporting aerodynamic systems of satisfactory spatial form is formulated for the system of
laws of conservation of mechanics of liquids and gases (1.16, 1.17) in the following expanded
form:
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( ) ( ) ( ), , , 0.  V V VÑ = Ñ + Ñ = (2.1)

( ) ( ) [ ]

( ) ( ) ( )

, , , 0;

, 0; , 0; , 0,x y z

p+
Re

Π V V Ω

Π Π Π

Ñ = Ñ +Ñ Ñ =

Ñ = Ñ = Ñ =
(2.2)

where

(2.3)

conservative components of the momentum tensor (1.20), due to its symmetry (Пij = Пji).
The solution of this boundary value problem for the system of differential conservation

equations (2.1, 2.2, 1.9) is correctly formulated by the method of boundary integral equations
within  the  control  volume  (Fig.  2.1)  with  the  location  of  the  outer  boundaries  (Σ)  at  a
sufficient  distance  from the  supporting  system,  where  the  absence  of  disturbances  in  the
viscous gas flow is guaranteed.

As proven by many years of physical experiments, the main boundary condition in the
boundary conditions properties of the flow around solid, impenetrable supporting systems is
non-slippage past the surface (S) of parts of the medium, i.e.

Fig. 2.1

( )( ) ( )
0.

S S
nV V= = (2.4)

and from (2.1) we have

( )( ), 0.
S

VÑ = (2.5)
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In order to determine the momentum tensor (1.17) on the surface (S) taking into account
(2.4, 2.5), consider the vorticity vector Ώ in the curvilinear orthogonal coordinate system. (s,
τ, n):

( ) ( ) ( ) ( ) ( )n n s s n n

τ n n s

H v H v H v H v
s,τ,n

H H n H H n s
 


s τ

Ω
ì ü ì üï¶ ¶ ï ï¶ ¶ ïï ï ï ï= - + - +í ý í ýï ï ï ï¶ ¶ ¶ ¶ï ï ï ïî þ î þ
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(2.6)

On a solid impervious surface (S), due to condition (2.4),
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and the limit value has the form:
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Thus, the components of the momentum tensor on the surface of the body in curvilinear
coordinates have the form:
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(2.9)

and the Cartesian component, for example, Пx is equal to:

( ) ( ) ( ) .x s nΠ i,s Π i, τ Π i,n Π= + + (2.10)

3 INTEGRAL REPRESENTATIONS OF THE SOLUTIONS OF THE 
BOUNDARY VALUE PROBLEM OF THE FLOW OF A VISCOUS GAS 
AROUND THE SUPPORTING SYSTEM

The method of boundary integral equations has a number of unconditional advantages over
finite-difference  methods  and  the  method of  finite  elements.  That  is  why this  method is
currently  successfully  used  to  solve  complex  engineering  problems:  plane  and  spatial,
stationary and time-dependent [6, 8].

The method of integral equations or the potential  method for obtaining the solution of
some partial differential equations is based on classical analysis. In recent years, this method
has gained serious development as a result of its significant advantages over classical methods
of numerical implementation of initial-boundary problems of mechanics, which are largely
used by the aerospace complex of the developed countries of the world.

The essence of the method of boundary integral equations (BIE) for solving problems of
mathematical physics is to reduce the boundary value problem for differential equations to an
integral equation over the boundary of the domain, as a result of which the dimensionality of
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the problem is reduced by one and it becomes possible to solve more complex classes of
problems than those solved by other methods. The advantage of the BIE method is also that it
allows you to immediately determine unknown values at the boundaries, without calculating
them over the entire area. Boundary value problems with the use of integral equations make it
possible  to  solve more complex problems in both flat  and three-dimensional  formulation.
Therefore, interest in potential theory is reviving again.

Unfortunately, in the existing packages of applied programs, the numerical solutions of the
nonlinear system of the differential conservation laws of the mechanics of continuous media
are  based on the  finite-difference  and finite-element  approaches  [4],  despite  the fact  that
neither the existence nor the unity of the solutions have been proven to date connection of
such systems [2]. The mathematical model of the viscous gas flow around the carrier system
proposed in this study is represented by a linear system of boundary integral equations, for
which these issues are also solved by the expected convergence of the computational process.

In connection with the above, the problem of generalization and distribution of the method
of boundary  integral  equations  in  the  boundary value  problems of  gas  dynamics  and the
construction  of  algorithmic  foundations  of  software  tools  for  the  implementation  of  this
method is an urgent task.

