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Summary. The current demand for lightweight structures in a wide range of engineering appli-
cations leads to using thin-walled composite laminated structures whose behaviour is governed by
buckling and postbuckling phenomena. Such a demand is pushing the borders of computational
mechanics to enhance methods and algorithms for studying those structures' geometrically non-
linear responses. This work presents some of the authors' developments in analysing lightweight
composite laminated structures. The literature survey introduces a family of �nite elements
known as MISS elements, where MISS stands for mixed isostatic self-equilibrated stresses. The
description of those elements, which are derived from the Hellinger-Reissner functional, is followed
by a discussion on their advantages concerning displacement-based elements when studying com-
posite laminated thin-walled structures. Subsequently, a framework for the postbuckling analysis
of composite structures with the MISS-4C element that uses the Koiter multi-modal approach is
presented.

1 INTRODUCTION

Composite shell structures undergoing large deformations are used in various civil, mechanical
and aerospace engineering applications. Several design strategies have been developed to exploit
the potential that composite laminates o�er to reduce the weight of those structures and enhance
their carrying load capacity [19, 11, 7]. When large deformations are involved, the e�ciency
and robustness of geometrically nonlinear analysis tools play a crucial aspect in the analysis
and design of composite laminated thin-walled structures. In this regard, appealing strategy
solutions are represented by those using mixed Finite Element (FE) formulations that assume
both displacement and stress �elds as primary variables [6, 20].

In those elements, the functions interpolating the stress �elds must be accurately chosen to
avoid spurious energy modes. In 2015, Madeo et al. [17] presented a mixed element, derived from
the Hellinger-Reissner functional, whose stress �elds a priori satisfy the equilibrium equations
for zero bulk loads. Furthermore, that element was formulated to be isostatic namely its number
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of kinematic Degrees Of Freedom (DOFs) equals the number of parameters used in the functions
interpolating its stress �elds. As such, the element was named MISS-4 standing for Mixed
Isostatic Self equilibrating Stress-4 nodes. MISS-4 showed good convergence properties when
used for solving linear elastic static shell problems. Subsequently, MISS-4 was used for solving
linear buckling [3, 22] and initial post-buckling [2, 14] problems of composite laminated thin-
walled structures with constant and variable sti�ness showing good convergence properties and
robustness. The e�ciency of MISS-4 when used within a Koiter multi-modal approach to study
the initial post-buckling behaviour of slender structures was then exploited to develop a fast
tool for studying the imperfection sensitivity analysis of those structures subjected to initial
geometrical imperfections [4, 9, 1].

A successful strategy to further enhance the performance of mixed elements is the Tre�tz
method, which uses assumed stresses that a-priori satisfy both equilibrium equations for zero bulk
loads and compatibility equations in the linear-elastic case [5, 8]. Exploiting the Tre�tz method,
Madeo et al. [15] developed a mixed 8-nodes for the linear-elastic analysis of isotropic shell
structures, named MISS-8. This element showed high accuracy and convergence rate when used
for discretising structures with coarse meshes, and insensitivity to mesh distortions. However,
developing Tre�tz FE to study composite laminated structures is not straightforward because
the matrix of the elastic coe�cients has in�uence on the compatibility equations and, therefore,
on the interpolation of the stress �elds. In this regard, the family of MISS element was then
extended to MISS-4C which is developed through the hybrid-Tre�tz method so that its stress
�elds a priori satisfy both the equilibrium for zero bulk loads and the compatibility equations
[13]. More precisely, MISS-4C uses stress �elds that are bespoke for composite laminated thin-
walled structures with symmetric layups. Its geometry is �at and has 24 DOFs to describe
its kinematics, located at its four vertices, namely each node has three three translations and
three rotations, including drilling. The element is isostatic and, therefore, the number of stress
parameters is 18.

Another appealing discretisation method for studying the postbuckling response of composite
laminated slender structures is represented by solid-shell elements whose kinematics is described
only through translations [18, 12]. In fact, starting from a three-dimensional description at the
continuum level, solid-shell models are developed by interpolating the displacements along the
thickness of the shell, resulting in generalised strain and stress �elds that depend on the midplane
coordinates [21].

