
VII International Conference on Particle-Based Methods 
PARTICLES 2021 

P. Wriggers, M. Bischoff, E. Oñate, A. Düster & T. Zohdi (Eds) 
 

 

 
THE ‘SIGNATURE’ OF PARTICLE GEOMETRY  

- DEM MODELLING PERSPECTIVE 

SEUNG JAE LEE*, CHANG HOON LEE†, MOOCHUL SHIN†, AND PRIYA TRIPATHI* 

* Department of Civil and Environmental Engineering 
Florida International University 

Miami, FL 33174, USA 
e-mail: sjlee@fiu.edu; ptrip009@fiu.edu 

 
† Department of Civil and Environmental Engineering 

Western New England University 
Springfield, MA 01119, USA 

e-mail: changhoon.lee@wne.edu; moochul.shin@wne.edu 
 

Key words: Particle geometry; DEM; Power law; Wadell’s true Sphericity; M-A-V-L 
 
Abstract. This study evidences that the particle surface-area-to-volume ratio (A/V) and the 
particle volume (V) have the key information of particle geometry and the ‘signature’ is realized 
by a power-law relationship between A/V and V in a form of V = (A/V)α × β. We find that the 
power value α is influenced by the shape-size relationship while the β* term (β evaluated with 
a fixed value of α = -3) informs the average particle shape of a granular material regarding the 
overall angularity. This study also discusses how the particle shape can be retrieved in terms of 
Wadell’s true sphericity using the A/V and V. This concept is linked to another shape index M 
that interprets the particle shape as a function of surface area A, volume V, and size L. This 
paper explains the analytical aspects of geometric ‘signature’ and examines the idea using the 
example particles to address the DEM modelling-related questions. 
 

1 INTRODUCTION 

With the recent advances in computing resources and modelling techniques, the discrete 
element method (DEM) has evolved to consider realistic particle geometry for more accurate 
interactions between particles. Therefore, the simulation fidelity of granular material behaviour 
could have been greatly enhanced. However, when it comes to modelling of mineral particles 
(e.g., for a geomechanics problem), a large gap still exists with many questions that remain to 
be better answered. For example, every mineral particle looks different in terms of shape and 
size, then how can we model these different particles for DEM analysis? If it is impractical to 
model all of those, how many shapes do we need to model to make DEM simulation as accurate 
as possible? Is there a systematic way we can use to identify some representative shapes for 
DEM modelling? In general, the particle shape changes with size, then how can we effectively 
model this?  

Furthermore, the particle shape effect on the granular material behaviour is a fundamental 
research topic for which DEM has been broadly adopted. However, we need to look at the 
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‘shape effect’ a little more carefully because the shape effect cannot be isolated. The ‘particle 
shape’ is indeed a comprehensive term, thereby being a function of the coupled geometry 
parameters (i.e., volume, surface area, and size). Thus, the effect of ‘particle shape’ can be 
triggered by any of geometry parameters. For example, Figure 1a is a cube, and Figure 1b is a 
rectangular prism whose length is twice longer than the cube in Figure 1a. The aspect ratios are 
different, but the volume of Figure 1b is also twice larger than Figure 1a. Then, if these particles 
are used for the shape effect study using DEM, how can we isolate the effect of different aspect 
ratios from the effect of different volumes? The rectangular prism can be scaled to Figure 1c to 
have the same volume as the cube, but these particles (Figure 1a and c) still have different 
surface areas and sizes as well as different shapes. Therefore, what we studied using DEM was 
not the particle ‘shape effect’ but the particle ‘geometry effect’ where the shape is one of the 
main contributing factors (that cannot be isolated) to the granular material behaviour. 
Nevertheless, the ‘particle shape’ is a comprehensive term, how can we describe the shape in 
terms of other geometry parameters? This study finds the particle surface-area-to-volume ratio 
(A/V) and the particle volume (V) can be used to describe the shape and are the key information 
to reveal the ‘signature’ of particle geometry. 

 
Figure 1. Example of particle geometry variation for the shape effect study; (a) Cube; (b) Rectangular prism with 
L:W = 2:1; and (c) A smaller rectangular prism having the same volume with the cube in (a) 

2 M-A-V-L VS. WADELL’S TRUE SPHERICITY 

A new concept M-A-V-L was introduced by Su et al. [1] with Equation (1) that translates 
the 3D particle morphology (shape) M as a function of surface area A, volume V, and size L, 
where L is defined by the diameter of particle’s circumsphere (colloquially, circumdiameter). 
We recently found that the principle was implicitly embedded in Wadell’s ‘true’ Sphericity 
proposed about a century ago [2] although the original definition was never discussed that way 
in the granular materials research community. 

