
The 9th European Congress on Computational Methods in Applied Sciences and Engineering 

ECCOMAS Congress 2024 

3 – 7 June 2024, Lisboa, Portugal 

 

 

 

SCOUR DEPTH PREDICTION USING MACHINE-LEARNING (ML) 

ALGORITHM FOR OFFSHORE TRIPOD FOUNDATIONS 

AJAY JATOLIYA
1
, DEBAYAN BHATTACHARYA

2
, BAPPADITYA MANNA3 AND 

TIAGO FAZERES FERRADOSA
4
 

1 Ph.D. Student, Department of Civil Engineering, Indian Institute of Technology Delhi, 

Hauz Khas, New Delhi – 110016, India, Email: cez218267@iitd.ac.in 

2 Assistant Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, 

Hauz Khas, New Delhi – 110016, India, Email: debayanb@iitd.ac.in 

3 Professor, Department of Civil Engineering, Indian Institute of Technology Delhi,  

Hauz Khas, New Delhi – 110016, India, Email: bmanna@iitd.ac.in 

4 Assistant Professor, Department of Civil Engineering, Faculty of Engineering of the University of 

Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal, Email: tiago.ferradosa@fe.up.pt 

 

Keywords: Scour, Tripod foundations, Adaptive Neuro-Fuzzy Interface System, Artificial 

Neural Network, Particle Swarm Optimization 

 

Abstract  

The instability of offshore structures is primarily affected by the scouring phenomenon around 

their foundations. This significantly contributes to the failure of offshore wind turbines that 

serve as critical energy infrastructure units. In the present study, three different machine-

learning algorithms, viz. Adaptive Neuro Fuzzy Interface System (ANFIS), Artificial Neural 

Network (ANN), and ANN along with an optimization technique Particle Swarm Optimization 

(PSO), have been implemented to predict the scour depth around the tripod foundations. In 

exploring the prediction models, various parameters influencing the scour depth in the marine 

environment have been considered, such as current velocity (𝑈𝑐), wave height (𝐻𝑤), wave 

period (𝑇), Froude number (𝐹𝑟) and Keulegan-Carpenter number (KC). For training, testing, 

and validating the ML model’s performance, 99 data points were collected from previously 

reported experimental studies. The effectiveness of all three machine-learning schemes, 

ANFIS, ANN, and ANN-PSO, has been evaluated using the statistical parameters, namely, 

coefficient of determination (𝑅2), Root Mean Square Error (RMSE), Mean Absolute Error 

(MSE), Coefficient of Correlation (CC) and checked against those previously reported values 

in literature. Among all the machine learning models, the ANN-PSO results in good agreement 

with the reported outcomes and has better efficiency (𝑅2=0.99) for predicting the scour depth 

followed by ANN (𝑅2=0.98) and ANFIS (𝑅2=0.97) machine learning algorithms. 
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1 INTRODUCTION 

The burning of fossil fuels is the primary source of greenhouse gas emissions, which 

contribute to global warming and climate change. As a result, there is an increasing demand for 

renewable energy alternatives that can reduce carbon footprints and help in achieveing the 

global climate goals [1]. Therefore, wind energy provides sustainable energy in this transition, 

offering a scalable solution to meet the growing energy needs of the world's population while 

minimizing environmental harm. In order to do this, both onshore and offshore wind energy 

have become a pivotal component of the global renewable energy landscape and significantly 

contribute to reducing greenhouse gas emissions, which leads the transition towards a 

sustainable and low-carbon economy [2]. By harnessing the kinetic energy of wind over open 

seas, offshore wind turbines generate electricity with higher efficiency than their onshore 

counterparts and provide stronger and more consistent winds [3]. This characteristic enhances 

energy yield and makes offshore wind a viable solution for large-scale power generation, 

particularly in regions with extensive coastal areas. However, despite the promising potential 

of offshore wind turbines, several limitations pose challenges to their widespread deployment. 