Similarly to the mixed shell element mentioned above, also solid-shell elements can be further
enhanced exploiting the Tre�tz method [5]. In this regard, recently Liguori et al. [10] proposed a
mixed solid-shell hexahedral element for the geometrically nonlinear analysis of isotropic elastic
shells whose name is MISS-4S, which stands for Mixed Isostatic Self equilibrating Stresses, 4-
nodes, Solid-shell. The element has six translational DOFs at each vertex of the solid-shall
mid-plane and is implemented within a path-following strategy that uses the Riks method to
solve geometrically nonlinear problems.

This work brie�y recalls the theory of MISS-4C for studying the postbuckling analysis of
composite laminated thin-walled structures. Whereas the description of MISS4-S for studying
those problems with a solid-shell element can be found in companion work presented in this
conference [10].
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2 THEORY

This Section presents a brief recall of the theory beyond the development of MISS4-C, while
its details can be found in [13].

2.1 LINEAR FORMULATION

MISS-4C has four nodes located at its vertex and a quadrilateral. Each node has three
translations and three rotations for a total of 24 DOFs. The generalised stresses are interpolated
to be isostatic [16], namely the number of stress parameters nβ equals the number of DOFs
describing the kinematic minus the number of rigid body motions nr = 6, i.e. nβ = nd−nr = 18.
Furthermore, the stress interpolation functions satisfy both the equilibrium equations for zero
bulk loads (Eq. (??)) and the compatibility equations (Eq. (??)). As such, the element's
displacement �eld is assumed only along its contour [8].

2.1.1 Geometry and reference systems

A global Cartesian system {X, Y, Z} de�nes the position of the element in the three-dimensional
space and is de�ned so that the nodes lay on the plane {X, Y }. Then, a dimensionless internal
system {ξ, η} is de�ned over the element mid-surface with −1 ≤ ξ ≤ 1,−1 ≤ η ≤ 1. Finally, a
local Cartesian system {x, y} is centred and aligned so as to reduce the element distortion.

The internal system {ξ, η} can be indirectly de�ned as

{
X = A0 +A1ξ +A2ξη +A3η

Y = B0 +B1ξ +B2ξη +B3η
,


A0 B0

A1 B1

A2 B2

A3 B3

 =
1

4


1 1 1 1
−1 1 1 −1
1 −1 1 −1
−1 −1 1 1



X1 Y1
X2 Y2
X3 Y3
X4 Y4

 , (1)

where {Xi, Yi}, i = 1, . . . , 4, are the nodal coordinates in the global system {X, Y, Z}. To de�ne
the local Cartesian system {x, y}, a Jacobian matrix JG is introduced

JG =

[
X,ξ X,η
Y,ξ Y,η

]
=

[
(A1 +A2η) (A3 +A2ξ)
(B1 +B2η) (B3 +B2ξ)

]
. (2)

An average Jacobian J̄
G
is evaluated as

J̄G =
1

4

∫ 1

−1

∫ 1

−1
JG dξ dη =

[
A1 A3

B1 B3

]
, (3)

which is decomposed into an orthogonal matrix R and a symmetric matrix J̄ as

J̄
G
= RJ̄ ,


R =

[
cosα − sinα
sinα cosα

]
, α = arctan

(
A3 −B1

A1 +B3

)
J̄ =

[
a c
c b

]
= RT J̄G

. (4)

The local Cartesian system {x, y} has its origin coincident with the element centroid (ξ =
η = 0) and is rigidly rotated through R with respect to {X,Y }.
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The following expression de�nes the {x, y} coordinates[
x
y

]
= RT

[
X −A0

Y −B0

]
. (5)

