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Abstract. The finite element method (FEM) is a well known approach to solve partial differ-
ential equations. It has important applications in structural engineering, such as in topology
optimization (TO). TO involves, at each iteration, the solution of structural problems via FEM,
which can add up to a high computational cost. Therefore, a line of research to accelerate TO
emerged over the years focusing on machine learning (ML) approaches. Particularly, Artificial
Neural Networks (ANNs) have been proposed to significantly speed-up the process by eliminat-
ing the iterative algorithm, which is intrinsic to TO. Since ANN is a supervised ML method, first
a dataset is generated, containing finite element analysis (FEA) inputs, volume fraction, post-
processing, and final topologies. Then, with the Wasserstein Generative Adversarial Networks
(WGANs) is trained on this dataset to map fields of physical quantities, such as the von Mises
stress, to the final optimized structure. The final designs obtained via ML are quantitatively
analyzed according to the metrics.

1 INTRODUCTION

In industry, topology optimization has been applied for a long time to design structures that
maximize performance. Its goal is to find an optimal structure according to certain objective(s)
and constraint(s). Common examples of objectives are weight minimization and structural nat-
ural frequency maximization. And common constraints are maximum volume and stress. The
main steps in topology optimization start at an initial guess of the material distribution (usually
uniform on the domain). Then, FEA and optimization steps are repeated until the process con-
verges to an optimal design. In general, a high computational cost comes from the repetition of
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simulations.
Another very useful class of numerical methods is machine learning, which has been applied

to a variety of contexts in structure engineering, from constructing design spaces to optimizing
metamaterials. [6] focused on replacing the entire topology optimization procedure by an ML
model. They state that the sparsity of the boundary condition arrays hinders the training of
the model. Alternatively, they included the following fields of physical quantities in the inputs
to the generator network of the proposed Generative Adversarial Network (GAN): von Mises
stress, and strain energy density. [7] developed two CNNs to predict the von Mises stress field
from FEA inputs. Many other works focusing on the interaction between ML and TO can be
found in a recent review study [11]. Table 1 places the current work in comparison to other
recent studies. ”Supports” summarizes the variation of supports present in the dataset; so does
”Load” for loading conditions. ”Train/Test” indicates the difference between the samples in
train and test splits. ”Training samples” is the size of the training split. ”2D/3D” indicates how
many spatial dimensions the problems had in the study.

Work Supports Mesh Load Train/Test Training
samples

2D/3D

Present 4 clamps
+ 3
random
pins

140x50 2 loads. Ran-
dom compo-
nents and po-
sitions

1 of the
clamps
separated
for testing

44,661 2D

[6] 42 cases 128x64 On boundary.
Discrete di-
rection from
0 to π

4 BCs
separated
for testing

∼35,524 2D

[10] Poisson
distribu-
tion

40x40 Poisson dis-
tribution

Equal < 10,000 2D

[9] 3 cases Up to
65x45x6

Random
point in 4
regions

Larger
x and y
dimensions
for testing

6300 3D

Table 1: Comparison between recent studies applying ML to TO for direct design. Source: authors.

In the current work, the authors take a step towards ML models that alleviate the compu-
tational cost of topology optimization. In the end, the model developed is capable of quickly
suggesting an optimal design for a fixed-mesh 2D linear structural problem. The authors begin
by generating a dataset with the required information: FEM inputs (position and components of
loads, mechanical supports), physical fields (von Mises stress, and strain energy density), vol-
ume fraction, and final topology. This data is then used to train generative adversarial networks.

