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Abstract. In order to make the numerical simulation of atherosclerotic plaque growth feasible,
a temporal homogenization approach is employed. The resulting macro-scale problem for the
plaque growth can be further accelerated by using parallel time integration schemes, such as the
parareal algorithm. However, the parallel scalability is dominated by the computational cost
of the coarse propagator. Therefore, in this paper, an interpolation-based coarse propagator,
which uses growth values from previously computed micro-scale problems, is introduced. For a
simple model problem, it is shown that this approach reduces both the computational work for
a single parareal iteration as well as the required number of parareal iterations.

1 Introduction

We are concerned with the numerical simulation of atherogenesis, that is, the growth of plaque
inside arteries. For instance, in case of rupture, this can lead to heart attacks or strokes, which
are often fatal. While the plaque growth takes place over months to years, the wall shear stress,
which is an important driving force for plaque growth, varies within the second of a heartbeat.
Therefore, a fully time-resolved fluid-structure interaction (FSI) simulation of plaque growth
can easily require O(109) time steps; this is computationally infeasible.

In order to make numerical simulations of arterial plaque growth feasible, a temporal ho-
mogenization approach [6] can be employed, decoupling the FSI and the plaque growth. In
the resulting algorithm, a periodic FSI micro scale problem with fixed growth values has to
be solved in each macro scale step of the plaque growth problem. The temporal micro-scale
problem cannot be neglected. However, only few heartbeats have to be simulated to reach a
periodic state; cf. [7, 5]. As a result, the computational cost is reduced significantly.

The time to solution can be further reduced by parallelization. Using parallelization in space
typically results in a good parallel efficiency, however, even after reaching a strong scaling limit,
the time to solution might remain high due to the large number of time steps. In order to
parallelize further, a parallel time integration approach for the plaque growth problem has been
introduced in the preprint [4], based on the parareal algorithm [8]. As usual in two level methods,
the parallel scalability is limited by the cost of the coarse level, here, the coarse propagator. In
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particular, when the classical parareal approach is applied to the plaque growth problem, a
periodic micro scale FSI problem has to be solved in each time step of the coarse propagator.
To speed up the coarse propagator, an approach which reuses growth values from previous
micro-scale computations has been introduced in [4], leading to an increase in the number of
required parareal iterations, but a reduction in the overall time to solution.

In this paper, we introduce an interpolation-based coarse propagator, which reduces the
computational cost while being much more accurate compared to the re-use approach. The
new interpolation approach uses growth values from all previous micro-scale computations for
the interpolation and, thus, becomes more accurate with each parareal iteration. We test it on
a simple two-dimensional model, for which it even speeds up the convergence of the parareal
iteration, compared to the classical parareal algorithm.

2 Equations

We consider a time-dependent fluid-structure interaction system, where the fluid is modeled
by the Navier–Stokes equations and the solid by the Saint Venant–Kirchhoff model. To account
for the solid growth, we incorporate a multiplicative growth term into the deformation gradient.
The growth term is motivated by typical plaque growth models, such as those in [12, 7, 11].

2.1 Fluid-structure interaction

We consider a partition of an overall domain Ω(t) = F(t)∪Γ(t)∪S(t) into a fluid part F(t),
an interface Γ(t) and a solid part S(t). The blood flow and its interaction with the surrounding
vessel wall is modelled by the following non-stationary FSI system:

ρf (∂tvf + vf · ∇vf )− div σf = 0, div vf = 0 in F(t),

ρs∂tv̂s − div (F̂eΣ̂e) = 0, ∂tûs − v̂s = 0 in Ŝ,

σf~nf + σs~ns = 0, vf = vs on Γ(t).

(1)

Here, vf and v̂s denote the fluid and solid velocities, respectively, and ûs the solid displacement.
Quantities with a “hat” are defined in Lagrangian coordinates, quantities without a “hat” in
the current Eulerian coordinate framework. Two quantities f̂(x̂) and f(x) correspond to each
other by a C1,1-diffeomorphism ξ̂ : Ω̂ → Ω(t) and the relation f̂ = f ◦ ξ̂. Below, we will also
make use of the solid deformation gradient F̂s = I + ∇̂ûs, which is the derivative of ξ̂ in the
solid part. The constants ρf and ρs are the densities of blood and vessel wall, and ~nf and ~ns
are outward pointing normal vectors of the fluid and solid domains, respectively.

