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ABSTRACT  

Non-invasive site characterization techniques have the potential to rapidly evaluate large subsurface volumes to guide 

subsequent invasive geotechnical site investigation. Among these methods, seismic full waveform inversion (FWI) stands 

out for its potential to recover detailed two-dimensional (2D) images of the subsurface. However, FWI’s need for 

substantial computational resources and sensitivity to the initial starting model has limited its utilization as a general-

purpose geotechnical site characterization tool. Addressing this, prior studies have shown data-driven methods can predict 

2D subsurface structures composed of soil over rock. In the present study, we aim to generalize these findings to all near-

surface conditions. We propose a novel model generation framework that utilizes techniques from geostatistics to generate 

complex 2D subsurface models. The generated models include dipping soil and rock layers, soil lenses, boulders, and 

underground utilities; none of which have been considered previously. We use our model generation framework to 

simulate 100,000 2D subsurface models. We simulate field data acquisition along these 100,000 synthetic models, by 

numerically solving the elastic wave equation using an impulse source at the model’s center surrounded by 24 receivers 

(12 on either side). The data-driven predictive model, trained on 90% of the simulated data, achieved a mean absolute 

percent error on the testing set of 19%. Furthermore, these predictions are made within fractions of a second circumventing 

the computational and starting-model-related challenges associated with traditional 2D FWI. These results demonstrate 

that data-driven methods can predict complex images of the subsurface to enable rapid subsurface imaging for 

geotechnical applications. 
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1. Introduction 

Traditional geotechnical site characterization relies 

on interpolating between limited one-dimensional (1D) 

measurements of subsurface stratigraphy (e.g., via 

borings). The sparsity of traditional geotechnical 

measurements presents challenges in geological settings 

with rapid spatial variation (e.g., alluvial deposits) and/or 

subsurface anomalies (e.g., dissolution cavities in karst). 

A promising alternative is to employ non-invasive 

imaging methods to analyze the subsurface in 2D or 3D, 

to inform subsequent 1D geotechnical site investigations. 

Among various non-invasive imaging techniques, 

seismic full waveform inversion (FWI) is a compelling 

alternative, as its utilization of both phase and amplitude 

information from the seismic wavefield enables it to yield 

high-resolution 2D and 3D subsurface models. 

FWI involves two steps: acquisition and inversion. 

Acquisition involves the controlled application of 

repeated impacts from a seismic source (e.g., 

sledgehammer) in the vicinity of strategically positioned 

sensors (e.g., geophones) to record the ensuing seismic 

wave propagation. Inversion has traditionally involved 

an iterative process of refining an assumed subsurface 

model or set of subsurface models such that the resulting 

simulated waveforms match those observed during 

acquisition (Tarantola 1984). FWI’s ability to utilize both 

phase and amplitude information from the observed 

seismic waveforms, enables it to have higher resolution 

and better applicability to heterogenous models than 

other imaging techniques (Pan, Gao, and Bohlen 2019). 

Despite its potential for geotechnical site 

characterization (Kallivokas et al. 2013; Fathi et al. 2016; 

Mirzanejad and Tran 2019), traditional FWI faces 

barriers to its widespread adoption, in particular, the 

substantial computational resources required and its 

sensitivity to the initial starting model. Traditional FWI 

involves a multi-step non-linear data-fitting procedure. 

First, an initial subsurface model (i.e., a starting model) 

is assumed. Second, synthetic seismic waves are 

propagated through the assumed model by numerically 

solving the appropriate wave equation using 

computational methods such as finite difference 

(Levander 1988; Virieux 1986) or spectral element 

(Tromp, Komatitsch, and Liu 2008; Peter et al. 2011; Vai 

et al. 1999). Third, the assumed model is refined using 

the selected numerical optimization algorithm and insight 

from the mismatch between the simulated waveforms 

and those acquired in the field. Fourth, the process is 

repeated using the modified model as the new starting 

model until the simulated and measured seismic 

waveforms are in acceptable agreement. The FWI 

process is guided by the selected optimization algorithm 

and, as such algorithms are problem-specific, they can 

have a notable impact on the resulting solution (Nocedal 

and Wright 2006). Hence, the selected optimization 

algorithm plays a pivotal role in determining the quality 

of the ultimate solution (i.e., the subsurface image). 