2



Lucas M. S. Pereira, Larissa Driemeier

Starting from a reimplementation of the architecture proposed in [6], a more recent alternative
from [4] is also considered, which is trained with the Wasserstein loss. The topologies generated
by the models are visually promising, and their numerical and mechanical qualities is quantita-
tively assessed. To detail the background, methods, experiments and results the text is divided
as follows. Sections 2 and 3 briefly present the fundamental theoretical background in topology
optimization and machine learning related to the present work, respectively. In section 4, the
proposed approach is detailed. This comprises of subsection 4.1 to detail dataset generation
(4.1.1) and analysis (4.1.2); subsection 4.2 focusing on the ML models used; and subsection 4.3
detailing the training procedures. In section 5, the experiments and results are discussed. This
also entails studying the interpretability of the trained ML models in subsection 5.2. Finally, in
section 6, final remarks are made, and possible extensions of the current work are suggested.

2 TOPOLOGY OPTIMIZATION

In engineering, often one seeks to alter the shape of a body in order to minimize/maximize
an objective function, such as structural compliance. A very effective approach for TO is Solid
Isotropic Material with Penalty (SIMP) [1]. In this method, a pseudo-density ρe ∈ [0, 1] is
associated to each element. A value close to zero indicates that it should be removed from
the structure. Furthermore, this value is raised to the power of p ⩾ 3, the penalty coefficient.
This penalization pushes values around 0.5 towards 0, alleviating the problem of intermediary
pseudo-densities, whose interpretation is unintuitive in practice. The fundamental formulation
of this problem is given by Equation 1.

min
u,ρe

fTu

s.t.:(
N∑
e=1

ρpeKe

)
u = f

N∑
e=1

veρe ≤ V

0 < ρmin ≤ ρe ≤ 1 for i = 1, 2, . . . , N

(1)

where: C is the structure’s mechanical compliance; f is the load vector; u is the displacement
vector; K is the structure’s stiffness matrix; and ve and V are the volumes of a single element
and the whole structure, respectively. In Equation 1, the design variable is the pseudo-density
ρe, and the cost function is related to the compliance. Furthermore, the three constraints are
respectively related to equilibrium, upper bound for the structure’s volume, and a lower bound
ρmin to the pseudo density, to avoid numerical problems with the stiffness matrix.
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3 GENERATIVE ADVERSARIAL NETWORKS

Machine learning (ML) is a branch of AI that, by processing datasets, optimizes parametric
statistical models to emulate intelligent behaviour. The general ML project pipeline is fairly
constant. First the training data must be acquired. For the purposes of the current work, a su-
pervised ML approach is used. Therefore, each sample must contain both the model’s input and
the respective expected output. Then the quality of this dataset is evaluated through exploratory
analysis, assessing, for example, the variety of samples. Afterwards, the data is separated in
training, validation, and test samples. Finally, training begins by feeding the data to the model
to get predictions. The error in relation to the actual label is used to adjust the system’s param-
eters. Iterating in this procedure, the optimizer changes the model to the set of parameters that
minimizes the prediction error (i.e. loss function). Among ML models, the most popular and
versatile are ANNs, since they enable an endless variety of architectures. [4] includes a rich
review of this line of research. For the purposes of the current work, a specially important ML
framework was proposed in [2]: generative adversarial networks (GAN). It involves training
two adversarial networks at the same time. The generator G tries to forge samples similar to
the ones in the dataset. Meanwhile, the discriminator (or ”critic” in WGAN) D must be able to
discern false samples from real ones (that is, from the actual dataset).

4 METHODOLOGY

The approach developed by the authors is based on recent advances in dealing with machine
learning methods for topology optimization, such as [6]. Figure 1 summarizes the general logic.
The end goal is to have a network (the trained generator) that is able to quickly predict the final
topology given the initial physical fields over the physical domain of 2D linear FEA structural
problems. All code implementations are carried out in the Julia1 programming language.

Dataset

FEA + SIMP

Conditional Wasserstein GANs

Generator

Critic

Physical fields

Final topology

Boundary conditions

Volume fraction

Domain

Evaluation

Figure 1: Approach developed in the current work. Source: authors.