Furthermore, let σf = ρfνf (∇vf +∇vTf )− pfI denote the Cauchy stress tensor of the fluid,
where νf is the kinematic viscosity of blood. On the other hand, σs denotes the Cauchy stress

tensor of the solid, which is related to the Piola-Kirchhoff stress Σ̂e (which is defined below) by
the Piola transformation σ̂s = Ĵ−1

e F̂eΣ̂eF̂
T
e .

A sketch of the computational domain, which will be used in the numerical examples below, is
given in fig. 1. We split the outer boundary of Ω into a solid part Γs with homogeneous Dirichlet
conditions for the solid displacement, a fluid part Γin

f with an inflow Dirichlet condition for the

fluid velocity and an outflow part Γout
f , where a do-nothing boundary condition is imposed. In
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Figure 1: Sketch of the computational domain centered at the origin (0, 0); F and S are the
fluid and solid parts, respectively, and the solid lines correspond to the fluid-solid interface Γ.
The plaque growth is initiated at (0,±1).

particular, the boundary data is given by

vf = vin on Γin
f , ρfνf (~nf · ∇)vf − pf~nf = 0 on Γout

f , ûs = 0 on Γ̂s, (2)

where vin is the inflow velocity on Γin
f .

2.2 A simple model for plaque growth

Developing a realistic model for the plaque growth at the vessel wall is a complex task
that involves the interaction of many different molecules and species; see for example [11].
Furthermore, the plaque growth will also strongly depend on the geometry and material model
of the arterial wall, as well as the interaction with the blood flow. In this contribution, we
restrict ourselves to a simplified plaque growth model and instead focus on algorithmic aspects.
More specifically, we consider a simple ODE-based model taken from [7, 5] that focuses on the
influence of the concentration of foam cells cs on the growth; the spatial distribution of the
growth is prescribed in this model.

Therefore, let the spatial distribution of the plaque growth be fixed up to a constant factor,
which corresponds to the foam cell concentration cs. Moreover, we assume that the evolution
of the foam cell concentration cs can be described by a simple ODE, which depends on the wall
shear stress σWS

f at the vessel wall:

∂tcs = γ(σWS
f , cs) :=

α(
1 + cs

)(1 +

∥∥σWS
f

∥∥2

L2(Γ)

σ2
0

)−1

, σWS
f :=

(
Id − ~nf~nTf

)
σf~nf . (3)

The reference wall shear stress σ0 and the scale separation parameter α are parameters of the
growth model. For cardiovascular plaque growth, we typically have α = O(10−7) s−1; see the
discussion in [6].

As mentioned earlier, we model the solid growth by a multiplicative splitting of the defor-
mation gradient F̂s. In particular, let F̂e be the elastic part and F̂g a growth function, such
that

F̂s = F̂eF̂g ⇔ F̂e = F̂sF̂
−1
g = [I + ∇̂ûs]F̂

−1
g ; (4)
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cf. [10, 12, 7]. In the ODE model, we use the following growth function depending on cs

ĝ(x̂, ŷ, t) = 1 + cs exp
(
−x̂2

)
(2− |ŷ|), F̂g(x̂, ŷ, t) := ĝ(x̂, ŷ, t) I. (5)

Hence, the growth rate is influenced by the fluid-structure interaction only in form of the variable
cs. From eq. (5) and the fact that the computational domain is centered around the origin, we
obtain that growth is concentrated at (0,±1); see fig. 1. It follows that

F̂g = ĝI ⇒ F̂e := ĝ−1F̂s, (6)

and the elastic Green–Lagrange strain is given by

Êe =
1

2
(F̂

T
e F̂ e − I) =

1

2
(ĝ−2F̂

T
s F̂ s − I) (7)

resulting in the Piola–Kirchhoff stresses (see [7] for details)

F̂eΣ̂e = 2µsF̂ eÊe + λs tr(Êe)F̂ e = 2µsĝ
−1F̂ sÊe + λsĝ

−1 tr(Êe)F̂ s. (8)

3 Numerical framework

To solve the FSI problem eq. (1) we use an Arbitrary Lagrangian Eulerian (ALE) approach;
see, e.g., [9]. For a more detailed description of the numerical framework, we refer to [4].