Finally, for each element' side, Γk, which connects the nodes i and j in anticlockwise sense,
the following quantities are introduced

gk =

[
gkx
gky

]
=

[
xj + xi
yj + yi

]
, ḡk =

[
ḡkx
ḡky

]
=

[
xj − xi
yj − yi

]
, nk =

[
nx

ny

]
=

1

Lk

[
dky
−dkx

]
(6)

where Lk =
√
ḡ2kx + ḡ2ky is the side length, while nk is the external normal to Γk. In the following

part, the one-dimensional abscissa −1 ≤ ζ ≤ 1 along Γk is used so that

x =
1

2
(gkx + ḡkx ζ), y =

1

2
(gky + ḡky ζ). (7)

2.2 Generalised stress �eld interpolation

The assumed interpolation for the generalised stresses is chosen so as to satisfy equilibrium
equations for zero bulk loads and compatibility equations. Additionally, they are isostatic and
then nβ = 18. The membrane and �exural generalised stress �elds are interpolated separately
and ruled by 9 static parameters each. Moreover, the generalised stresses are de�ned in the local
system {x, y }.

2.2.1 Assumed in-plane stress �eld

The in-plane stress �eld is interpolated through dtm de�ned as

dtm = B̄mβ̄m , B̄m =

[
B̄mu ·
· B̄mu

]
, (8)

where
B̄mu =

[
1 x y x2 xy y2 · · · x4 x3y x2y2 xy3 y4

]
(9)

and β̄m is a [30 × 1] vector. By applying the compatibility and constitutive equations for the
case of symmetric composite laminates to Eq. (8), the generalised in-plane stress �eld becomes

tm = EmQmB̄mβ̄m. (10)

Then, that �eld is rewritten by superimposing the equilibrium and a hierarchical selection of
nine independent polynomials is conducted leading to

tm = Bmβm, (11)

where Bm is matrix depending on the coe�cients Eij , i, j = 1..8 of the matrix, E collecting
the elastic coe�cients for composite laminates using the First Order Shear Deformation Theory.
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The expression of Bm can be found in [13], while for a simple case as when E13 = E23 = 0 it
becomes

Bm =


E11 E12 0 0 −x y 0 −2x y E11 y

2

E21 E22 0 x 0 0 y 2x y −E22 x
2

0 0 E33 0 y 0 −x y2 − x2 0

 (12)

cost lin quad

It is worth noting from Eq. (12) that the in-plane stress interpolation, satisfying equilibrium
and compatibility equations, varies according to the material coe�cients and lamination stacking
sequence.

Finally, the membrane part of the elastic displacement solution dtm is expressed in terms of
static parameters βm as

dtm = Dtmβm, (13)

where
Dtm =

[
D

(0)
tm D

(1)
tm D

(2)
tm

]
, (14)

and the expressions of D
(0)
tm,D

(1)
tm,D

(2)
tm are given in [13].

2.2.2 Assumed �exural stress �eld

The �exural stress �eld interpolation, dtf , is assumed as

dtf = B̄f β̄f , B̄f =

 B̄fu · ·
· B̄fφ ·
· · B̄fφ

 , (15)

where

B̄fu =
[
1 x y x2 xy y2 · · · x5 x4y x3y2 x2y3 xy4 y5

]
,

B̄fφ =
[
1 x y x2 xy y2 · · · x4 x3y x2y2 xy3 y4

] (16)

while β̄f is a [51 × 1] vector. By applying the compatibility and constitutive equations for
symmetric composite laminates to Eq. (15), tf becomes

tf = EfQfB̄f β̄f . (17)

Subsequently, tf is rewritten by superimposing the equilibrium and a hierarchical selection of
nine independent polynomials as

tf = Bfβf , (18)

where βf is a [9× 1] vector while Bf is a matrix depending on E whose terms can be found
in [13].

