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Summary. In aerodynamic shape optimization, gradient-based methods are regularly sup-
ported by the adjoint method computing the gradient of the objective function with respect to
the design variables. The continuous adjoint offers a physical insight into the adjoint equations
and low memory footprint; the accuracy of gradients is affected by the discretization schemes
for the adjoint equations which are often decided by intuition, without necessarily being con-
sistent with the primal ones. On the other hand, discrete adjoint computes sensitivity deriva-
tives which are consistent with the discretized primal problem, with a higher memory footprint
though. In this paper, the Think-Discrete Do-Continuous (TDDC ) adjoint is extended to turbu-
lent/transitional flows. The TDDC adjoint bridges the gap between the continuous and discrete
adjoint by proposing consistent discretization schemes for the adjoint equations which are in-
spired by the hand-differentiated discrete adjoint, with a clear physical meaning though. The
TDDC adjoint is verified on different grid sizes and used to solve shape optimization problems
in turbulent/transitional external aerodynamics.

1 INTRODUCTION

In aerodynamic shape optimization (ShpO), gradient-based algorithms usually rely on the
(continuous or discrete) adjoint method to compute the gradients of the objective function with
respect to the design variables, since this is the most cost-effective way to do so. Working with
continuous adjoint, [1, 2, 3], offers a clear physical insight into the adjoint equations (derived
in the form of PDEs) and their boundary conditions and a low memory footprint of the adjoint
code. Given that the adjoint equations must be discretized, finding appropriate discretization
schemes is a challenge, since these can significantly affect the accuracy of the computed sensi-
tivity derivatives (SDs). Their selection is based on intuition, by usually mimicking the primal
discretization with some changes; for instance, an upwind primal scheme becomes downwind in
the adjoint problem etc. This is not the case in discrete adjoint, [4, 5, 6], in which the adjoint
equations result from the differentiation of the discretized primal problem, being fully consistent
with the latter. Consequently, discrete adjoint has lack of understanding of the adjoint equations
and, often, a high memory footprint.
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Herein, discretization schemes for the continuous adjoint PDEs and their boundary condi-
tions which are inspired by the discrete adjoint, and are, thus, consistent with the discretized
primal problem are proposed. In specific, the advantages of continuous and discrete adjoint
are combined into the Think-Discrete Do-Continuous (TDDC ) adjoint. The TDDC adjoint
computes SDs as accurate as discrete adjoint, by overcoming the usually high memory footprint
of the latter; in addition, the TDDC adjoint retains the insight into the adjoint equations and
boundary conditions. This work extends that of [7], which was dealing with the consistent
discretization of the continuous adjoint to the Euler equations.

The TDDC discretization schemes are used for the ShpO of the NLF(1)-0416 (subsonic)
and the RAE2822 (transonic) isolated airfoils in turbulent/transitional flow. For the latter, the
Spalart–Allmaras turbulence model [8] is coupled with the γ−R̃eθt transition model, [9]. The
proposed TDDC adjoint is developed using the in–house GPU-accelerated code PUMA, [10].
PUMA solves the Reynolds-Averaged Navier-Stokes (RANS) equations for compressible flows
on unstructured/hybrid grids, using a vertex-centered finite volumes and second-order accuracy.

2 THE PRIMAL PROBLEM & ITS DISCRETIZATION

Dealing with compressible fluid flows which undergo transition, the so-called primal problem
comprises the mean flow (MF) equations, the one-equation Spalart–Allmaras (SA) turbulence
model, [8], the two-equation γ−R̃eθt transition model (the SA-sLM2015 variant of [9]) and the
Hamilton-Jacobi equation computing distances ∆ from the closest solid walls. In a 3D Cartesian
coordinate system xk (k = 1, 2, 3) the governing equations are

RMF
n =

∂f inv
nk

∂xk
−
∂fvis

nk

∂xk
=0 , n = 1, .., 5 (1a)

Rν̃=
∂ (ρvkν̃)

∂xk
− ρ

σ

{
∂

∂xk

[
(ν+ν̃)

∂ν̃

∂xk

]
+cb2

∂ν̃

∂xk

∂ν̃

∂xk

}
−P̃ν̃+D̃ν̃=0 (1b)

Rγ=
∂ (ρvkγ)

∂xk
− ∂

∂xk

[(
µ+

µt

σf

)
∂γ

∂xk

]
−Pγ+Eγ=0 (1c)