3.1 Temporal two-scale approach

Even for the simplified two-dimensional configuration considered in this work, a resolution of
the micro-scale dynamics with a scale of milliseconds to seconds is unfeasible over the complete
time interval of interest [0, Tend], with Tend being several months up to a year. For instance,
when considering a relatively coarse micro-scale time step of δτ = 0.02s, the number of time
steps required to simulate a time frame of a whole year would be 365 · 86 400 · 1s

δτ ≈ 1.58 · 109,
each step corresponding to the solution of a mechano-chemical FSI problem.

As a remedy, we apply the two-scale approach of Frei and Richter developed in [6], which can
be seen as a variant of the Heterogeneous Multiscale Method (HMM) [3]. In particular, in [6], a
periodic-in-time micro-scale problem is solved in each time step of the macro scale, for instance
each day. The growth function γ(σWS

f ) is then averaged by integrating over one period of the

heart beat, its average will be denoted by γ(σWS
f ). This averaged growth function is applied to

advance the foam cell concentration based on eq. (3).
Firstly, we divide the macro-scale time interval [0, Tend] into Nl time steps of size δt

0 = t0 < t1 < ... < tNl
= T, Nl =

Tend

δt
. (9)

Since cs varies significantly on the macro scale only, using cs(tm) as a fixed value for the growth
variable on the micro scale is a reasonable approximation in the time interval [tm, tm+1]. Then,
one cycle of the pulsating blood flow problem (around 1 s) is to be resolved on the micro scale

0 = τ0 < τ1 < .... < τNs = 1s, Ns =
1s

δτ
(10)
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to compute the averaged growth γ(σWS
f ). It has been shown in [6] (for a simplified flow con-

figuration) that this approach leads to a model error O(ε) compared to a full resolution of the
micro scale, where ε = 1s

Tend
denotes the ratio between macro and micro time scale and is in the

range of O(10−7) for a typical cardiovascular plaque growth problem. From relations (9) and
(10), we have δτ = εδt. We note that, in the model problem formulated above, scale separation
is induced by the parameter α = O(ε).

Within the two-scale algorithm, periodic micro-scale problems need to be solved. If suitable
initial conditions for w0 := (v0,u0) on the micro-scale are available, for example, from the micro
scale problem from the previous macro time step, convergence to the periodic solution may be
obtained by simulating a few cycles of the micro-scale problem, due to the dissipation of the
flow problem; see [6, 5]. After each cycle, we can check numerically if the solution is sufficiently
close to a periodic state. In particular, we apply a stopping criterion based on the computed
averaged growth value:

|γ(σWS,r
f )− γ(σWS,r−1

f )| < εp,

where r = 1, 2, ... denotes the iteration index with respect to the number of cycles of the micro-
scale problem. The two-scale algorithm is summarized in algorithm 1.

Algorithm 1: Two-scale algorithm

Set starting values w0,0 = (v0,0,u0,0) and time step sizes δt, δT, Ns = 1
∂t , Nl = Tend

δT .
for n = 1, 2, . . . , Nl do

1.) Micro problem: Set r ← 0
while |γ(σWS,r

f )− γ(σWS,r−1
f )| > εp do

1.a) Solve micro-scale problem (1) in In = (tn, tn + 1s)

{wr,0, cn−1
s } 7→ {wr,m}Ns

m=1

1.b) Compute the averaged growth function

γ(σWS,r+1
f ) =

1

Ns

Ns∑
m=1

γ(σWS,m
f (vr+1,m), cn−1

s )

and set wr+1,0 = wr,Ns , r ← r + 1.

2.) Macro problem: Update the foam cell concentration cns by eq. (3).

We note that the macro problem in step 2.) is computationally very cheap since it consists
of one time step of an ordinary differential equation. Before each macro step, however, a micro-
problem needs to be solved in step 1.a) of algorithm 1. The solution of this micro problem is
typically extremely expensive, as a time-dependent FSI problem needs to be solved. Considering
a relatively coarse micro-scale discretization of δt = 0.02 s, as the one used in section 6, 50 time
steps are necessary to compute a single period of the heart beat. The simulation of two or more
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cycles is typically necessary to obtain a near-periodic state, that fulfills the stopping criterion
in 1); see [6, 5]. In a realistic scenario, each time step of the micro problem corresponds to
the solution of a complex three-dimensional FSI problem, which already makes the solution of
a single micro problem (i.e., ≥ 100 FSI time steps) very costly. We will thus in the following
estimate the computational cost only by means of the number of micro problems that need to
be solved. Even when a PDE of convection-diffusion-reaction type is considered in the plaque
growth model instead, the cost of the micro problems dominates the overall computational work
by far; see the discussion and the numerical results in [4].