 

We divide numerical optimization methods into three 

categories: global, local, and data-driven. First, 

algorithms using global optimization explore a broad 

range of potential solutions by iteratively sampling the 

solution space. Global optimization algorithms are 

generally considered the most robust but are also the 

most computationally intensive. As a result, global 

optimization algorithms are relatively uncommon in the 

FWI literature, only being used in a few publications 

(e.g., Datta and Sen 2016; Mojica and Kukreja 2019). 

Second, local optimization, while less computationally 

demanding than global optimization, relies on accurate 

initial starting models that contain the site’s general 

structure. If the starting model does not accurately reflect 

the site’s general subsurface structure, local optimization 

methods can produce inaccurate subsurface images. In 

addition, in some cases, local optimization algorithms 

can become trapped in a local minimum or on a saddle 

point that prevents them from converging to the optimal 

solution (Abbas et al. 2023; Feng, Lin, and Wohlberg 

2022; Monteiller et al. 2015). Nevertheless, due to their 

computational efficiency local optimization methods 

have been the algorithm of choice for the vast majority of 

FWI literature. Third, data-driven optimization is a 

recently developed category of algorithm where large 

quantities of data are used with artificial intelligence (AI) 

to directly model the inversion process. In the context of 

FWI, data-driven optimization involves simulating large 

quantities of subsurface models and the associated 

experimental data to train an AI predictive model to 

recover the subsurface model from the experimental data. 

Once trained, a data-driven model produces predictions 

almost immediately at negligible computation cost, even 

compared to local optimization. However, there are two 

major challenges: (1) the need for large datasets, which 

are not yet readily available, and (2) the need for complex 

AI model architectures, which require an understanding 

of deep learning.  

In response, our study seeks to address these two 

challenges. First, we develop a novel model-generation 

framework to generate 100,000 realistic multi-layered 

2D subsurface models. We then simulate the 

corresponding experimental seismic data using the open-

source spectral element software SPECFEM2D. Second, 

we utilize the shear wave velocity (𝑉𝑠) image from the 

simulated models and the corresponding waveform to 

develop a deep learning (DL) architecture for performing 

FWI. We note that both research objectives of this study 

builds substantially on previous work by Vantassel, 

Kumar, and Cox (2022). In regards to the first objective, 

this study develops an entirely new model generation 

framework that develops subsurface models that more 

completely define the range of complexity expected in 

geotechnical practice. In regard to the second objective, 

this study develops a new DL model architecture that 

better extracts seismic wavefield information. To 

demonstrate these improvements, the new model 

architecture is compared to the architecture proposed 

previously by Vantassel, Kumar, and Cox (2022) using 

the newly developed dataset. 

 

2. Generating Realistic Subsurface Models 

In geotechnical engineering, the subsurface is 

predominantly modeled as homogenous layers with 

horizontal boundaries (e.g., Jaksa et al. 2005; Naghibi, 

Fenton, and Griffiths 2014; Bhochhibhoya et al. 2023), 

or relatively simple two-layered profiles with somewhat 

intricate boundaries (e.g., Crisp, Jaksa, and Kuo 2017; 

Vantassel, Kumar, and Cox 2022; Abbas et al. 2023; Yust 

et al. 2023). However, actual soil profiles are multi-

layered and have complex layer boundaries. Therefore, 

we propose a novel model generation framework for 

generating such realistic soil profiles to address 

limitations in existing methods. The framework, which 

utilizes techniques from geostatistics, is able to generate 

diverse models with multiple layers, arbitrary 

boundaries, soil lenses, and underground utilities. 

The model generation framework operates in a multi-

step process. First, the number of layers (𝑛) is selected 

following a user-defined probability mass function 

(PMF). For this study, we allow up to eight layers, but 

bias the PMF such that the majority of models have fewer 

than four layers. Second, the framework defines the 

rough (i.e., unsmoothed) boundaries between each layer. 