1https://julialang.org
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4.1 Dataset

4.1.1 Generation

Following the basic ML project pipeline (subsection 3), first a dataset2 is needed for training
and validating the ML system. In the current work, the data is created through FEA, and it is
based on randomized 2D problems. Procedures related to topology optimization are handled by
the TopOpt.jl3 package. In a fixed rectangular mesh of 140x50 linear square elements of unitary
sides, two point loads are placed, with random x and y components ([-90; 90] N) and positions.
Additionally, there are two types of supports. In the first, all elements of one random boundary
are clamped. In the second, three random elements have their nodes pinned. Figure 2 includes
representations of both types of supports. A random volume fraction (VF) between 0.3 and 0.9
is also chosen.

F1

F1

F2

F2

Pins

X load component

Y load component

(a)

(b)

Clamp

Figure 2: Types of samples generated. (a) Sample with simple pins, clamping a random side of the mesh. (b)
Sample with three random elements pinned. Source: authors.

Then, a single FEM analysis is performed on the homogeneous domain with the chosen VF
everywhere. With post-processing routines, the physical fields can be determined, namely von
Mises stress, and strain energy density. As usual in FEM practice, these fields are obtained
in the Gaussian points of the mesh. Afterwards, the standard SIMP procedure is carried out
to obtain the final topology for this particular FEA problem. Finally, by repeating these steps,
a dataset is built. Each sample is defined by 51x141 matrices (dimensions of nodal mesh)
with: volume fraction, von Mises field, strain energy density field, binary support definition, x
components of loads, y components of loads, final topology (see Figure 1). The dataset has an
initial (unfiltered) size of 138,600 samples.

2https://zenodo.org/record/8191138
3https://github.com/JuliaTopOpt/TopOpt.jl
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4.1.2 Feature Engineering

With the dataset in place, the important step of data analysis must be performed. This is an
opportunity to: 1) define data metrics; 2) assess the quality of the dataset; 3) filter the dataset
according to targets of these metrics. This is crucial to avoid feeding the network with low
quality samples that would mislead, hinder or slow down training. Another issue to avoid is
the violation of the linear behavior of 2D FEA. The analysis and filtering of the dataset is done
in steps, each focusing on a different type of problem. With the goal of only feeding the GAN
with high quality samples, many problems were identified, and samples suffering from those
were removed. Table 2 contains the size of the dataset in each sequential stage of analysis. In
the end, the filtered dataset contains 121,840 samples from the initial size of 138,600 samples,
meaning that 16,760 samples were removed. It is equivalent to a 12.1% reduction in size. Only
the filtered dataset is used to train the GAN.

Stage Total Absolute
variation

Percentage
variation

Initial 138,600 - -
Plasticity 137,649 -951 -0.7%

Non-binary 128,867 -8782 -6.4%
Geometrical
nonlinearity 128,862 -5 -0.004%

Structural
disconnections 127,855 -1007 -0.8%

Isolated
Features 121,840 -6015 -4.7%

Table 2: Summary of dataset size variation after each sequential analysis. Source: authors.

4.2 GAN models

In this work, GAN is used for the prediction of final topologies. During training, the genera-
tor improves its ability to create faithful topologies. And the discriminator receives either a real
topology (from the dataset) or a suggested one (created by the generator), improving its ability
to distinguish both. The generator is conditioned to the physical fields; and the discriminator,
to the physical fields, volume fraction and FEA inputs.

When it comes to architectures, among the three types of generator used in [6], one was al-
ways superior, the ”U-SE-ResNet” model. The architecture here proposed is called ”QuickTO”4,
and is based on the ”ConvNeXt” model from [4]. Their final architecture is used for classifi-
cation tasks, and has a performance similar to that of the Swin Transformer, a recent and very
successful machine learning model for computer vision. However, the state-of-the-art accom-
plishments of transformers are frequently attributed to their attention mechanism alone, which

4https://github.com/LucasMSpereira/QuickTO
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ConvNeXt does not include. Comparing both generator architectures, QuickTO has 220M pa-
rameters, less than half of U-SE-ResNet (470M). Network size is very important, since a smaller
model can be trained in less time, uses fewer computational resources, and processes inputs
faster (inference time).