One of the most critical issues is the problem of the formation of scour depth, which involves 

the erosion of seabed material around the foundations of wind turbines due to the action of 

ocean currents and waves [4]. Therefore, it is essential to accurately assess the interactions 

between offshore foundations and the surrounding wave and current environment. The 

simultaneous effect of coupled waves and currents can result in a significantly greater scour 

depth than when either currents or waves act independently [5]. Formation of the scour depth 

can compromise the structural integrity of the wind turbines, leading to increased maintenance 

costs and potentially jeopardising the safety of the installation. Hence proper assessment and 

mitigation of the scour depth is essential for offshore wind farm's long-term reliability and 

efficiency. Depending on the depth of water, the choice of foundation type for the offshore wind 

turbines plays a crucial role in addressing the formation of scour depth and other environmental 

challenges. To support the wind turbines, various types of foundations are employed in offshore 

wind turbine installations, including monopile, tripile, tripod, jacket, gravity-based, and floating 

foundations, as depicted in Figure 1.  

 

 
 

Figure 1: Different types of offshore foundations for different water depths 
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Among all these foundations, tripod foundations have emerged as a popular choice for 

supporting offshore wind turbines, particularly in regions with deep waters and strong tidal 

currents [7]. In cases where waves and currents are co-directional, the velocity on the wave-

facing side of the foundation increases significantly compared to the opposite side [8]. This 

difference in velocity creates a substantial pressure gradient, leading to a deeper scour hole. 

Scouring around the foundations frequently occurs for offshore wind turbines due to the 

combined effects of waves and currents. Accurate scour depth estimation under these combined 

influences is crucial for both safety and practical applications. However, there is limited 

research on the prediction of scour depth for the tripod foundations involving combined waves 

and currents compared to those involving current alone. In recent years, integrating advanced 

machine learning algorithms into the design, operation, and maintenance of offshore wind 

turbines has marked a significant advancement. These algorithms are being used to optimise 

foundation design, predict and mitigate scour depth, enhance the structural health monitoring 

of turbines, and improve the overall efficiency of wind farm operations. Numerous studies have 

focused on assessing scour depth around circular piers under steady current conditions [9], [10], 

[11] [12] and wave action [13], [14]. However, as previously noted, no studies have explored 

the prediction of scour depth using Machine Learning (ML) algorithms in environments with 

coupled waves and currents for the tripod foundations. Furthermore, only a few studies have 

investigated scour depths around the tripod foundations through numerical and experimental 

approaches under such coupled conditions [15], [16], [17]. To the end, this paper aims to 

address the existing gaps in predicting scour depth around offshore tripod foundations by 

exploring the application of machine learning (ML) algorithms. The study aims to enhance the 

reliability and safety of offshore wind turbine installations by examining the current state of 

ML techniques and their limitations. Specifically, three machine learning algorithms, ANFIS, 

ANN, and ANN-PSO, are utilized to accurately predict the normalized scour depth (S/D), where 

S is the scour depth and D is the pile diameter, around tripod foundations under both current-

only and combined waves-and-current conditions. The primary goal is to assess the significance 

and impact of various input parameters in the scouring process driven by the interaction of 

waves and currents. To verify the accuracy of these machine learning models, a statistical 

analysis is performed using multiple statistical metrics. Additionally, the predictions from these 

algorithms are compared with values reported in the literature through graphical plots. The 

outcomes of this research will provide valuable insights into the potential of ML for scour 

prediction and offer practical recommendations for improving the design and maintenance of 

offshore tripod foundations. Furthermore, the paper discusses the importance of offshore wind 

turbines in the context of global renewable energy goals, addresses the limitations related to the 

scour problem, reviews the different types of foundations used in offshore wind installations, 

and examines the latest advancements in machine learning algorithms that are shaping the 

future of this technology as per the guideline of the United Nations Sustainable Development 

Goals (UN SDG). 
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2 METHODOLOGY 

 In the present study, three machine learning algorithms, namely ANFIS, ANN, and ANN, 

along with the Particle Swarm Optimization (PSO) technique, are employed for the accurate 

prediction of the scour depth (S) normalized by pile diameter (S/D) for the tripod foundations 

under coupled wave-current environment. The primary objective of this study is to determine 

the influence of input parameters on the scouring process induced by the combined effects of 

waves and currents. This analysis aims to inform future research by identifying the key physical 

variables that dominate the scouring process. To predict the normalized scour depth (S/D) for 

tripod foundations subjected to coupled wave and current conditions, 99 datasets were collected 

from the previously reported numerical and experimental studies [16]. The data utilized in this 

study includes both dimensional and non-dimensional parameters, as outlined in Equations (1) 

and (2).  