RR̃eθt =
∂
(
ρvkR̃eθt

)
∂xk

− ∂

∂xk

[
σθt (µ+µt)

∂R̃eθt
∂xk

]
−Pθt−DSCF =0 (1d)

R∆=
∂

∂xk

(
∆

∂∆

∂xk

)
−∆

∂

∂xk

(
∂∆

∂xk

)
−1=0 (1e)

In 3D, Eqs. 1a are solved for the conservative flow variables Un = [ρ ρv1 ρv2 ρv3 ρE]T .
The turbulent viscosity µt is given by µt = ρν̃fv1 , where ν̃ results from Eq. 1b. All undefined
terms and constants in Eqs. 1b to 1d can be found in [8, 9]. Integrating Eqs. 1a-1e over a finite
volume formed around node P and applying the Green-Gauss theorem results in a balance of
fluxes; these are discretized on unstructured grids consisting of tetrahedra, pyramids, prisms
and/or hexahedra. The finite volume ΩP is shown in Fig. 1, in a 2D case, for demonstration
purposes.

Below, the discretization of the primal fluxes is presented. All formulas refer to the finite
volume ΩP centered at node P with ∂ΩP being its boundary. We refrain from providing ex-
pressions for the fluxes crossing the domain boundaries. The inviscid fluxes Φinv,PQ

n of Eqs. 1a,

2
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Figure 1: Vertex–centered finite volume
formed around an internal node P . Normal
vectors (n) on the ΩP boundaries have a mag-
nitude equal to the area (or length in 2D) of
the interface between two adjacent finite vol-
umes. They point outwards and n̂k = nk/|n|.
Nodes Qi are connected to P via grid edges,
Ne (P )={Qi}, while nodes Λi are neighbors of
P on the same grid element, N (P )={Λi}.

referring to
∂f inv

nk
∂xk

, are discretized using Roe’s upwind scheme, [11], as

Φinv,PQ
n =

1

2

(
AP

nmkU
P
m +AQ

nmkU
Q
m

)
nPQ
k − 1

2

∣∣∣ÃLR
nmkn

PQ
k

∣∣∣ (UR
m − UL

m

)
(2)

where Anmk =
∂f inv

nk
∂Um

is the flux Jacobian, f inv
nk = AnmkUm.

∣∣∣ÃLR
nmknk

∣∣∣ is the absolute Jacobian

computed using the Roe–averaged quantities between the left (L) and right (R) states. Primitive
flow variables Vm at L and R are extrapolated from P and Q as follows:

V L
m =V P

m +
1

2
tPQ
ℓ

∂Vm

∂xℓ

∣∣∣∣P ,
∂Vm

∂xℓ

∣∣∣∣P =DP
ℓ V

P
m +

∑
Λ∈N (P )

ZPΛ
ℓ V Λ

m (3a)

V R
m =V Q

m − 1

2
tPQ
ℓ

∂Vm

∂xℓ

∣∣∣∣Q ,
∂Vm

∂xℓ

∣∣∣∣Q=DQ
ℓ V

Q
m +

∑
K∈N (Q)

ZQK
ℓ V K

m (3b)

where Dℓ, Zℓ are geometrical coefficients. UL,R
m are then computed from V L,R

m . Fluxes Φφ,PQ
conv

(φ= ν̃, γ, R̃eθt), corresponding to convection terms in Eqs. 1b to 1d, are similarly discretized as

Φφ,PQ
conv =

1

2

[
(ρvkφ)

P + (ρvkφ)
Q
]
nPQ
k − 1

2

∣∣∣(vknk)PQ
∣∣∣ [(ρφ)Q − (ρφ)P

]
(4)

The viscous fluxes Φvis,PQ
n in Eqs. 1a, corresponding to

∂fvis
nk

∂xk
, are Φvis,PQ

m+1 = τ
PQ
mk n

PQ
k , (m =

1, 2, 3) and Φvis,PQ
5 = vPQ

ℓ

(
τ
PQ
ℓk +qPQ

k

)
nPQ
k with τmk and qk being the stress tensor and the

heat flux components, respectively. Computing τ
PQ
mk , q

PQ
k at the interface involves the spatial

gradients of velocity and temperature (symbol ϕ) there, given by [12]