To do this, the framework defines the starting point of 

each of the 𝑛 − 1 layer boundaries on the left-most edge 

of the 2D models, as shown by the two filled circles in 

Figure 1a. These starting points are then used to anchor 

the generation of the rough boundary. The generation of 

each of the 𝑛 − 1 rough boundaries involves repeatedly 

selecting from a uniform distribution that defines the 

vertical increment by which each subsequent point is 

shifted from the previous. We use a constant horizontal 

spacing between points (1.5 m in this study), see Figure 

1a. This rough boundary is then smoothed to more 

accurately reflect standard geological processes (e.g., 

erosion). To smooth the rough boundary in this study, we 

use the Savitzky and Golay (1964) filter with a window 

comprising 20 data points and a polynomial order of 3. 

Figure 1. Simulation of layer boundaries for a three-layered 

model using the proposed model generation framework. (a) two 

points (solid-colored circles) are randomly selected on the left 

boundary to anchor the associated random rough layer 

boundary (solid-colored lines). (b) depicts the smoothed layer 

boundaries after applying the filter by Savitzky and Golay to 

the rough boundary in (a) and resolving boundary overlaps by 

preferentially selecting the upper-most material. 



 

Finally, overlapping boundaries are resolved by 

preferentially selecting the upper material. This 

preferential selection of the upper-most material is 

consistent with geological processes associated with 

erosion and subsequent deposition (Crisp, Jaksa, and Kuo 

2017). The layer boundaries after smoothing and layer 

boundary resolution are shown in Figure 1b. Notably, the 

model generation parameters aforementioned were 

selected through an iterative, albeit subjective, process to 

achieve the desired tradeoff between subsurface model 

complexity and geologic realism. 

After definition of the model’s layer boundaries, each 

layer’s three elastic material properties, shear wave 

velocity (𝑉𝑠), compression wave velocity (𝑉𝑝), and mass 

density (𝜌) were defined. Each subsurface model was 

represented as a collection of three, 2D images at a 0.25 

m pixel, one image of 𝑉𝑠, one image of 𝑉𝑝, and one image 

of 𝜌. We will present the generation of each in turn. 

Each 𝑉𝑆  image was generated by simulating a 

correlated random field. The mean shear wave velocity 

(𝑉𝑠,𝑚𝑒𝑎𝑛) of the correlated random field was selected 

between 50 and 1500 m/s using a user-defined 

probability density function (PDF). The values of 

𝑉𝑆 represent a range of geomaterials spanning from soft 

organic soils to hard rock. The coefficient of variance of 

𝑉𝑆 (𝑉𝑆,𝐶𝑂𝑉) for each random field was randomly defined 

between 5% and 20% and conditioned on the selected 

value of 𝑉𝑠,𝑚𝑒𝑎𝑛 , see Table 1. Lateral correlations were 

developed using an exponential correlation function with 

vertical and horizontal correlation lengths of 0.5 and 100 

m, respectively. 

The 𝑉𝑝 and 𝜌 images were derived from the 𝑉𝑠 image. 

The 𝑉𝑝 image was computed using:  

𝑉𝑝 = 𝑉𝑠 × √1 +
2

(1−2𝜐)
,    (1) 

from elasticity theory where, 𝜈 is Poisson’s ratio and all 

other terms are defined previously. The range of 𝜐 was 

defined between 0.1 to 0.495 and conditioned on the 

value of 𝑉𝑠,𝑚𝑒𝑎𝑛  of the layer, see Table 1. Finally, the 

𝜌 image was defined in the range of 2000 kg/m3 to 2100 

kg/m3, and again conditioned on the selected value 

of 𝑉𝑠,𝑚𝑒𝑎𝑛, see Table 1. Note that for simplicity 𝜌 of each 

layer, unlike 𝑉𝑠 and 𝑉𝑝, was assumed constant for each 

layer. The use of constant 𝜌 in each layer is similar to 

Vantassel, Kumar, and Cox (2022) and is appropriate 

because elastic wave propagation is only minimally 

sensitive to 𝜌. Note that the range of values defined in 

Table 1 represents the range from which a single value 

was selected following a uniform distribution. 