 M = A/V × L/6 (1) 

Wadell proposed the ‘true’ Sphericity S to quantify the 3D particle shape and defined it as 
the ratio between two surface areas as shown in Equation (2) comparing the particle surface 
area A with the surface area of the reference sphere As. The reference sphere has the volume Vs 
same with the volume V of the particle (i.e., Vs = V). 

S = As / A (2) 

While the original definition in Equation (2) is well-known, the granular materials research 
community has not recognized that S can be reformulated as a function of surface area A, 
volume V, and size D as shown in Equation (3), where S-1 is the inverse of S. The size D is the 
diameter of the reference sphere having the same volume V with the particle. Therefore, as 
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shown in Equation (4), D can be computed from V using the analytical relation between sphere 
diameter and volume.  

1/S = S-1 = A/V × D/6 (3) 
D = 2×(3V/(4π))1/3 (4) 

There is a similarity as well as the difference between M and the true Sphericity, S. Equations 
(1) and (3) are written in a similar form except for the length term: L for Equation (1) and D for 
Equation (3).  This means that both indices similarly interpret the 3D particle shape as a function 
of surface area, volume, and size. The difference is how the size is determined. S-1 is evaluated 
using the diameter D of the reference sphere having the same volume V with particle. Therefore, 
D is certainly redundant information because it can be derived from V as shown in Equation 
(4). However, the index M considers L (i.e., circumdiameter) in the place of D. Therefore, M 
complements S-1 with the additional parameter L. Comparing Equations (1) and (3), the M/S-1 
ratio (or simply M×S) is the ratio of L/D as shown in Equation (5) which can distinctively 
informs shape elongation. 

M/S-1 = M×S = L/D (5) 

Figure 2 shows an example. All particles in the figure have the same D (=1.24 mm) because 
the volumes of all particles are set to 1 mm3. However, L is different because it considers the 
length to the farthest corner of the particle. Figure 2c schematically shows how L and D are 
evaluated. The sphere has the smallest S-1 and M values which are 1. Both shape index values 
increase with elongation and angularity in order of sphere, cube, the mineral particle, and 
elongated tetrahedron. The point is that it is hard to differentiate the contribution of elongation 
from that of angularity to the shape by looking at either S-1 or M. However, comparing S-1 and 
M gives useful information about elongation. While both (b) cube and (c) the mineral particle 
have comparable S-1 values, (c) has a significantly higher M compared to (b) due to the 
elongation. This is reflected in the higher M/S-1 value of (c) compared to (b). The M/S-1 value 
can be even higher with more elongation as shown for the (d) elongated tetrahedron. 

 
Figure 2. Particle shape evaluated in terms of S-1 and M; (a) Sphere; (b) Cube; (c) a 3D-scanned mineral particle; 
and (d) Elongated tetrahedron 
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3 POWER-LAW BETWEEN A/V AND V 

As discussed in the previous section, the individual particle shape can be described in terms 
of the true Sphericity using A/V. In addition, A/V can be useful to describe the ‘signature’ of 
particle geometries at the granular material level such as (i) the shape-size relation and (ii) the 
overall angularity. The relation between A/V and V of particles can be approximated with a 
‘power-law’ [3] in a form of Equation (6). Considering this power-law relation is presented as 
a linear plot in the log-log space as shown in Equation (7), the power value α represents the 
slope of the log-log plot, and the term β represents the plot’s intercept at A/V = 1.  

V = (A/V)α × β (6) 
log(V) = α × log(A/V) + log(β) (7) 

Figure 3 shows an example, where the A/V and V values of three groups of particles are 
presented. Each group is composed of 15 particles of sphere, cube, or tetrahedron. The power 
law relations are plotted in a log-log scale with the α and β values presented. As shown in the 
figure, the power value α (slope) is invariantly -3 for particles having a same shape, indicating 
the shape does not change with size. If all 45 particles are considered as a group, the estimated 
power value α is still -3 as shown with the black dotted line in the figure. Likewise, α = -3 
indicates the shape distribution does not change with size, i.e., there is no shape-size relation. 
The β value is the intercept at A/V = 1 in the regression analysis, while β* indicates the intercept 
with a fixed value of α = -3. In this example, β* = β because the power regression is realized 
with α = -3, but β* ≠ β if the slope α is different from -3 in the regression analysis (e.g., Figure 
5 to be discussed later). Hereafter, β* is considered in this paper to demonstrate β* can represent 
the average particle shape of a granular material regarding the overall angularity. As shown in 
the figure, β* is 113.09 for spherical particles, β* is 216 for cubes and β* is 374.12 for tetrahedra 
with α = -3, inferring that the β* increases with the angularity of particle geometry.  