𝑆 = 𝑓(𝐻, 𝑇, 𝑈𝑐 , 𝑈𝑐𝑤)           (1) 

𝑆

𝐷
= 𝑓(𝐾𝐶, 𝐹𝑟) 

          (2) 

 Where H is the wave height, T is the wave period, Uc is the current velocity, and Ucw is the 

combined current and wave velocity. Among the total datasets, 70% of the data were allocated 

for training the machine learning models, while the remaining data were used for the testing 

and validation of the prediction model. The range of all the datasets for the various parameters 

is detailed in Table 1. To check the accuracy of the predicted model, statistical indices, namely: 

Root Mean Square Error (RMSE), Correlation Coefficient (CC) and Mean Absolute Error 

(MAE) were used, and the final predicted values were compared against the reported values in 

the previous literature. 

 

Table 1: Range of dataset used in the Machine-Learning (ML) models 

Parameter       Symbol Mínimum value Máximum value 

Period of wave (s)             T 0 2.0 

Height of wave (m)             H 0 0.06 

Current velocity (m/s) 𝑈𝑐 0 0.4 

Velocity ratio     𝑈𝑐𝑤 0 0.35 

KC number           KC 0 6.04 

Froude number             𝐹𝑟 0.2 0.88 

Normalised scour depth         (S/D) 0.03 1.61 
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3 MACHINE LEARNING ALGORITHAMS  

3.1 Artificial Neural Network 

 Artificial Neural Networks (ANNs) have become a significant and adaptable tool in 

artificial intelligence (AI) and Machine Learning (ML), drawing its inspiration from the 

architecture and functionality of the human brain. An ANN model is a computational 

framework consisting of interconnected units known as neurons, which are systematically 

arranged into layers. The ANN architecture is typically composed of three primary layers: the 

input layer, hidden layers, and the output layer. The input layer is responsible for receiving raw 

data, which is then transmitted to the hidden layers via neurons, where the core computational 

processes occur. The final output is produced in the output layer, as illustrated in Figure 2.  

 

Figure 2. Schematic illustration of the architecture of Artificial Neural Network (ANN) model 

 

The training of an ANN model involves fine-tuning the weights and biases of the connections 

between neurons to minimize the discrepancy between predicted and actual results, as detailed 

in Equation 3.  
 

𝑦 =  [∑(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑥3𝑤3, … … ..  ) + 𝛽] (3) 

 

Where,  𝑦 is the output, 𝑥1 , 𝑥2, 𝑥3… Input from the neurons, 𝑤1, 𝑤2 , 𝑤3 …weight, and 𝛽 is 

the bias. This is generally accomplished through backpropagation, in conjunction with 

optimization techniques such as gradient descent. In this network, each neuron in each layer is 

linked to neurons in the adjacent layer through weighted connections, 

3.2 Adaptive Neuro-Fuzzy Interface System  

The Adaptive Neuro-Fuzzy Inference System (ANFIS) machine learning algorithm, 

initially developed by Jang (1993), represents a computational approach that integrates neural 

networks and fuzzy logic to address nonlinear problems and establish mathematical 

relationships between input and output parameters. ANFIS's ability to merge fuzzy inference 

systems with neural network features, such as learning, optimization, and connectionist 

structures, makes it a highly accurate predictive tool [18]. In this study, a Sugeno-type Fuzzy 
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Inference System (FIS) is combined with a Feed-Forward Neural Network (FFNN) to address 

the challenge of selecting input variable membership functions. To optimize this selection, a 

hybrid function is employed [19]. The FIS comprises three main components: (1) a set of if-

then rules; (2) a mechanism to define Membership Functions (MF) based on the database; and 

(3) a system output generation component that integrates fuzzy rules. The use of if-then rules 

offers a practical method for making predictions and analyzing uncertainties. The training 

techniques of the ANN can minimize prediction errors, which are further refined by the FIS 

rules. Initially, fuzzy membership functions derived from the input are converted and integrated 

into the ANFIS input. The desired output is then obtained using an averaging method to 

generate the output membership functions. In this study, a constant type membership function 

[20] is used to produce the outputs.  