Following 𝑉𝑆, 𝑉𝑃, and 𝜌 image generation, we 

introduce additional complexity by including 

underground utilities. We assume, for simplicity, that all 

utilities are circular with uniform elastic material 

properties. As utilities are most likely to be near the 

ground surface, we bias their location to the upper 3 m, 

with an increased probability that they occur in the upper 

1 m. For each model, the number of utilities was 

randomly selected between 0 and 8, following a user-

defined PMF. For this study, we bias our PMF such that 

the majority of profiles have fewer than 2 utilities. The 

ranges of different parameters of the simulated utilities 

are summarized in Table 2. As before, a uniform 

distribution is used to randomly select a specific value 

from each parameter range. 

Using the model generation framework, 100,000 soil 

models were generated for AI predictive model training 

and evaluation (discussed next). Each model was 60 m in 

length and 25 m in depth and discretized at a 0.25 m 

pixel. To focus on those portions of the model directly 

beneath the sensing array the models were truncated to 

50 m by 20 m for AI prediction. Figure 2 presents the 𝑉𝑠 

image from eight models generated using the proposed 

framework, with the thin red lines defining the subset of 

the model utilized for training the AI predictive model 

(discussed next).  

Note to show the complexity of the dataset more 

completely, the eight models presented in Figure 2a 

through 2h correspond to randomly generated profiles 

with 1 to 8 layers, respectively. As illustrated in Figure 2, 

the proposed model generation framework can generate 

a wide variety of subsurface models with highly variable 

numbers of layers and realistic boundaries. 

3. Simulation of Seismic Data Acquisition 

 Synthetic seismic wavefield data was generated for 

each generated subsurface model using the open-source, 

spectral-element-based software SPECFEM2D (Tromp, 

Komatitsch, and Liu 2008). More specifically, we solved 
Table 1. Range of values for the parameters of each layer 

used in this study. Note that all parameters are conditioned on 

the mean shear wave velocity (𝑉𝑠,𝑚𝑒𝑎𝑛) of the layer. For each 

layer a specific value is randomly selected from within each 

specified range following a uniform distribution. 

 

Parameter Range 

𝑽𝑺,𝑪𝑶𝑽 

0.05 – 0.15 if 𝑉𝑠,𝑚𝑒𝑎𝑛 > 1200 m/s 

0.05 – 0.20 if 𝑉𝑠,𝑚𝑒𝑎𝑛 > 460 m/s 

0.10 – 0.20 otherwise. 

𝝊 

0.10 – 0.20 if 𝑉𝑠,𝑚𝑒𝑎𝑛 > 1200 m/s 

0.15 – 0.30 if 𝑉𝑠,𝑚𝑒𝑎𝑛 > 760 m/s 

0.25 – 0.35 if 𝑉𝑠,𝑚𝑒𝑎𝑛 > 460 m/s 

0.30 – 0.495 otherwise. 

𝝆 

2100 kg/m3 if 𝑉𝑠,𝑚𝑒𝑎𝑛 > 760 m/s 

2050 kg/m3 if 𝑉𝑠,𝑚𝑒𝑎𝑛 > 360 m/s 

2000 kg/m3 otherwise. 

 

Table 2. Range of values for the parameters describing the 

utilities placed into the generated models. For each utility, a 

specific value is randomly selected from within each specified 

range following a uniform distribution. 