4.3 Training

The training scheme included a validation epoch after every 2 training epochs, of which there
were 9. 60% of the dataset was used, resulting in 73,103 samples, which were split as: 44,661
for training; 19,140 for validating; and 9,302 for testing. The generator’s parameters are updated
by the optimizer to minimize the loss given in Equation 2 (which includes the formulation from
[5], and empirical weights), as suggested in [6].

LG
WGAN = E{−30D[G(gin)] + 4000L2} (2)

Where y∗ = G(gin) is the topology suggested by the generator; and D(·) is the discrimina-
tor’s response. Meanwhile, the critic’s parameters are updated by the optimizer to minimize the
loss in Equation 3. Pairs (gin, y) are sampled from the dataset, where y is a target topology.

LD
WGAN = E{D[G(gin)]} − E[D(y)] (3)

As discussed in [11], an important proof of generalization capability of ML models applied
in TO is the ability to generate topologies for FEA boundary conditions never seen before by
the ML model. Taking this into consideration, samples with clamped top boundary condition
were separated for model testing, so that the GAN never sees them during training. Apart from
testing, the data was always split in 70% for training, and 30% for validation.

5 DISCUSSION

Figure 3 depicts the loss history of the generator, including the individual terms and the total
loss. During experiments, the generator showed very high sensitivity to the empirical weight of
the first term in Equation 2, related to the adversarial role of the critic. If this coefficient was
too high, the created topologies included no grayscale. At the same time, however, strong mode
collapse occurred (low output variety). Meanwhile, high values of the weight of the second term
(MSE) in Equation 2 resulted in topologies with the correct general contours, but still diffuse
and without fine details, such as small holes and thin structural members.

Figure 4 depicts the critic’s loss (and components) during training, validation and test. The
high amplitude noise during training epochs is a result of the Dropout layers included for regu-
larization. In this figure, ”fake” refers to the critic’s output for samples from the generator; and
”real”, from the dataset (refer to equation 3).
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Adversarial

MSE
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1000
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0

0 1000 2000 3000 4000
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Figure 3: Loss (and its components) history of QuickTO generator. Plot includes training, validation and test
epochs. Source: authors.
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0
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0 1000 2000 3000 4000

Fake

Real

Total

Batch

Figure 4: Critic’s loss and its components during training, validation and test. Source: authors.

5.1 Comparison

Figure 5 presents normalized histograms of the errors from the trained generators in the test
set (structures with clamped top boundary condition). The first row refers to the U-SE-ResNet
model suggested in [6]; and the second, to QuickTO, proposed in the present work. The first
column includes the distribution of mean squared error (MSE). And the second column depicts
the distribution of relative volume fraction error V FR = |V F ∗−V F |

V F
, where V F ∗ and V F are the

volume fractions from suggested and real topologies, respectively.
The relative compliance error in the test results was also determined, using CR = |C∗−C|

C
,

where C∗ and C are the compliances of the suggested and FEA topologies, respectively. The
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Figure 5: Normalized histograms describing error distribution among samples from test set. First row refers to
U-SE-ResNet model, and second row to QuickTO. First column includes topology MSE; and second column, the
relative VF error. Source: authors.

suggestion of improper designs was alleviated by dataset filtering stage, but not completely
solved. And, inside FEA, these problems can lead to numerically unstable compliances that are
very high. To visualize, Figure 6 includes violin plots of the base 10 logarithm of the relative
compliance errors in the test split. As shown, the errors are concentrated in -2, referring to
0.01 (i.e. 10%) relative difference in compliance. In summary, QuickTO performed better in
topology MSE and relative VF error, but slightly worse in compliance error and disconnections.
However, it is important to remember that the design resulting from the standard TO method
usually goes through post-processing steps. Therefore, a perfect match of suggested topologies
is not necessary.