3.3 ANN-Particle Swarm Optimization (PSO)  

 The Particle Swarm Optimization (PSO) algorithm is inspired by the simulation of social 

behaviors found in nature. Its fundamental principle is that individual particles within a swarm 

communicate and modify their movements based on their own experiences and the experiences 

of others in the group [21]. This collective behavior helps the swarm to converge towards 

optimal regions within the search space. The PSO technique is modeled after natural processes 

such as bird flocking and fish schooling, where individuals coordinate their movements toward 

a common goal while navigating obstacles and avoiding predators. In these scenarios, each 

individual makes decisions based on its own observations and the actions of nearby peers. In 

PSO, particles represent potential solutions, and their movement toward an optimal solution is 

driven by a combination of individual and group knowledge. A swarm in PSO is composed of 

multiple particles, each with a specific position and velocity in the search space. The position 

denotes a candidate solution, while the velocity determines the particle’s direction and speed. 

The movement of particles is influenced by two main factors: the cognitive component, which 

guides particles toward their personal best-known position (Pbest), and the social component, 

which steers them towards the global best-known position (Gbest) [22]. The position 𝒙𝒊  and 

velocity 𝒗𝒊 of particle i at time t are updated using the following equations (4) and (5): 

𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑘) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖

𝑘) (4) 

𝒙𝒊(𝒕 + 𝟏) =  𝒙𝒊(𝒕) + 𝒗𝒊(𝒕 + 𝟏) (5) 

Where: 

 

• 𝒘 is the inertia weight that controls the influence of the previous velocity, 

• 𝒄𝟏 and 𝒄𝟐 are cognitive and social coefficients, 

• 𝒓𝟏 and 𝒓𝟐 are random values uniformly distributed between 0 and 1 
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4 RESULTS AND DISCUSSION 

4.1 Artificial Neural Network (ANN) 

 In this section, the author’s discuss the results obtained from the Artificial Neural Network 

(ANN) machine learning model and evaluate its performance. During the training process, the 

Mean Squared Error (MSE) on the training dataset was continuously monitored, and training 

was halted when the MSE dropped below a predefined threshold value. After 1,000 epochs, the 

model achieved its optimal validation performance with an MSE of 0.08. The corresponding 

ANN weights from this epoch were saved and subsequently used to forecast the training sample 

data. This approach effectively mitigates overfitting and underfitting, which is a common 

challenge in various machine-learning algorithms. In the training phase, the model achieved an 

RMSE of 0.12, a correlation coefficient (CC) of 0.97, and a Mean Absolute Error (MAE) of 

0.08. During testing, the model reported an RMSE of 0.16, a CC of 0.95, and an MAE of 0.14. 

Figure 3(a) shows the linear regression analysis comparing the observed (S/D) values with the 

predicted (S/D) values, yielding an R² value of 0.98. Whereas Figure 3(b) depicts the error 

histogram of the total datasets. To further assess the model's accuracy, a comparative plot of 

the observed versus predicted (S/D) values was constructed, as shown in Figure 3(c). This plot 

indicates a strong agreement between the predicted and observed values.  