3.1 Integral representations of solutions of differential equations of conservative 
conservation laws

In order to construct integral representations of solutions for equations of class (1.25), we
use theorem (1.12) under the condition that  ,    В Γ G . Then

      
 

      
 

*, , , , , , , ,

E E

dE= dS,



        Г A A Г A n Г n A Г
and after identical transformations, taking into account theorems (1.4), we obtain:

 
 

  , , , , , , , 0.
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dS 
n n



                                       
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Paying attention to the fact that ,

n n n

         
Γ G

Ι Ι , and using the known properties of the 

double layer potential 
n




, after the limit transition to the points of the surfaces, we have an 

integral representation of the solution of the equations of the conservative laws (1.25):

 
 

  , , , , , , , .

E

dS
n n



                                       
А Γ

А n А Γ А n Γ А (3.1)

For further correct use of representation (3.1), we prove its conservativeness:
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Γ y
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(3.2)

Here is the differentiation of the integral

by the external variable x (see (1.32))

and

after integration by parts, thanks to the conservativeness of the vector A, disappears, and

Thus, it is proven that the integral representation (3.1) is a solution to the boundary value
problem for the class of equations (1.26) corresponding to the conservation laws (2.1, 2.2).

The obtained representation (3.1) makes it possible to write an integral representation of
the solution of the law of conservation of mass (1.15):

(3.3)

where (see (1.19) and conditions (2.4, 2.5, 2.7))

(3.4)

Besides,

The term  can be integrated by parts:
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Thus, representation (3.2) acquires its final form

(3.5)

If we use representation (3.1) with respect to the vorticity vector Ω, we obtain

(3.6)

The connection of the vorticity vector Ω with the vector potential of the momentum tensor
П allows rotation of the momentum tensor (1.20)

(3.7)

which leads to

(3.8)

After appropriate integration in (3.6) by parts:
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we obtain the final expression of the integral representation of the vorticity vector Ω:

(3.9)

Finally, based on sample (3.1), we construct the integral representation of the momentum
tensor П (1.20), which can be naturally formulated for the vector components Пi (i = x, y, z)
(2.3)

(3.10)

Here, too, there is a connection with the momentum potential vector (2.3), which allows
performing  the  transformation  using  integration  by  parts  and  obtain  the  final  result,  for
example, for the vector Пx:

(3.11)

To integrate the first component in (3.11) by parts, we use a variant of the Stokes formula,
where (AB) is a tensor dyad:

(3.12)

Then the integral in (3.11)  is written as

After obvious transformations, we obtain

(3.13)

where 

In order to construct an integral representation of the vector potential Ψ, we use the Stokes
theorem (1.13)

whence after the limit transition, we have:
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(3.14)

Performing the transformation according to (1.43, 1.44), integration by parts according to
the rule (1.9) and the connection of the vector potential with the momentum tensor П (1.21),
we obtain:

(3.15)

Let  us  prove  the  potentiality  of  the  general  representation  (3.14)  by  performing
differentiation with respect to the external variable, using the properties of the tensor Г (1.31 -
1.33) and taking into account that:

and

Here

That is, the homogeneous integral equation obtained in this way can have only one zero
solution,  which  proves  the  potentiality  of  the  integral  representation  (3.14)  and does  not
contradict the results (1.22, 1.23).

CONCLUSION

- A methodology for  creating a  mathematically correct  method of  boundary integral
equations for solving boundary value problems of viscous gas dynamics in the real range
of similarity criteria based on the developed and generalized apparatus of vector-tensor
analysis and modern methods of mathematical physics is presented.

- Integral representations of solutions to spatial nonlinear boundary value problems of
viscous gas dynamics are systematically studied within the framework of a mathematical
model - the complete system of Navier-Stokes equations. It is substantiated that integral
representations of solutions - as analytical expressions - may be of interest in the processes
of designing vehicles and engineering structures  with optimal  aero-  and hydrodynamic
characteristics,  as  well  as  for  the  purpose  of  obtaining  extreme  values  of  such
characteristics of load-bearing systems of aviation and rocket and space technology.

- For the first time, the reduction of the spatial boundary value problem of the dynamics
of a viscous gas to a system of adequate boundary integral equations has been carried out;
The differential properties of the kernels of generalized potentials of vector representations
of velocity, vorticity, momentum vector potential, as well as the vector components of the
momentum tensor were studied.

- It  is  noted  that  the  results  obtained  convincingly  confirm  the  fact  of  a  constant
historical  supply  of  solutions  to  physical  and  mechanical  problems  for  further
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research/study of  new classes  of  problems in mathematical  physics  (integral  equations
based on integral representations (3.5, 3.9, 3.13, 3.15)).As for the issue of the approximate
solution of the system of linear boundary equations, the quadrature-interpolation method of
calculating integrals on the triangulated boundary surfaces of the control volume, which
leads to a uniquely solvable heterogeneous system of linear algebraic equations, can be
considered the most reliable and tested [8].

- At the level of differential forms, it seems realistic to develop this methodology to
solve current conservative initial-boundary value problems of non-stationary continuum
mechanics.
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