4 Parallel time stepping

In the preprint [4], we have introduced parallel time stepping algorithms for the macro prob-
lem based on the parareal algorithm to further reduce the computational times. It turns out
that the coarse propagator limits the maximum possible speed-up severely. A first algorithm to
reduce the cost of the coarse propagator by re-using growth values from previous micro-scale
computations has already been proposed in [4]; see also section 4.2. In this section, we will first
review the developments in [4] and then propose a different approach to reduce the cost of the
coarse propagator, based on an interpolation of the previously computed growth values.

4.1 The parareal algorithm

First, the time interval of interest [0, Tend] on the macro scale is divided into P coarse sub-
intervals Ip = [Tp−1, Tp] of equal size. In the setting of parallelization in time, the sub-intervals
are distributed among P parallel processes p = 1, ..., P :

0 = T0 < T1 < ... < TP = Tend. (11)

In order to define the parareal algorithm, suitable fine- and coarse problems need to be
introduced. Following the work [4], we will apply the parareal algorithm only on the macro
scale; hence, both the fine and the coarse scale of the parareal algorithm correspond to the
macro scale of the homogenization approach. The fine problem advances the growth variable cs
from time Tp to Tp+1 by applying the two-scale algorithm (algorithm 1) with a fine time step
size δt (e.g. 0.3 days) on the corresponding fine time discretization of the interval [Tp, Tp+1]:

Tp = tp,0 < tp,1 < ... < tp,Np = Tp+1, Np =
Tp+1 − Tp

δt
, tp,q := tp·Np+q = tp,q−1 + δt.

We use capital letters Tp to denote the coarse discretization of [0, Tend] into P parts corresponding
to the processes and small letters ti to denote the finer discretization on the parallel processes;
the two discretizations yield the first level (fine problem) and second level (coarse problem) of the
parareal algorithm. In the example studied in section 6, the time interval has length Tend = 300
days, δT is 30 days for P = 10, while δt is chosen as 0.3 days. On the micro scale, the times
τi and time step size δτ are defined locally in [ti, ti + 1s]. In particular, we will use δτ = 0.02 s
here. Note that the micro scale influences the parareal algorithm only indirectly through the
temporal two-scale approach.

On each process p = 1, . . . , P , the fine propagator p consists of a time stepping procedure to
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advance cs(Tp) to cs(Tp+1) with the fine time step size δt. We abbreviate this computation by

cs(Tp+1) = F(cs(Tp)).

In order to obtain parallel scalability, the coarse propagator needs to be much cheaper, since it
advances the foam cell concentration globally on [0, Tend] and thus introduces synchronization.
A natural choice is to use the same two-scale algorithm as for the micro problems, but with
a much larger time-step size δT = Tp+1 − Tp. This means that in total P macro steps are
required to solve the coarse problem on [0, Tend], which includes the solution of P micro-scale
FSI problems. We introduce the notation

cs(Tp+1) = C(cs(Tp))

for one time step of this coarse propagator.

Then, given an iterate c
(k)
s for some k ≥ 0, the parareal algorithm computes ck+1

s by setting

c(k+1)
s (Tp+1) = C(c(k+1)

s (Tp)) + F(c(k)
s (Tp))− C(c(k)

s (Tp)) for p = 0, ..., P − 1. (12)

As the fine-scale contributions depend only on the previous iterate c
(k)
s the contributions from

each process p = 1, . . . , P can be computed in parallel.
Let us discuss the computational cost of the parareal algorithm in more detail. As mentioned

above, the dominant part of the computational cost in the two-scale algorithm (algorithm 1)
corresponds to the solution of the micro problems. The first term in eq. (12) requires the solution
of one micro problem in each coarse time step Tp → Tp+1. Within the fine-scale propagator
(second term in eq. (12)) a maximum of Np = dNl/P e time steps need to be computed per
process, where dfe denotes the next-biggest natural number to f (=̂ ceil(f)). Each time step
comes with the solution of one micro problem. The last term in eq. (12) has already been
computed in the previous iteration (compare the first term on the right-hand side of the same
equation) and therefore introduces no additional computational cost. Considering that all fine-
scale problems (p = 1, . . . , P ) can be solved in parallel and assuming that each micro problem
requires approximately the same time, the computing time for kpar iterations of the parareal
algorithm on P processes corresponds to

kpar · dNl/P e︸ ︷︷ ︸
fine level (P parallel processes)

+ (kpar + 1) · P︸ ︷︷ ︸
coarse level (1 serial process)

(13)

micro problems in a serial computation.