 
Figure 3. Examples of power-law for the three groups of identical shape (spheres, cubes, and tetrahedrons) 

Then, what if there are different particle shapes mixed? Let us consider the example in Figure 
4 to see how α and β* values are obtained. Two groups of particles are considered with various 
elongations and angularities. These particles are theoretical solids, so the detailed information 
of geometry can be found in existing literature including Mathematica’s polyhedron library [4]. 
Icosahedron, dodecahedron, octahedron, cube, and tetrahedron are the Platonic solids. On the 
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other hand, bilunabirotunda, gyrobifastigium, augmented tridiminished icosahedron (ATI), and 
elongated triangular dipyramid (ETD) are selected from the Johnson solids. Both groups have 
the same set of 10 different shapes, of which total volume of each group is identical. The 
evaluated S-1 and M values are shown in the figure, where the ETD is shown the most elongated 
and angular per the indices. The main difference between the two groups is the shape-size 
relation. In Group #1, the size D increases with shape angularity and elongation (from the left 
to the right in the figure). The sphere, therefore, has the smallest size (D = 0.5 mm) and D 
increases with S-1. On the other hand, the size D in Group #2 decreases with increase of S-1, so 
the sphere is the largest in the group (D = 5.0 mm). The size L is not presented in the figure, 
but it can be easily computed by L = D×M/S-1.  

 
Figure 4. Two particle groups with the opposite shape-size relation; The unit of length is mm.   

 
Figure 5. Power-law relation between A/V and V for Group #1 and #2 

The power-law relation between A/V and V is shown in Figure 5. The slope α from the 
regression analysis indicates the important information regarding the relation between shape 
and size of particles. Considering α = -3 presents no shape-size relation (i.e., a reference), α < -
3 (steep slope) indicates that smaller particles tend to have a more spherical and rounder shape 
than the larger particles. On the other hand, α > -3 (gentle slope) indicates the opposite, i.e., 
larger particles tend to be more spherical and rounder. This shape-size relation is evidenced 
with the plots in the figure, i.e., α = -3.56 (steep slope) for Group #1, and α = -2.59 (gentle 
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slope) for Group #2. The black dotted line α = -3 is shown in the figure as the reference. The 
β* value is computed with α set to -3, and the average log(A/V) and the average log(V) obtained 
from the data points are used in Equation (7). The β* value can be interpreted as the average 
shape index for a group of particles. The evaluated β* is commonly found to be 212.91 for each 
Group #1 and #2, because the constituent shapes in these groups are identical. The β* value is 
close to that of cubes-only group (Figure 3), informing the overall angularity of the particle 
shapes is close to the cube’s. 

4 CONCLUDING REMARKS 

This paper discusses a new perspective regarding how particle shape, volume, surface area, 
and size are related, and characterizes the relation at two different levels - (i) individual particle 
level, and (ii) particle group level (i.e., granular material). 

(i) The shape of an individual particle can be interpreted as a function of surface area A, 
volume V and size L. The M = A/V×L/6 concept introduced by Su et al. [1] is revisited in this 
paper and compared with Wadell’s true Sphericity S. This paper uncovers the S-1 = A/V×D/6 
concept that similarly characterizes the 3D particle shape as a function of the other geometry 
parameters. This paper finds the value of M/S-1 provides useful information about elongation.  

(ii) The shape-size relation and average shape index of particles can be understood using a 
‘power-law’ between A/V and V. This ‘signature’ of the particle geometries is realized as a 
linear plot in log-log space. The power value α (slope of the plot) in the unconstrained 
regression analysis indicates the shape-size relation, and the intercept term β* (evaluated by the 
constrained analysis with α = -3) represents the overall angularity of the particle shapes. 
Furthermore, the A/V and V space allows for presenting the particle volume, surface area, and 
size, which enables to comprehensively characterize the particle geometries. 

The findings will allow for more effective particle geometry modelling in DEM. In general, 
there are too many particle shapes that exist in a naturally occurring granular material. Not all 
shapes can be modelled for DEM analysis, and therefore some representative shapes need to be 
identified for the particle modelling. However, it has been always unclear to determine what 
shapes are typical or dominant. Furthermore, the selection of such shapes has been somewhat 
subjective in DEM modelling community. The identified α and β* information will help 
systematically model the DEM particles. 
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