∂ϕ

∂xm

∣∣∣∣
PQ

=
∂ϕ

∂xm

∣∣∣∣
PQ

−

 ∂ϕ

∂xℓ

∣∣∣∣
PQ

t̂ℓ−
ϕQ−ϕP√
xPQ
ℓ xPQ

ℓ

t̂m,
∂ϕ

∂xm

∣∣∣∣
PQ

=
1

2

[
∂ϕ

∂xm

∣∣∣∣
P

+
∂ϕ

∂xm

∣∣∣∣
Q

]
, t̂m=

xQm−xPm√
xPQ
ℓ xPQ

ℓ

(5)

Eq. 5 is also used to discretize the diffusion terms in Eqs. 1b to 1d. Finally, any source term SP
n

(standing for P̃ν̃ , D̃ν̃ , Pγ , Eγ , Pθt or DSCF ) at node P is assumed to be constant within ΩP ,
thus

´
ΩP

SndΩ ≃ SP
n ΩP .
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3 THE THINK-DISCRETE DO-CONTINUOUS (TDDC ) ADJOINT

For the objective function J , continuous adjoint starts by the augmented function Jaug=

J+
´
Ω

(
ΨnR

MF
n +ν̃aR

ν̃+γaR
γ+R̃eaR

R̃eθt+∆aR
∆
)
dΩ, where Ψn, (n = 1, ..., 5) are the adjoint mean

flow variables and ν̃a, γa, R̃ea and ∆a are the adjoint to ν̃, γ, R̃eθt and ∆, respectively. Dif-
ferentiating Jaug w.r.t. the design variables bi and setting the multipliers of δUℓ

δbi
(Uℓ, ℓ=1,. . ., 9

with Um :=Um for m=1,. . ., 5, U6 :=ρν̃, U7 :=ργ, U8 :=ρR̃eθt, U9 :=∆) to zero leads to the field
adjoint equations (FAE) and their boundary conditions, [13]. The FAE are written as

RΨ
m=−Anmk

∂Ψn

∂xk
−KMF

m +KSA
m +Kγ−R̃eθt

m = 0 (6a)

Rν̃a =−vk
∂ν̃a
∂xk

+ GSA,diff + GSA,src + Gµt,MF + Gµt,γ−R̃eθt = 0 (6b)

Rγa =−vk
∂γa
∂xk

+Hγ−R̃eθt,diff +Hγ−R̃eθt,src +HSA,src = 0 (6c)

RR̃ea =−vk
∂R̃ea
∂xk

+N γ−R̃eθt,diff +N γ−R̃eθt,src +N SA,src = 0 (6d)

R∆a =−2
∂

∂xk

(
∆a

∂∆

∂xk

)
+MSA,src +Mγ−R̃eθt,src = 0 (6e)

n=1, . . . , 5, m=1, . . . , 5, k=1, . . . , 3. KMF
m =

(
∂τadjkq

∂xk
− τkq

∂Ψ5
∂xk

)
∂vq
∂Um

+
∂qadjk
∂xk

∂T
∂Um

, where τ
adj
km is

the adjoint stress tensor τadjmk=(µ+µt)
[
∂Ψm+1

∂xk
+

∂Ψk+1

∂xm
+ ∂Ψ5

∂xm
vk+

∂Ψ5
∂xk

vm− 2
3δmk

(
∂Ψℓ+1

∂xℓ
+ ∂Ψ5

∂xℓ
vℓ

)]
and qadjk the adjoint heat flux qadjk = Cp

(
µ
Pr+

µt

Prt

)
∂Ψ5
∂xk

. The superscript in each term on the

right-hand-side of Eqs. 6 denotes its origin. Their analytical expressions can be found in [13].
The proposed TDDC schemes exactly reproduce the outcome of the hand-differentiated dis-

crete adjoint equations. Recall that, in discrete adjoint, J in discrete form is augmented by
the inner product of the discretized residuals of the primal equations and the corresponding
adjoint field variables, resulting in Jaug. Differentiating Jaug and eliminating the terms with
derivatives of Uℓ w.r.t. bi leads to the discrete adjoint equations. The TDDC adjoint also affects
the discretization of the SDs; this is omitted in the interest of space.