4.2 Re-Usage of Growth Values

Once the number of processes exceeds P ≥
√
Nl, the cost of the coarse-scale propagator gets

dominant; cf. eq. (13). In [4], we propose an alternative coarse-scale propagator which avoids
the solution of micro problems. Instead, we use the values γ(σWS

f (tp,i)) computed within the

fine-scale propagators. For this purpose, all values γp·Np+i := γ(σWS
f (tp,i)) computed on the fine

scale on all processes p = 1, ..., P are stored for all time steps i = 1, ..., Np and re-used within
the coarse propagator.
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Since no new micro problems need to be solved and approximations of the growth values γj
are available for all fine time steps j = 1, ..., Nl, the coarse propagator can even be applied with
the fine-scale time step size δt. The only additional cost is to advance the foam cell concentration
by the ODE (3), which is clearly negligible compared to the solution of the micro problems in
the fine-scale propagator. The only coarse-scale propagator, which can not be replaced, is the
first one which is used for initialization. The total runtime for kpar iterations of the re-usage
variant is

kpar · dNl/P e︸ ︷︷ ︸
fine level (P parallel processes)

+ P︸︷︷︸
coarse level (1 serial process)

(14)

serial micro problems. Compared to eq. (13), this approach saves the computation of kparP micro
problems on the coarse scale; however, since it uses an approximation for the growth values,
the number of parareal iterations kpar might be slightly higher. For details on the resulting
algorithm, we refer to [4].

5 Interpolation Approach

The drawback of the re-use approach is that the growth values γ(σWS
f )(tj) are computed

based on the previous iterate of the foam cell concentration c
(k)
s (tj) instead of the parareal iterate

c
(k+1)
s (tj), which would be the most accurate approximation available in the coarse propagator.

While we can expect that these are quite close after a few iterates, we have observed in [4] that
this is not necessarily the case in the very first parareal iterate. Thus, typically a few more
parareal iterations are required to reach a stopping criterion.

Here, we propose another approach, which may lead to better approximations of the growth
values γ(σWS

f )(tj). In particular, we store again the pairs of computed foam cell concentrations

and growth values (c
(k)
s (ti), γ(σWS

f (ti))) over all iterates k. In contrast to the re-usage variant,

we interpolate linearly from the two values which are closest to c
(k+1)
s (tj). For this purpose,

we create an ordered list of values {cis}Ni=1 and their corresponding growth values {γiint}Ni=1 on
the fly during the parareal iterations and compute the linear interpolation from the values that

fulfill cis < c
(k+1)
s (tj) < ci+1

s when this is needed:

γint(σ
WS
f )(tj) :=

ci+1
s − c(k+1)

s (tj)

ci+1
s − cis

γiint +
c

(k+1)
s (tj)− cis
ci+1
s − cis

γi+1
int ; (15)

The resulting algorithm is given in algorithm 2. As in the re-usage variant no micro-problems
need to be solved within the coarse-scale propagator. The total runtime corresponds thus again
to the serial solution of kpar · dNl/P e + P micro problems and the optimal choice in terms of
speed-up is again P ≈

√
kparNl; see the discussion in Section 4.2.2 in [4]. However, compared

to the re-usage algorithm, we expect that fewer iterations of the parareal algorithm kpar are
required to fulfill the stopping criterion.