The hierarchical selection of the assumed stress interpolation is obtained by including the
lowest-order polynomial shapes that satisfy the isostatic condition and that avoid spurious en-
ergy modes. Similarly to the interpolation of the in-plane stress �elds, the interpolation of the
�exural stresses, satisfying equilibrium and compatibility, depends on the material properties
and stacking sequence of the composite laminate.
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Finally, the �exural part of the elastic displacement �eld dtf is rewritten as a function of the
static parameters βf as

dtf = Dtfβf , (19)

where
Dtf =

[
D

(0)
tf D

(1)
tf D

(2)
tf

]
. (20)

The expressions of D
(0)
tf ,D

(1)
tf ,D

(2)
tf can be found in [13].

2.3 Generalised displacement �eld interpolation

The interpolation of the displacement �eld d is ruled by 24 nodal translation and rotations,
collected in the vector de.

Due to the assumptions on the generalised stress �eld (see Section (2.2)), the displacement �eld
is interpolated only along the contour of MISS4-C. As such, for a generic side Γk having end nodes
i, j, the displacement parameters are collected in the vectors die = [dix, diy, diz, φix, φiy, φiz]

T

and dje = [djx, djy, djz, φjx, φjy, φjz]
T , respectively.

2.4 Assumed in-plane displacement �eld

The membrane displacements along the generic side Γk are de�ned as the sum of three con-
tributions

dkm[ζ] = d
(l)
km[ζ] + d

(q)
km[ζ] + d

(c)
km[ζ], (21a)

where ζ is the one-dimensional abscissa −1 ≤ ζ ≤ 1 along Γk (see Eq. (7)). The �rst contribution
in Eq. (21a) is a linear interpolation from the vertex values

d
(l)
km[ζ] =

1

2
[(1− ζ)di + (1 + ζ)dj ] , di = [dix, diy]

T , dj = [djx, djy]
T . (21b)

The second contribution is a quadratic expansion for the normal displacement

d
(q)
km[ζ] =

Lk

8
(1− ζ2)(φjz − φiz)nk (21c)

evaluated according to Allman's kinematic [16] the third contribution is a cubic expansion for
the normal component of the side displacement de�ned as

d
(c)
km[ζ] =

1

4
Lk(ζ − ζ3)nk αc, (21d)

where αc is the average distortional drilling nodal rotation obtained as

αc =
1

4

4∑
i=1

φiz − φez (21e)

φez = Nφdme (21f)

Nφ =
1

4Ωe
[−y4 + y3, x4 − x3, 0, −y4 + y1, x4 − x1, 0, −y2 + y1, x2 − x1, 0, −y3 + y2, x3 − x2, 0]
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where Ωe is the area of �nite element and dme is a [12×1] vector collecting the in-plane kinematic
parameters de�ned as

dme = [d1x, d1y, φ1z · · · d4x, d4y, φ4z]
T . (21g)

Equations (21) are rewritten as

dkm[ζ] = Dkm[ζ]dme , Dkm[ζ] = D
(l)
km[ζ] +D

(q)
km[ζ] +D

(c)
km[ζ]. (22)

It is worth noting that the linear d
(l)
km and quadratic d

(q)
km parts of the in-plane displacement �eld

are continuous at the inter-element boundaries. Whereas the cubic contribution d
(c)
km corresponds

to an incompatible mode, which is orthogonal on average to a constant and linear stress and
prevents rank defectiveness of the element [16].

2.5 Assumed �exural displacement �eld

The displacement ukz[ζ] along Γk is assumed as the sum of a linear, a quadratic and a cubic
contribution, namely

dkz[ζ] = d
(l)
kz [ζ] + d

(q)
kz [ζ] + d

(c)
kz [ζ] ,


d
(l)
kz [ζ] =

1

2
[(1− ζ)diz + (1 + ζ)djz]

d
(q)
kz [ζ] =

Lk

8
(1− ζ2)(φki −φkj)

Tnk

d
(c)
kz [ζ] = −Lk

4

(
ζ3 − ζ

)
φen

, (23a)

where

φki = [φix, φix]
T , φkj = [φjx, φjy]

T , φen =
1

8

4∑
k=1

(
φkj −φki

)T
nk−

1

2
(φex+φey) (23b)

and

φex =
1

2
((d4z − d1z) /L4 + (d3z − d2z) /L2) , φey =

1

2
((d4z − d3z) /L3 + (d1z − d2z) /L1) .