3.1 TDDC Discretization of the Adjoint Mean Flow Equations

The integration of the inviscid term of Eq. 6a over ΩP results in the balance of the corre-
sponding adjoint fluxes (notations as in Fig. 1)

−
ˆ

ΩP

Anmk
∂Ψn

∂xk
dΩ ≃

∑
Q∈Ne(P )

Φinv,adj,PQ
m +

∑
ffl
∈B(P )

Φ
inv,adj,

ffl
m (7)

With discrete adjoint guiding us, the TDDC discretization of internal fluxes yields

Φinv,adj,PQ
m =− 1

2

(
ΨP

n +ΨQ
n

)
AP

nmkn
PQ
k − 1

2

[(∣∣∣ÃLR
nℓknk

∣∣∣Ψn

)R,adj
−
(∣∣∣ÃLR

nℓknk

∣∣∣Ψn

)L,adj]∂V P
ℓ

∂UP
m

(8)
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This is a non-conservative scheme, in contrast to the conservative one used in the primal problem,
Eq. 2. In Eq. 8, for second–order accuracy, the “L”eft and “R”ight adjoint states are given by

ϕL,adj=ϕP+
1

2

∂(trϕ)

∂xr

∣∣∣∣P,adj , ∂(trϕ)∂xr

∣∣∣∣P,adj= tPQ
r DP

r ϕ
P+

∑
Λ∈N (P )

ZΛP
r

∑
M∈Ne(Λ)

tΛMr ϕΛ (9a)

ϕR,adj=ϕQ+
1

2

∂(trϕ)

∂xr

∣∣∣∣Q,adj

,
∂(trϕ)

∂xr

∣∣∣∣Q,adj

= tPQ
r DP

r ϕ
Q+

∑
Λ∈N (P )

ZΛP
r

∑
M∈Ne(Λ)

tΛMr ϕM (9b)

and M is any node connected to Λ∈N (P ) by an edge. Here,
∣∣∣ÃLR

nℓknk

∣∣∣ is the modified absolute

Jacobian, [7], which includes the derivatives of
∣∣∣ÃLR

nmknk

∣∣∣ w.r.t. the primitive flow variables.

Moreover, the L and R adjoint states are defined differently than in the primal problem. In
the primal problem, the L state of any primal variable ϕ, along edge PQ, results from a Taylor

expansion as the sum of ϕP and the inner product of the half of
−−→
PQ and the spatial gradient

of ϕ at P , Eq. 3. This gradient depends on ϕ values at P and neighbors Λi (Fig. 1). In Eq. 9,

ϕL,adj at edge PQ is the sum of the value of ϕ at P and half of the divergence of vector
−−→
PQ

scaled by ϕ. Contrasting these two formulas (primal and adjoint) is illustrative and helps the
familiarization of the reader with the TDDC adjoint.

Integrating the viscous term of Eq. 6a over ΩP yields

−
ˆ

ΩP

KMF
m dΩ=−

ˆ

ΩP

[(
∂τadjkq

∂xk
−τkq

∂Ψ5

∂xk

)
∂vq
∂Um

+
∂qadjk

∂xk

∂T

∂Um

]
dΩ ≃ −

∑
Q∈Ne(P )

Φvis,adj,PQ
m −

∑
ffl
∈B(P )

Φ
vis,adj,

ffl
m

(10)

Any internal flux Φvis,adj,PQ
m in Eq. 10 splits into three terms, namely

−
∑

Q∈Ne(P )

(
Φvis,adj,PQ
q,τkm

∂vq
∂Um

∣∣∣∣P − Φvis,adj,PQ
q,vm

∂vq
∂Um

∣∣∣∣P +Φvis,adj,PQ
qk

∂T

∂Um

∣∣∣∣P
)

where subscripts τkm, vm, qk denote the fluxes origin. Based on discrete adjoint, the TDDC
discretization schemes for the adjoint viscous fluxes are

Φvis,adj,PQ
q,τkm

=

[
(µ+µt) nk

(
∂Ψq+1

∂xk
+
∂Ψ5

∂xk
vq

)]adj
PQ

+

[
(µ+µt) nq

(
∂Ψk+1

∂xk
+
∂Ψ5

∂xk
vk

)]adj
PQ

−
[
2

3
δkq (µ+µt) nℓ

(
∂Ψℓ+1

∂xk
+
∂Ψ5

∂xk
vℓ

)]adj
PQ

(11)

Φvis,adj,PQ
q,vm

=
1

2

(
ΨQ

5 −ΨP
5

)
τ
PQ
kq nPQ

k , Φvis,adj,PQ
qk

=

[
Cp
(

µ

Pr
+

µt

Prt

)
nk

∂Ψ5

∂xk

]adj
PQ

where the “adjoint spatial gradient” (
[
B ∂φa

∂xm

]adj
PQ

) of an adjoint quantity φa, multiplied by a

primal quantity B, at the interface between P and Q, is (δkm is the Kronecker symbol)[
B