This approach can be regarded as a simple linear reduced order model for the micro problems.
Since the interpolation data is updated during the parareal iterations, the model predictions may
actually improve from iteration to iteration.
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Algorithm 2: Parallel time stepping with interpolation of growth values

(I) Initialization: Compute
{

(c
(0)
s (Tp),w

(0)(Tp)
}P
p=1

by means of algorithm 1 with a coarse
macro time step δt := Tp+1 − Tp on the master process. Set k ← 0

(II) while |c(k+1)
s (Tend)− c(k)

s (Tend)| > εpar do

(II.a) Fine problem on each process p = 1, ..., P :

(i) Initialize c
(k+1)
s (Tp) = c

(k)
s (Tp), w(k+1)(Tp) = w(k)(tp−1,Np)

(ii) Compute
{

(c
(k+1)
s (tp,q),w

(k+1)(tp,q)
}Np

q=1
by algorithm 1 with fine time step δt

(iii) Add the pair (c
(k+1)
s (tp,q), γ(σWS

f )(tp,q)) to the list of growth value pairs and
order it by the value of its first component

(II.b) Coarse problem on the master process:
for j = 0, ..., Nl − 1 do

(i) Compute the interpolated growth value γint(tj) corresponding to c
(k+1)
s (tj)

by eq. (15)

(ii) Advance c
(k+1)
s (tj+1) = c

(k+1)
s (tj) + δt γint(tj).

6 Numerical Results

We show numerical results for a numerical example taken from [4]; see fig. 1 for a visualization
of the configuration. The material parameters are chosen close to those of a realistic plaque
growth problem; for details on the choice of the parameters, we refer to [4]. As an inflow
boundary condition, a pulsating velocity inflow profile is prescribed on Γin

f .
For time discretization, we use a backward Euler method for the FSI problem and a forward

Euler scheme for the ODE growth model. For spatial discretization, we use biquadratic (Q2)
equal-order finite elements for all variables and LPS stabilization [1] for the fluid problem. Our
mesh, containing both fluid and solid, consists of 160 rectangular grid cells; this corresponds to
relatively small FSI problem with a total of 3 157 degrees of freedom. The time step sizes are
chosen as δτ = 0.02 s and δt = 0.3 days (i.e., Nl = 1 000); the tolerance for periodicity of the
micro-scale problem is chosen as εp = 10−3. All the computational results have been obtained
with the finite element library Gascoigne3d [2] using a fully monolithic approach for the FSI
problem following Frei, Richter & Wick [7, 9]. All computations are performed in serial, and
the parallel performance is discussed based on the computing time measured in terms of serial
micro problems, as discussed in section 4. A visualization of the plaque growth at the end time
Tend is shown in Figure 2.

In Tables 1, 2 and 3, we show results for the standard parareal algorithm as well as the
re-usage and the interpolation variants, respectively. In all cases, the stopping criterion

|c(k+1)
s (Tend)− c(k)

s (Tend)| < εpar = 10−3 (16)

is used and numerical results for varying numbers of parallel processes P are provided.
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Figure 2: Visualization of the plaque growth at time t = 300 days. The horizontal velocity (in
cm/s) and the vertical displacement (in cm) are shown on the deformed domain at micro time
τ = 0.34 s.

We observe that the standard parareal algorithm (table 1) needs 3-4 parareal iterations to
fulfill the stopping criterion. The re-usage approach (table 2) needs 1-2 additional iterations,
as a result of the approximation used in the coarse-scale propagator. Interestingly, for the

interpolation variant, the values c
(1)
s (Tend) on all processes agree with the reference computation

in the first 8 digits already after only a single parareal iteration (the reference computation is
performed with a serial time stepping). A second iterate is only computed, as the stopping
criterion is based on a comparison between two subsequent iterates.

This might be surprising at first sight, as the interpolation in the coarse propagator is in
principle also an approximation. On the other hand, the time step size δt� δT is much smaller
compared to the standard parareal coarse propagator. In fact, the interpolation between the
values from the coarse initialisation (step (I) of algorithm 2) yields very accurate growth values
in this example, such that the coarse propagator is both much cheaper and much more accurate
compared to the coarse problem in the standard parareal algorithm. Of course, this might be
partly attributed to the simple nature of the FSI and plaque growth problems. However, it
shows that a reduced order model can be a powerful alternative to the standard parareal coarse
propagator.

Due to the lower number of parareal iterations, the number of micro problems to be solved
in the interpolation approach is significantly smaller compared to the other approaches for all
processes. The minimal number of micro problems is attained for P = 40 and P = 50, where
only 90 micro problems (2 · 25 + 40 resp. 2 · 20 + 50) need to be solved. This corresponds to an
expected speed up of 11.1 compared to a serial computation. As discussed above, the optimal
number of processes is P ≈

√
kparNl ≈ 44.72. If one would stop the computation already after

the first iterate, which is already accurate up to 8 digits, the computational cost would reduce
further to 65 (for P = 40) resp. 70 (for P = 50) micro problems; however, this would require the
derivation of an error estimator instead of the stopping criterion eq. (16).