Table 3 compares the techniques here discussed regarding computational performance, con-
taining averages of processing time to obtain the optimal design. The averages are taken over
150 random FEA structural problems. From these values, on average, QuickTO is more than
4 times faster than SIMP, and 1.5 times faster than U-SE-ResNet. Figure 7 includes a few ex-
amples of topologies generated by QuickTO, and their respective FEM inputs, von Mises field
distributions, and real designs.

Avg. Time (s)
SIMP 4.37

U-SE-ResNet 1.66
QuickTO 1.06

Table 3: Computational performance of SIMP, U-SE-ResNet and QuickTO to obtain optimal design. Source:
authors.
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U-SE-ResNet

QuickTO
0.00

-0.25
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log10 of relative compliance error

Figure 6: Violin plots of base 10 logarithm of relative compliance error for both models. Metric evaluated on test
split. Vertical short bars indicate maxima and minima of error for the model of corresponding color. Vertical black
lines indicate median. Source: authors.

FEA case von Mises QuickTO FEA

Figure 7: Batch of samples from validation data split. Designs suggested by QuickTO approach. Source: authors.

5.2 Model interpretability

The field of ”interpretable AI” (XAI) has been developed to ”[...] augment the training
process, the learned representations, and the decisions with human-interpretable explanations”
[8]. This opposes the application of an ML model as a ”black-box”. Accordingly, the behavior
of the trained ML models was studied to better understand how they were processing the input
information. Starting by the QuickTO generator, a basic question to be answered is ”how much
did each input information influence the topologies suggested?”, specifically the strain energy
density and von Mises fields. For this purpose, noise is applied only to the specific channel being
evaluated, and the corresponding drop in generator performance is measured. When applying

10
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50% of binary noise to the VM channel, a drop of 36% in MAE was observed. As for the strain
energy channel, the drop was of 29%. These results indicate that the VM channel is on average
more significant to determining the final design.

Of equal importance, one can also attempt to explain the critic’s behaviour. Figure 8 includes
the relevance distribution of some input channels, namely volume fraction, von Mises field,
support definition, x load components, and input topology. ”Relevance” here is defined as
the gradient multiplied pointwise by the input. In the VF relevance plot, sharp variations are
noticeably clustered away from the support (clamped top row); and checkerboard-like patterns
are formed all over the channel. In the von Mises relevance plot, similar behaviors are present,
but concentrated around the loads. In both the support and load relevance plots, very few
elements seem to be of importance to the network. This was expected, since these channels
are sparse. Lastly, in the relevance plot for the target topology (third row, first column), the
shape of the topology is clearly delineated. Since the critic is trained to distinguish between
real and artificial topologies, the high relevance of this channel is expected.

VF von Mises

Support Loads

Input topology Target topology

Figure 8: Distribution of relevance across some input channels (alongside target topology). Plots defined by input
values multiplied by the gradient. Technique applied to critic (QuickTO approach). Source: authors.

6 CONCLUSIONS

As with any other technological field, there’s an ever growing demand for computational
performance in topology optimization analyses, with which ML can help. The current work is
the first application of both a ConvNeXt-inspired model and the Wasserstein loss in the field. A
very large dataset of samples was generated, and filtered against a handful of possible problems.
Furthermore, these samples faced very few restrictions, exposing the models to a great variety
of FEA problems. Additionally, the model’s generalization capabilities were evaluated in a
class of FEA boundary conditions never seen by the model, being therefore a more demanding
test. Also, AI interpretability techniques were applied to both the generator and discriminator,
aiming at a better understanding of their behaviors. However, there are still many challenges
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and possible directions. One example is to include the compliance error in the generator’s
loss. Additionally, consideration of not only statistical similarity, but also diversity, novelty,
constraint satisfaction, design performance, and conditioning. More extensions of the current
work are FEA non-linearities, 3D problems, WGAN with gradient penalty, sliced-wasserstein
loss, geometry encoding, other generative models (e.g. diffusion, normalizing flow, energy),
spectral normalization, and geometric ML based on the domain mesh.
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