∂φa

∂xm

]adj
PQ

=
1

2

[[
B
(
δmℓ− t̂ℓt̂m

)∂φa

∂xℓ

]P,adj
−
[
B
(
δmℓ− t̂ℓt̂m

)∂φa

∂xℓ

]Q,adj
]
+BPQ φQ

a −φP
a√

xPQ
ℓ xPQ

ℓ

t̂PQ
m (12)
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In a “standard” discretization scheme, Eq. 5 (adapted to the adjoint problem) could have
been used instead of Eq. 12, for the discretization of the adjoint viscous fluxes. An additional
difference between “standard” and TDDC adjoint is the edge which the primal quantity B is
computed on. In the “standard” scheme, B is computed on edge PQ and is, then, multiplied by
∂φa

∂xm

∣∣∣
PQ

, as in Eq. 5. In the TDDC adjoint, B is not computed at PQ but at the edge appearing

in the computation of the “adjoint spatial gradient”, see Eqs. 9 and 12. Discretization schemes
for the boundary fluxes can be found in [7].

The source terms of the adjoint mean flow equations, Eq. 6a (KSA
m , Kγ−R̃eθt

m ) arise from the
differentiation of the SA and the γ−R̃eθt models. Those coming from the differentiation of the
convection terms of the SA and γ−R̃eθt equations are written as

−
ˆ

ΩP

ρφ
∂φa

∂xk

∂vk
∂Um

dΩ ≃
∑

Q∈Ne(P )

Φsrc,adj,PQ
k,conv

∂vPk
∂UP

m

+
∑
ffl
∈B(P )

Φ
src,adj,

ffl
k,conv

∂vPk
∂UP

m

Φsrc,adj,PQ
k,conv =−1

2

[
(ρφ)P

(
φP
a +φQ

a

)
nPQ
k +

1

2

(
φP
a −φQ

a

)(
(ρφ)Q−(ρφ)P

)
sign

(
v,PQ
k nPQ

k

)
nPQ
k

]
(13)

and Φ
src,adj,

ffl
k,conv = 0, where φ and φa stand for ν̃, γ, R̃eθt and ν̃a, γa, R̃ea, respectively. Terms

originating from the differentiation of the SA diffusion become

∑
φ=ρ,ν,ν̃

 ∑
Q∈Ne(P )

Φsrc,adj,PQ
diff,SA,φ

∂φP

∂ρP
+
∑
ffl
∈B(P )

Φ
src,adj,

ffl
diff,SA,φ

∂φP

∂ρP


Φsrc,adj,αβ
diff,SA,ρ =− 1

σ
ν̃a
P
[
ναβ+(1+cb2) ν̃

αβ−cb2 ν̃
P
] ∂ν̃

∂xk

∣∣∣∣
αβ

nαβk , αβ=PQ or
ffl

(14)

In TDDC adjoint, terms coming from the differentiation of the γ and R̃eθt diffusion become

−
ˆ

ΩP

φ

ρ

∂

∂xk

[
σφ1

(
µ+

µt

σφ2

)
∂φa

∂xk

]
dΩ ≃ −

∑
Q∈Ne(P )

Φsrc,adj,PQ
diff,φ

φP

ρP
−
∑
ffl
∈B(P )

Φ
src,adj,

ffl
diff,φ

φP

ρP

Φsrc,adj,PQ
diff,φ =

[
σφ1

(
µ+

µt

σφ2

)
nk

∂φa

∂xk

]adj
PQ

, Φ
src,adj,

ffl
diff,φ =

∂

∂xk

[
σφ1

(
µ+

µt

σφ2

)
nk

∂φa

∂xk

]ffl ,adj
(15)

For the discretization of the terms arising from the differentiation of the SA and γ−R̃eθt diffusion,
Eqs. 9 and 12 are used for the boundary and internal fluxes, respectively. For the γ equation,
σφ1=1, σφ2=σf , and for the R̃eθt equation σφ1=σθt, σφ2=1. The remaining terms come from
the differentiation of the vorticity and strain rate magnitude, the velocity acceleration along
the streamwise direction and the streamwise vorticity that are present in the SA and γ−R̃eθt
sources, [8, 9], all of them containing the gradient of the velocity component. Based on the
TDDC adjoint, these should be discretized using Eq. 9.
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3.2 TDDC Discretization of the Adjoint Turbulence/Transition Models