10



Stefan Frei and Alexander Heinlein

k P = 10 P = 20 P = 30 P = 40 P = 50 ref. (serial)
1 2.21 · 10−2 1.19 · 10−2 8.12 · 10−3 5.83 · 10−3 5.46 · 10−3 0.63831273
2 2.24 · 10−3 5.63 · 10−4 2.62 · 10−4 1.37 · 10−4 8.61 · 10−5 -
3 1.42 · 10−4 2.02 · 10−5 6.53 · 10−6 2.32 · 10−6 8.30 · 10−7 -
4 5.76 · 10−6 - - - - -

# mp 450 230 222 235 260 1 000
speedup 2.2 4.3 4.5 4.3 3.8 1.0
efficiency 22 % 22 % 15 % 11 % 8 % 100 %

Table 1: Errors |c(k)
s (Tend)−c∗s(Tend)| for P = 10, . . . , 50 for the standard parareal algorithm and

a reference computation c∗s. The time measure in terms of the number of serial micro problems
(# mp) as well as speedup and efficiency compared to the reference computation (right column)
are shown; best numbers marked in bold face.

k P = 10 P = 20 P = 30 P = 40 P = 50 P = 60 P = 70 ref.

1 2.56 · 10−2 1.10 · 10−2 7.48 · 10−3 5.46 · 10−3 4.23 · 10−3 3.63 · 10−3 3.12 · 10−3 0.63831273

2 7.78 · 10−3 4.48 · 10−3 3.16 · 10−3 2.36 · 10−3 1.99 · 10−3 1.61 · 10−3 1.41 · 10−3 -

3 1.73 · 10−3 1.20 · 10−3 9.02 · 10−4 6.92 · 10−4 6.34 · 10−4 5.14 · 10−4 4.32 · 10−4 -

4 2.32 · 10−4 2.28 · 10−4 1.87 · 10−4 1.31 · 10−4 1.26 · 10−4 1.10 · 10−4 9.98 · 10−5 -

5 2.19 · 10−5 4.71 · 10−5 3.05 · 10−5 - - - - -

# mp 510 270 200 140 130 128 130 1 000

speedup 2.0 3.7 5.0 7.1 7.7 7.8 7.7 1.0

eff. 20 % 19 % 17 % 18 % 15 % 13 % 11 % 100 %

Table 2: Errors |c(k)
s (Tend)− c∗s(Tend)| for P = 10, . . . , 70 for the re-usage variant, best numbers

marked in bold face.

The efficiency, defined as ratio between speedup and number of processes, is also significantly
improved compared to the previous approaches. For P = 10, we obtain a parallel efficiency of
48 %, and for P = 40, where a speedup of ≈ 11 is obtained, the efficiency is still 28 %. For the
other two approaches the corresponding efficiencies are 20% resp. 22% and 11% resp. 18%.

7 Conclusion

We have introduced an efficient coarse propagator for a scalar plaque growth model based on
an interpolation of previously computed growth values. For the simple model example considered
in this work, the modified parareal algorithm converges extremely fast against a reference value.
Obviously, the performance needs to be confirmed in more complex examples in future.

A realistic plaque growth model typically consists of a system of partial-differential equations.
In this case, an interpolation of the map cs → γ(cs) is not straight-forward, as both cs and γ(cs)
are spatially distributed quantities. In this case, more sophisticated reduced order models or
neural networks may be used to approximate this map. This will be the subject of future
research.
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k P = 10 P = 20 P = 30 P = 40 P = 50 P = 60 ref. (P = 1 000)
1 8.3 · 10−9 3.0 · 10−8 2.5 · 10−8 9.9 · 10−9 3.6 · 10−9 5.2 · 10−9 0.6383127317
2 3.0 · 10−10 4.3 · 10−9 1.6 · 10−9 8.0 · 10−10 1.2 · 10−9 1.7 · 10−9 -

# mp 210 120 98 90 90 94 1 000
speedup 4.8 8.3 10.2 11.1 11.1 10.6 1.0
efficiency 48 % 42 % 34 % 28 % 22 % 18 % 100 %

Table 3: Errors |c(k)
s (Tend) − c∗s(Tend)| for P = 10, . . . , 60 for the interpolation approach; best

numbers marked in bold face.
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