 

Parameter Range 

Radius 0.25 - 1.00 m 

𝑽𝒔 25 – 70 m/s 

𝑽𝒑 340 – 1500 m/s 

𝝆 800 - 2000 kg/m3  

 



 

the elastic wave equation assuming 2D, plan-strain, and 

P-SV conditions. The input source was a 30 Hz Ricker 

wavelet that contains significant seismic energy between 

10 and 100 Hz (i.e., a range representative of impact-type 

sources commonly used in near-surface seismic data 

acquisition). The source was positioned at the model’s 

center (i.e., at 30 m) at the ground surface and oriented 

vertically. The top of the domain was modeled as a free 

surface (i.e., zero-stress boundary), whereas the sides and 

bottom were modeled as infinite using absorbing 

boundary conditions (ABCs). As mentioned previously, 

the domain was discretized into 0.25-m pixels to enable 

the modeling of appropriately short wavelengths in the 

domain. A suitably short time step (1E-5 seconds) was 

selected to ensure numerical stability. The output data, in 

the form of the vertical component of particle velocity, 

were recorded at 24 receivers’ locations (12 on each side 

of the source) at a time step of 1 ms (i.e., at 1000 Hz) for 

a total duration of 1 second. Receivers were spaced at 2-

m intervals and spanned between 7 and 53 m. Note that a 

time step shorter than the minimum required by the 

Nyquist theorem was used intentionally, to reduce signal 

variance and enable a more reliable capture of the “true” 

(i.e., noise-free) signal.  

 

4. Developing the Model Architecture 

DL model architectures are composed of a series of 

layers that each perform a relatively simple and 

differentiable numerical operation. These layers can be 

of many types, for example: convolution layers, dense 

layers, recurrent layers, dropout layers, pooling layers, 

and many others. For the sake of brevity, we will not 

detail the more than 40 model architectures (i.e., unique 

combinations of layers) considered throughout the course 

of this study. Instead, we present the selected architecture 

that was selected based primarily on its performance on 

the validation set (i.e., a subset of the training set not used 

directly for model training), but also considering 

trainable parameter count, training time, and model 

elegance. 

The selected DL model architecture, depicted in 

Figure 3, integrates both time-domain and frequency-

domain representations of the experimental data. Here it 

is worth noting that early work by, Vantassel, Kumar, and 

Cox (2022) used solely a time-domain representation of 

the data, whereas later work by Abbas et al. (2023) used 

solely a frequency-velocity (i.e., via an F-K transform) 

representation of the data. By utilizing both time- and 

frequency-domain representations of the data we will 

show that we have developed a novel architecture with 

enhanced model performance and generalization 

capability. 

The selected DL model takes a 3D tensor of size 

24x1000x3 where the third (or channels) dimension 

corresponds to the raw seismic wavefield (time domain), 

amplitude of the Fourier amplitude spectrum (FAS) 

(frequency domain), and phase of the FAS (frequency 

domain) as input. Each channel of the input is of size 

24x1000, corresponding to the 24 receivers and 1000 

time-/frequency- domain samples. Each channel of the 

input data undergoes a sequence of three convolutional 

and max-pooling layers. Note that in Figure 3, a 

convolution layer followed by a max-pooling layer is 

denoted as a “Conv.-Max Pool Layer” for brevity. After 

the initial convolution, the three input channels are 

channel-wise concatenated. The concatenated data is 

then transformed by a convolution layer, followed by a 

max-pooling layer, and then another convolution layer. 

Followed by global-average pooling and two dense 

layers of size 2000 and 1000. Finally, the output layer of 

1000 nodes is reshaped to 20x50 to correspond to the 

predicted seismic image of 20 m by 50 m with a 1-m 

pixel. 

Figure 2. Schematic representation of the model architecture 

for the proposed model. Each box denotes one or multiple 

layers within the model, with the name and output shape of 

each layer explicitly listed inside the respective box. 

Figure 3. Randomly selected 𝑉𝑠 images from the 100,000 

generated for training the data-driven model. Each panel shows 

an image generated with a different number of layers, from (a) 

one to (h) eight. The thin red line shown in all panels indicates 

the portion of the 𝑉𝑠 image directly beneath the surface array 

used and used to train the data-driven predictive model. 