Integrating the convection terms of Eqs. 6b, 6c and 6d over ΩP , one gets (φa= ν̃a, γa or R̃ea)

−
ˆ

ΩP

vk
∂φa

∂xk
dΩ ≃

∑
Q∈Ne(P )

Φφa,PQ
conv +

∑
ffl
∈B(P )

Φ
φa,
ffl

conv

Φφa,PQ
conv = −1

2

(
φP
a +φQ

a

)
vPk n

PQ
k − 1

2

(
φQ
a −φP

a

) ∣∣∣vPQ
k nPQ

k

∣∣∣ , Φ
φa,
ffl

conv = 0 (16)

As expected, the TDDC adjoint proposes the downwind discretization of the internal fluxes, in
contrast to the upwind of the primal problem, and zero flux at all boundaries.

In Eq. 6b, the diffusion term is discretized as

−
ˆ

ΩP

GSA,diffdΩ =

ˆ

ΩP

1

σ

[
(1+cb2)

∂ (ρν̃a)

∂xk

∂ν̃

∂xk
+cb2ρν̃a

∂

∂xk

(
∂ν̃

∂xk

)]
1

ρ
dΩ

−
ˆ

ΩP

1

σ

[
∂

∂xk

[
[ν+(1+cb2) ν̃]

∂ (ρν̃a)

∂xk

]
−cb2

∂

∂xk

(
∂ (ρν̃aν̃)

∂xk

)]
1

ρ
dΩ

≃
∑

Q∈Ne(P )

Φν̃a,PQ
diff

1

ρP
+
∑
ffl
∈B(P )

Φ
ν̃a,
ffl

diff

1

ρP

Φν̃a,PQ
diff =

1

σ

[
(1+cb2)(ρν̃a)

PQ−(ρν̃a)
P
] ∂ν̃
∂xk

∣∣∣∣
PQ

nPQ
k − 1

σ

[
[ν+(1+cb2)ν̃]

∂ (ρν̃a)

∂xk
nk−cb2

∂ (ρν̃aν̃)

∂xk
nk

]adj
PQ

(17)

Φ
ν̃a,
ffl

diff = − 1

σ
(ρν̃a)

P ∂ν̃

∂xk

∣∣∣∣ffl − 1

σ

∂

∂xk

[
[(ρν̃a) [ν+(1+cb2) ν̃]−cb2 (ρν̃aν̃)] nk

]ffl ,adj
(18)

Regarding the adjoint transition model, integrating the diffusion terms of Eqs. 6c and 6d
(Hγ−R̃eθt,diff and N γ−R̃eθt,diff ) over ΩP , leads to

−
ˆ

ΩP

1

ρ

∂

∂xk

[
σφ1

(
µ+

µt

σφ2

)
∂φa

∂xk

]
dΩ ≃ −

∑
Q∈Ne(P )

Φφa,PQ
diff

1

ρP
−
∑
ffl
∈B(P )

Φ
φa,
ffl

diff

1

ρP

Φφa,PQ
diff =

[
σφ1

(
µ+

µt

σφ2

)
nk

∂φa

∂xk

]adj
PQ

, Φ
φa,
ffl

diff =
∂

∂xk

[
σφ1

(
µ+

µt

σφ2

)
nk

∂φa

∂xk

]ffl ,adj
(19)

Following the discretization of the diffusion of the adjoint mean flow equations, in the TDDC
adjoint, Eqs. 9 and 12 are proposed for the spatial gradients; in contrast, a “standard” dis-
cretization scheme would rely on Eqs. 3 and 5. For the source terms Gµt,MF and Gµt,γ−R̃eθt

ˆ

ΩP

[
Gµt,MF+Gµt,γ−R̃eθt

]
dΩ ≃

∑
Q∈Ne(P )

ΦPQ
adj,µt

∂µP
t

∂µ̃P
+
∑
ffl
∈B(P )

Φ
ffl
adj,µt

∂µP
t

∂µ̃P

+
∑

Q∈Ne(P )

Φγ−R̃eθt,PQ
adj,µt

∂µP
t

∂µ̃P
+
∑
ffl
∈B(P )