(23c)
The normal rotation φkn[ζ] along Γk is assumed to be the sum of a linear and a quadratic
contribution

φkn[ζ] = φ
(l)
kn[ζ] + φ

(q)
kn [ζ] ,

φ
(l)
kn[ζ] =

1

2
[(1− ζ)φin + (1 + ζ)φjn]

φ
(q)
kn [ζ] = 2 d

(c)
kz [ζ],ζ/Lk

(23d)

Similarly, the tangential rotation φkt[ζ] is assumed as

φkt[ζ] = φ
(l)
kt [ζ] , φ

(l)
kt [ζ] =

1

2
[(1− ζ)φit + (1 + ζ)φjt] . (23e)

By introducing the following relationships between rotations[
φkx[ζ]
φky[ζ]

]
=

[
nx −ny

ny nx

] [
φkn[ζ]
φkt[ζ]

]
(23f)

7
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and {
φin = nx φix + ny φiy

φit = nx φiy − ny φix
,

{
φjn = nx φjx + ny φjy

φjt = nx φjy − ny φjx
, (23g)

the [12× 1] vector collecting the out-of-plane kinematic parameters is

dfe = [d1z, φ1x, φ1y, · · · d4z, φ4x, φ4y]
T . (23h)

Equations (23) are rewritten as

dkf [ζ] =

dkz[ζ]
φkx[ζ]
φky[ζ]

 = Dkf [ζ]dfe , Dkf [ζ] = D
(l)
kf [ζ] +D

(q)
kf [ζ] +D

(c)
kf [ζ]. (24)

2.6 Compliance and compatibility element operators

On the basis of the assumed stress and displacement �eld interpolations, the compatibility
matrix, Qe and the element compliance matrix, He of the single element, e, are

Qe =

[
Qm ·
· Qf

]
,


Qm =

∫
Ωe

{
BT

mQmDm

}
dΩ

Qf =

∫
Ωe

{
BT

f QfDf

}
dΩ

, (25a)

and

He =

[
Hm ·
· Hf

]
,


Hm =

∫
Ωe

{
BT

mE−1
m Bm

}
dΩ

Hf =

∫
Ωe

{
BT

f E
−1
f Bf

}
dΩ

, (25b)

where the matrices Qm and Hm collect the in-plane contributions of Qe and He, respectively.
Similarly, the �exural contributions are collected in Qf and Hf , respectively. Both the com-
patibility and compliance element matrices are evaluated through a line integration along the
element contour as

Qm =
4∑

k=1

Qkm , Qf =
4∑

k=1

Qkf , Hm =
4∑

k=1

Hkm , Hf =
4∑

k=1

Hkf , (25c)

with Qkm and Qkf de�ned as

Qkm =

∫ 1

−1
BT

m[ζ]NkmDkm[ζ] dζ , Qkf =

∫ 1

−1
BT

f [ζ]NkfDkf [ζ] dζ, (25d)

while Hkm and Hkf are

Hkm =

∫ 1

−1
BT

m[ζ]NkmDktm[ζ] dζ , Hkf =

∫ 1

−1
BT

f [ζ]NkfDktf [ζ] dζ. (25e)

The matrices Nkm andNkf collect the components of the normal vector to Γk to de�ne the
projections of stresses and displacements, respectively . Finally, Dktm[ζ] andDktf [ζ] represent
the evaluation along Γk of the matrices de�ned in Eqs. (14) and (20), respectively.
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Figure 1: Composite laminated square plate: geometry, loads, boundary conditions and initial
meshes.

2.7 Postbuckling analysis

A corotational approach is used to employ the linear static formulation of MISS-4C to solve
geometrically nonlinear problems. In particular, this work uses a reduced-order model based
on Koiter's theory to obtain an asymptotic approximation solution of the initial postbuckling
behaviour of composite laminated thin-walled structures [14]. The number of buckling modes
included in the construction of the reduced order model is usually a few tens. A discussion on
how buckling modes contribute to the nonlinear solution has been recently presented by Zucco
and Weaver [24], who identi�ed a strategy to further reduce the computational cost of that
analysis by taking into account the degree of symmetry of the structure under consideration.