 

For comparison, the model architecture proposed by 

Vantassel, Kumar, and Cox (2022) follows a more typical 

structure, featuring a sequence of five convolution layers 

interspersed with four max-pooling layers and 

culminating in a single dense layer. This architecture 

demonstrated good performance on models composed of 

soil-over-rock, however, as this study uses complex 

subsurface models, it would be unfair to directly compare 

it to the model developed by Vantassel, Kumar, and Cox 

(2022). Therefore, to facilitate a more- fair performance 

evaluation, a slightly modified version of the Vantassel, 

Kumar, and Cox (2022) model was trained using the 

aforementioned (more complex) dataset. The modified 

model is summarized in Figure 4. It is noteworthy that all 

analyses, such as hyperparameter tuning and data 

augmentation, conducted in the proposed model, were 

also applied to the updated Vantassel, Kumar, and Cox 

(2022) model. Such that the updated model developed 

here is undoubtedly an improvement over the original 

given the more complex dataset and more advanced 

preprocessing (discussed next).  

5. Model Training 

Model training and evaluation were facilitated using 

the open-source deep learning library Keras, developed 

by Chollet and others (2018). The candidate model 

architectures were developed using the 100,000 seismic 

wavefield-image pairs aforementioned. The 100,000 

pairs were split for training (80%), validation (10%), and 

testing (10%). Data were effectively expanded, using 

data augmentation, and pre-processed, using band-pass 

filtering and normalization. Regarding the former, data 

augmentation is a crucial step that enhances the 

generalization capacity of the model. Three data 

augmentation techniques were used in this study: flipping 

the image-wavefield data left to right (i.e., simulating a 

change in perspective), zero-padding of the wavefields 

(i.e., simulating a delay of the seismic records in time), 

and injecting channel-wise random noise (i.e., simulating 

channel-specific levels of noise during data acquisition). 

In addition, each seismic wavefield was bandpass filtered 

between 10 and 100 Hz and then normalized using the 

maximum absolute value observed across all receivers. 

Performing normalization maintains the relative 

amplitude between receivers, while also enabling the 

model architecture to learn more efficiently. While not 

able to be explained in detail here all of the data 

augmentation and pre-processing techniques 

aforementioned were shown to improve the model’s 

predictive performance and generalization ability.  
Model training also involved tuning each model’s 

hyperparameters such as initial learning rate, learning 

rate decay function, batch size, number of epochs, and 

model optimizer. For the sake of brevity, we will not 

discuss the dozens of combinations of hyperparameters 

considered during this study, instead, we summarize that 

the final selected hyperparameters for the proposed 

model were a learning rate of 0.002 with exponential 

decay by a factor of 0.1 after 10 epochs, a batch size of 

16, 60 training epochs, and the use of the Adam optimizer 

by Kingma and Ba (2015). For the proposed DL model, 

mean absolute error (MAE) was used as the loss function 

due to its decreased sensitivity to outliers and its ability 

to converge to the median of a dataset. It should be noted 

that all procedures used in developing the proposed 

model, including hyperparameter tuning, were also 

applied to the modified Vantassel, Kumar, and Cox, 

(2022) model shown in Figure 4. 

6. Testing the Model 

A comprehensive evaluation of the optimized and 

tuned predictive AI model was performed using the 

10,000 seismic wavefield-image pairs reserved for 

testing. As mentioned above, Figure 2 illustrates 8 𝑉𝑠 

images chosen for comparing predictions by the 

proposed AI model; these images were selected from the 

testing set and therefore not used during model training. 

Figure 5 illustrates the prediction of 𝑉𝑠 images using the 

proposed AI model and the associated seismic 

waveforms. To quantitatively demonstrate the efficacy of 

the proposed AI model the mean absolute percent error 

(MAPE) (i.e., the average of the pixel-by-pixel MAPE of 

the true and predicted 𝑉𝑠 image) is shown. The MAPE for 

the eight example models ranges from 6% to 30%, with 

MAPE increasing with model complexity. The average 

MAPE across the entire 10,000 member testing dataset 

was 19% (i.e., predictions within 19% of the true value). 

Figure 6 shows the distribution of pixel-by-pixel 

residuals for the same models. We generally observe that 

residuals (i.e., the difference between the true and 

predicted image) increase with depth and distance from 

the model’s center. This is expected from utilizing only a 

source at the center of the model’s center. Future work 

will investigate the added benefit of using additional 

seismic sources located elsewhere in the model. 