Φ
γ−R̃eθt,

ffl
µt

∂µP
t

∂µ̃P
+

[
Cγ−R̃eθt
adj,µt

∂µt

∂µ̃

]P
ΩP
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ΦPQ
adj,µt

=
[(
ΨPQ

m+1−ΨP
m+1

)
+
(
ΨPQ

5 −ΨP
5

)
v,PQ
m

]
nPQ
k

τ
PQ
km

µPQ+µPQ
t

+Cp
(
ΨPQ

5 −ΨP
5

) ∂T
∂xk

∣∣∣∣
PQ

nPQ
k

Φ
ffl
adj,µt

= −
[
ΨP

m+1+ΨP
5 v

,P
m

]
n
ffl
k

τPkm
µP+µP

t

−CpΨP
5

∂T

∂xk

∣∣∣∣ffl nfflk (20)

Φφa,PQ
adj,µt

=
(
φPQ
a −φP

a

) ∂φ

∂xk

∣∣∣∣
PQ

nPQ
k

σφ1
σφ2

, Φ
φa,
ffl

adj,µt
=−φP

a

∂φ

∂xk

∣∣∣∣ffl nfflk σφ1σφ2

where φ stands for the transition model variable (γ, R̃eθt) and φa for its adjoint (γa, R̃ea).

The source terms in Eqs. 6b-6d are assumed to remain constant within ΩP , yielding
´
ΩP

Sadj
src dΩ ≃

Sadj,P
src ΩP , where Sadj

src stands for GSA,src, HSA,src, N SA,src, Hγ−R̃eθt,src and N γ−R̃eθt,src.

4 ShpO OF THE NLF(1)–0416 SUBSONIC AIRFOIL

The TDDC discretization schemes are firstly used in the ShpO of the NLF(1)-0416 isolated
airfoil, [14], aiming at minimizing the drag coefficient (CD), constrained by the lift coefficient
(CL) that should change no more than ±1‰ of the reference value. An additional constraint
ensuring that the area of the airfoil does not drop below 90% of its reference one was also
imposed. The flow conditions are M∞ = 0.1, Re = 4 ·106, turbulence intensity Tu = 0.15%
and Angle of Attack AoA= 2◦. At these flow conditions, the flow transitions from laminar to
turbulent over both airfoil sides. The case is parameterized using the 8×7 volumetric NURBS
(Non-Uniform Rational B-Splines) control grid, Fig. 2-left; the control points in blue remain
constant while red ones are allowed to move in the normal-to-the-chord direction resulting in 12
design variables, in total.

Figure 2: NLF(1)–0416 Airfoil : From left to right: Parameterization and grids of different quality,
coarse 529×73, medium 705×97 and fine 1057×145 nodes.

The accuracy of the SDs computed using the “standard” and the TDDC adjoint on differently
refined grids is investigated, Fig. 2. Reference SDs are computed using finite differences (FDs).
The TDDC adjoint code reproduces the outcome of FDs with high accuracy on any grid, even
the coarsest one, Fig. 3. In contrast, discrepancies appear on the SDs computed based on
“standard” adjoint discretization; these are more intense in the CD SDs and, in specific, for
the design variables ID4 and ID8. After verifying the accuracy of the TDDC adjoint, the
ShpO of the NLF(1)-0416 airfoil was performed on each grid, using the sequential least squares
programming algorithm (SLSQP), [15]. The consistency of the proposed TDDC discretization
schemes is beneficial for the ShpO, Fig. 4. On the coarse grid, the TDDC adjoint resulted in an
optimized solution of better quality (∼19%, instead of ∼15.1% reduction in CD ), in ∼37% less
GPU cost, whereas a solution of same quality (i.e. about ∼21% reduction in CD) was achieved
in less cycles on the medium and fine grids.
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Figure 3: NLF(1)–0416 Airfoil : Comparison of CD (top) and CL (bottom) SDs computed by “standard”
continuous (blue) and TDDC adjoint (red) as well as FDs (yellow). Coarse to fine grid from left to right.
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Figure 4: NLF(1)–0416 Airfoil : Evolution of CD (objective) and CL (constraint) during the ShpO for
the coarse (left), medium (middle) and fine (right) grid based on the “standard” continuous (blue palette)
and the TDDC (red palette) adjoint. The grayish area is associated with the CL constraint and stands
for the feasible zone. Each ShpO cycle includes one primal and two adjoint problem solutions.