  

 

Figure 3: (a) Regression plot for observed and predicted (S/D), (b) Error histogram of predicted values, (c) 

Comparison plot for predicted and observed (S/D) for ANN model 
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4.2 Adaptive Neuro-Fuzzy Interface System (ANFIS) 

This section discusses the results obtained from the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) machine learning model, along with its performance evaluation. The enhanced 

predictive capability of ANFIS is attributed to its integration of Neural Networks (NN) and the 

Fuzzy Inference System (FIS), leveraging the strengths of both approaches. The models were 

trained using data from existing literature, and their performance was assessed using statistical 

metrics. During the training phase, the ANFIS model achieved an RMSE of 0.11, a correlation 

coefficient (CC) of 0.94, and a Mean Absolute Error (MAE) of 0.10, while in the testing phase, 

it recorded an RMSE of 0.19, a CC of 0.92, and an MAE of 0.12. Figure 4(a) presents the results 

of the linear regression analysis between the observed normalized scour depth (S/D) and the 

predicted scour depth (S/D), yielding an R² value of 0.97. To further evaluate the accuracy of 

the trained model, a comparison plot was generated between the reported (S/D) values from 

studies and the corresponding predicted (S/D) values, as shown in Figure 4(c). These findings 

underscore the significant potential of ANFIS for accurately predicting scour depth around 

tripod foundations. 

  

 

Figure 4: (a) Regression plot for observed and predicted (S/D), (b) Error histogram of predicted values, (c) 

Comparison plot for predicted and observed (S/D) for ANFIS model 
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4.3 ANN-Particle Swarm Optimization (PSO) 

 The ANN-based PSO technique exhibited strong predictive capabilities, as demonstrated 

by the high correlation coefficients and low RMSE values during both the training and testing 

phases. During the training phase, the model achieved an RMSE value of 0.06, a correlation 

coefficient (CC) of 0.98, and a Mean Absolute Error (MAE) of 0.07. In the testing phase, the 

model recorded an RMSE value of 0.14, a CC of 0.97, and an MAE of 0.13. Figure 5(a) depicted 

a linear regression analysis between the observed and predicted normalized scour depth (S/D), 

yielding an R² value of 0.99. The close alignment between the observed and predicted (S/D) 

values, as indicated by the R² value, underscores the model’s ability to accurately capture the 

underlying data patterns. Additionally, the comparative plot in Figure 5(b), which compares the 

model's predictions with previously reported (S/D) values, further supports the model's 

accuracy. The use of PSO to optimize the ANN model's parameters significantly contributed to 

its robust performance. The ANN-based PSO model demonstrates considerable potential for 

accurate scour depth prediction for the tripod foundations. Nonetheless, future research could 

investigate the integration of PSO with other optimization techniques or deep learning models 

to further enhance its performance.  

  

 

Figure 5: (a) Regression plot for observed and predicted (S/D), (b) Error histogram of predicted values, (c) 

Comparison plot for predicted and observed (S/D) for ANN-PSO model 
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Figure 6: Comparison plot for all the ML models for predicted and observed (S/D) values 

5 CONCLUSION 

 The present study employs a novel approach for predicting the normalized scour depth (S/D) 

using machine-learning algorithms in coupled waves and the current environment for the tripod 

foundations. The validation of these machine-learning algorithms was conducted through 

statistical indices and comparisons with the previously reported studies. The results from the 

machine-learning algorithms showed a strong correlation between previously reported values 

and the predicted values generated by the algorithms. The effectiveness of three machine 

learning techniques, ANFIS, ANN, and ANN-PSO, was evaluated for predicting scour depth. 

Among these, the ANN-PSO model demonstrated the highest accuracy, achieving a correlation 

coefficient (CC) of 0.98 and a low root mean square error (RMSE) of 0.06 during both the 

training and testing phases as depicted in figure 6. These findings indicate that data-driven 

models can be reliably used to predict scour depth. During the testing phase, the ANN-PSO 

model outperformed as compared to the other models. Although the ANN model's performance 

declined during testing, it still performed relatively well, with a CC of 0.97 and an RMSE of 

0.12, compared to the ANFIS model. Overall, all these models performed well in the prediction 

of the scour depth. These findings suggest that these machine learning techniques can 

effectively estimate scour depth in both current-only and combined waves-and-current 

environments. Additionally, incorporating optimization techniques can help identify key 

parameters, such as wave velocity, wave period, current and wave velocity to reduce model 

computation time, and enhance prediction accuracy. 
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