3 NUMERICAL RESULTS

This Section investigates the performance of MISS-4C through the postbuckling analysis of a
composite laminated plate under compressive loading.

3.1 Composite laminated plate under compressive loading

The test regards a composite square plate under compression loading whose geometry, loading
and boundary conditions are shown in Fig. 1. The length of the plate is ℓ = 0.508, while its
thickness equals 1.172 · 10−4. The plate is simply supported (SS1) and in-plane constraints are
used to prevent rigid body motions. A compression load qx = 1 is uniformly distributed along
both plate's vertical sides. Furthermore, a uniformly distributed out-of-plane load qz = 10−8

is applied. A regular and a distorted mesh are considered, as shown in Fig. 1. The material
properties are E11 = 181 · 103, E22 = 10.27 · 103, G12 = 7.17 · 103, G13 = G23 = 5.135 · 106 and
ν12 = 0.28. The material directions 1 and 2 are aligned with the x− and y−axis, respectively.
The laminate stacking sequence is [±45]2S .

Table 1 shows the four lowest buckling loads for di�erent mesh re�nements obtained with
MISS-4C, MISS-4, and S8 R in Abaqus. It is worth noting that results obtained with MISS-4C
have a better accuracy than those obtained with MISS-4. For all the buckling loads in Table 1
both MISS-4 and MISS-4C exhibit a rate of convergence of h2. However, MISS-4C gives a lower
error in the evaluation of the �rst buckling load and more accurate results when using coarse

9



Francesco S. Liguori, Giovanni Zucco, and Antonio Madeo

Figure 2: Composite laminated square plate: equilibrium paths. The vertical axis is normalised
on the value of the lowest linear buckling load λ1.

meshes than MISS-4.

Table 1: Composite laminated square plate: Four lowest buckling loads for di�erent meshes.

mesh 2 mesh 3 mesh 4 S8R

MISS-4 MISS-4c MISS-4 MISS-4c MISS-4 MISS-4c ABAQUS S8R

2.3295 2.3955 2.3348 2.3637 2.3535 2.3675 2.3841

3.2843 3.3634 3.1530 3.1819 3.13393 3.1470 3.1492

5.6080 5.7150 4.9946 5.0248 4.86214 4.8750 4.8393

9.5448 9.7231 7.7098 7.7431 7.31437 7.3273 7.2080

MISS-4C results to provide more accurate results than MISS-4 also in the evaluation of the
initial postbuckling response of the plate obtained with the Koiter's analysis when using only
the buckling mode corresponding to the lowest buckling load. This aspect is observed in Fig.
2 that shows the equilibrium paths evaluated using MISS-4, MISS-4C and compares them with
that obtained with S8R and a path-following analysis in Abaqus.

4 CONCLUSIONS

This work presented some of the authors' developments in analysing lightweight composite
laminated structures. The literature survey introduced a family of �nite elements known as
MISS elements, where MISS stands for mixed isostatic self-equilibrated stresses derived from
the Hellinger-Reissner functional. Then, among the elements of the MISS family, emphasis was
given to MISS-4C, a four-node element developed through the hybrid-Tre�tz method so that
its stress �elds a priori satisfy both the equilibrium for zero bulk loads and the compatibility
equations. As such, MISS-4C uses bespoke stress �elds for studying composite laminated thin-
walled structures with symmetric layups.Numerical results obtained for the initial postbuckling
analysis of composite laminated plates under compressive loading showed that the element is
robust and reproduces the equilibrium paths accurately also when using coarse meshes. Finally,

10
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this work, together with a companion work presented in this conference [23], further proves
that mixed FEs with an isostatic and self-equilibrated stress �eld provide higher accuracy and
robustness than their corresponding mixed and displacement-based counterparts.
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