The shape of the reference and the optimized airfoils based on the TDDC adjoint are pre-
sented in Fig. 5-left for all three grids. The ShpO resulted in similar airfoils with flattened
pressure side and a suction side with increased curvature close to the trailing edge. The skin
friction coefficient distribution for the reference and the optimized with the TDDC adjoint air-
foils on the fine grid are shown in Fig. 5-right. The transition locations were shifted downstream
both for the pressure and suction side, with a clear impact on CD reduction.

5 ShpO OF THE RAE2822 TRANSONIC AIRFOIL

In the ShpO of the RAE2822 isolated airfoil at transonic flow conditions, the target and
constraints are the same as in Sec. 4. The flow conditions are M∞ = 0.736, Re= 6.5 ·106 and
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Figure 5: NLF(1)–0416 Airfoil : Shape
(left; not in scale) and skin friction co-
efficient distribution (right) of the refer-
ence (black) and optimized (red) geome-
tries, on the fine grid. The optimization
used the TDDC adjoint.

AoA=2.92◦. Using a 10×7 NURBS control grid, Fig. 6, where the red control points are allowed
to move in the normal-to-the-chord direction, the problem has 16 design variables.

Figure 6: RAE2822 Airfoil : Parameterization.

Two ShpO studies were performed; the first was based on the SA turbulence model only (no
transition model), while the second on the SA-sLM2015 transition model. For the latter, a low
value of turbulence intensity was imposed at the far-field, Tu = 0.05%. The accuracy of the
SDs of CD, CL and the ShpO convergence histories are shown in Fig. 7. The TDDC adjoint
computes accurate SDs with both flow models, even if, for the “standard” continuous adjoint,
small discrepancies in the SDs can be seen. This is also reflected on the ShpO convergence. For
the ShpO based on the SA model, the TDDC adjoint reached a solution of same quality (∼33.1%
drop in CD) in less cycles ensuring a “smoother” convergence of the imposed constraints. In the
ShpO with the transition model, for the same number of cycles, the TDDC adjoint converged to
a better solution than with the “standard” discretization schemes (∼45.9% instead of ∼41.6%).
The Mach number fields for the reference and the optimized airfoils, based on the TDDC adjoint,
are presented in Fig. 8. The strength of the shock wave was reduced in both optimizations and
this led to lower CD. Regarding the ShpO without the transition model, the airfoil became
thinner close to the leading edge, while the use of the transition model increased the curvature
of the suction side and shifted the highly curved part towards the trailing edge.

6 CONCLUSIONS

Consistent, with the primal problem, discretization schemes for the continuous adjoint PDEs,
with a clear physical insight and low memory requirements of the adjoint code were developed.
These were inspired by the hand–differentiated discrete adjoint equations which were firstly
derived. The proposed Think-Discrete Do-Continuous (TDDC ) adjoint was developed for the
RANS equations, coupled with the Spalart–Allmaras turbulence model and the γ−R̃eθt transition
model. Following the methodology of the TDDC adjoint, it was possible, for instance, to
propose operators for the consistent discretization of adjoint terms that include the gradient of
an adjoint quantity at any node P or any edge PQ, see Eqs. 9 and 12 to be used instead of
Eqs. 3 and Eq. 5 of a “standard” approach. In fact, the development of the TDDC adjoint is
the only way to come up with the aforementioned consistent discretization. The accuracy of
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Figure 7: RAE2822 Airfoil : Comparison of CD (left) and CL (middle) SDs computed by the “standard”
continuous (blue) and TDDC adjoint (red) as well as FDs (yellow). ShpO convergences (right) based on
the two adjoint methods. Computations without (top) and with (bottom) the transition model.

Figure 8: RAE2822 Airfoil : Mach number field for the reference (left) and the optimized airfoils (right).
Computations without (first two) and with (last two) transition model.

the SDs of the TDDC adjoint, and its impact on the ShpO convergence, were demonstrated in
the ShpO of two isolated airfoils in turbulent/transitional flow. Comparisons with “standard”
adjoint discretization schemes, widely used in the literature, revealed the high accuracy of the
TDDC adjoint in computing SDs and, consequently, the improved ShpO behavior (in terms of
convergence and quality of the optimized solution). The proposed TDDC discretization schemes
were also applied in an industrial application presented in a companion ECCOMAS 2024 paper
(Kontou et al., Continuous Adjoint-Based Optimization of a High Aspect-Ratio Wing Business
Jet in Transitional Flows).
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