7. Comparison of the Proposed Model 
Architecture with that by Vantassel, 
Kumar, and Cox (2022) 

To enable a direct comparison with the architecture 

proposed by Vantassel, Kumar, and Cox (2022), we now 

present their predictions using the same eight models. 

Again, we note that all preprocessing steps, including 

data normalization, augmentation, and hyper-parameter-

tuning, were executed for this model in the same manner 

as the previous one to ensure an unbiased comparison. 

Figures 7 and 8 present the prediction and pixel-by-pixel 

residual plot for the same eight models shown in Figure 

2. The comparison of MAPE for predictions by 

Vantassel, Kumar, and Cox (2022) with those predicted 

Figure 4. Schematic representation of the model architecture, 

proposed by Vantassel, Kumar, and Cox (2022) that has been 

adjusted for the input and output shapes of the dataset used in 

this study. 



 

by the proposed model, as depicted in Figures 5 and 6, 

shows that the newly proposed model performs better 

than the Vantassel, Kumar, and Cox (2022) model. To 

demonstrate this more quantitatively, Figure 9 depicts the 

comparison of the average MAPE of the proposed model 

with that of Vantassel, Kumar, and Cox (2022) across the 

entire testing dataset. The proposed model is shown to 

outperform the Vantassel, Kumar, and Cox (2022) 

architecture by reducing MAPE by 3%, a substantive 

reduction.  

8. Conclusion 

Herein we present ongoing advancements in data-driven 

near-surface 2D seismic imaging. In particular, we 

present a novel model development framework for 

producing complex subsurface models and a new data-

driven predictive model architecture for subsurface 

imaging. The former has enabled the development of 

100,000 subsurface models with a level of complexity 

not previously attainable. The generated models include 

dipping soil and rock layers, soil lenses, boulders, and 

underground utilities; none of which have been 

considered previously. We simulate field data acquisition 

along these 100,000 synthetic models, by numerically 

solving the elastic wave equation using an impulse source 

at the model’s center surrounded by 24 receivers (12 on 

either side) using the open-source, spectral-element-

based software SPECFEM2D. A novel DL model 

architecture was developed through a rigorous evaluation 

of more than 40 model architectures and extensive 

hyperparameter tuning. The proposed DL model 

demonstrated strong performance on the testing dataset 

of 10,000 wavefield-image pairs with a MAPE of 19%. 

Moreover, the proposed model outperformed the 

previous, best-performing model architecture, developed 

Figure 6. Pixel-by-pixel 𝑉𝑠 residuals for the predictions made 

by the proposed model. The residual images here are the 

difference between the 𝑉𝑠 images in Figures 2 and 5. Above 

each residual image is the predictions associated mean absolute 

percent error (MAPE). 

Figure 7. 𝑉𝑠 images predicted by the revised Vantassel, Kumar, 

and Cox (2022) model using the seismic waveforms from 

subsurface model’s whose true 𝑉𝑠 image is shown in Figure 2. 

Above each predicted 𝑉𝑠 image is the associated mean absolute 

percent error (MAPE). 

Figure 8. Pixel-by-pixel 𝑉𝑠 residuals for the predictions made 

by the Vantassel, Kumar, and Cox (2022) model. The residual 

images here are the difference between the 𝑉𝑠 images in Figures 

2 and 7. Above each residual image is the predictions associated 

mean absolute percent error (MAPE). 

Figure 5. 𝑉𝑠 images predicted by the proposed model from the 

seismic waveforms associated with the subsurface model’s 

whose true 𝑉𝑠 image is shown in Figure 2. Above each predicted 

𝑉𝑠 image is the associated mean absolute percent error (MAPE). 



 

by Vantassel, Kumar, and Cox (2022). Future work will 

focus on applying this model to real field data and 

incorporating multiple source positions to increase model 

resolution. These preliminary results demonstrate the 

proposed model’s robustness in predicting 2D near-

surface seismic images and highlight its potential for 

rapid and reliable non-invasive subsurface imaging for 

geotechnical engineering applications. 
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