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Summary.
In the present work, a high enthalpy hypersonic flow of Mach 17.1 and 14.9 MJ/kg of stagna-

tion enthalpy, around a cylindrical blunt body is numerically studied using a density-based com-
pressible algorithm in OpenFOAM. The flow field and surface properties for different magnetic
field intensities and different electrical conductivity models were analysed and it was possible
to conclude that the choice of the correct electrical conductivity model is of extreme impor-
tance to have an accurate prediction of the MHD flow control mechanism. With the present
conditions, it was observed no significant change in the flow field and surface properties using
the Chapman Cowling electrical conductivity model, even for magnetic field intensities as great
as 2 T. While for the Bush model the flow field and surface properties clearly changed with
the magnetic fields, resulting in an increase of the shock standoff distance and a reduction on
surface pressure. It was found that the Lorentz force for the Bush model is hundreds of times
higher than the Lorentz force obtained with the Chapman Cowling model and that it would be
required to apply a magnetic field in the flow field near the body surface of 3.8 T to get the
same Lorentz force with both conductivity models.

1 INTRODUCTION

The comprehension of hypersonic flight is becoming more and more important and serve as
an accelerating mechanism to advance in space exploration. Hypersonic flows can be described
as those flows where the Mach number attains significant values, generally exceeding Mach
5. Among other crucial phenomena, they are distinguished by very high temperatures, the
interaction between the boundary layer and shock waves, molecular dissociation, vibrational
excitation, species diffusion, and ionization processes [1, 2]. The extreme temperatures, typically
generated due to the strong shock, established the numerical approach as the principal method to
analyze hypersonic flows in a feasible and consistent manner. Numerical methods are essential for
grasping the effects of relevant flow-field parameters, which would be rather difficult to explore
through experimentation. For this aim, Computational Fluid Dynamics (CFD) and Direct
Simulation Monte Carlo (DSMC) advanced computational techniques have been extensively
used [3, 2, 4, 5].
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Early studies in MHD applied to re-entry vehicles suggested that the ionized air in the shock
layer, which electrical conductivity at the stagnation point and the surrounding regions can
attain several hundred mho/m, will interact with the magnetic field at the vehicle’s nose and alter
the location of the bow shock and decrease the heat flux at the vehicle surface [6, 7, 8, 9, 10, 11,
12, 13, 14, 15]. More recently, there has been a revival of interest on plasma-assisted technology
in high-speed flight, with applications including scramjet engine intake control, aerodynamic
heating reduction, communication blackout mitigation, and aerobraking [16, 17, 18, 19, 20,
21, 22]. Although the capability of MHD flow control technologies has been demonstrated,
its efficacy remains an unresolved issue, and more sophisticated numerical simulation tools are
demanded in order to face the new challenges in the aerospace industry [23]. Various simulation
software packages for hypersonic reacting flow, including DPLR, LAURA, LeMANS, US3D,
OpenFOAM have been using. Different from the all other simulation software, OpenFOAM
has the advantage of being open-source, flexible, with a robust class structure for numerical
modeling and a wide community of contributions.

In the present work, the MHD effects on a hypersonic flow around a blunt body is numerically
investigated considering different electrical conductivity models and a wide range of magnetic
fields. A thermochemical non-equilibrium compressible flow code with 11-species air chemistry
and two temperature model is here employed in the OpenFOAM framework in order to study
the flow field around the blunt body.

2 MATHEMATICAL FORMULATION

2.1 Governing equations

The governing equations correspond to the full Navier-Stokes-Fourier resistive-MHD system
with the low magnetic Reynold’s number approximation. Since the flow around re-entry vehicles
is low-ionized, the low magnetic Reynolds number’s approximation is justified [24], and the
governed equations are defined below:

∂U

∂t
+

∂(Fi,inv − Fi,vis)

∂xi
= Ṡ+ ṠMHD (1)

Where U is the vector of conserved quantities defined as,

U = {ρ, ρs, ρu, ρv, ρw,Eve,m, Et}T s ∈ Ns, m ∈ Nm . (2)

where ρ and ρs being the total density of the fluid and the partial density of species s,
respectively, u, v and w are the three components of the velocity vector and Eve,m and Et are
the total vibro-electronic energy of molecule m and the total energy, respectively.

The vectors Fi,inv and Fi,vis correspond to the inviscid and viscous flux vectors respectively.
The two source term vectors, Ṡ and ṠMHD correspond to the thermochemical and magneto-

hydrodynamic source terms, respectively and are defined as:

Ṡ = {0, ẇs, 0, 0, 0, ẇv,m, 0}T (3)

The term ẇs is the net mass production of species s due to the chemical reactions, here
computed according to Park’93 reaction model [25]. ẇv,m is the vibrational source term which
is determined by the Landau-Teller equation [26] for vibrational-translational relaxation, using
Millikan–White formula [27] and Park’s correction [28] for the relaxation time.
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The MHD source term vector, is defined by:

ṠMHD = {0, 0, Fx, Fy, Fz,J · (u×B),J ·E+ u · F}T (4)

where Fx, Fy and Fz correspond to the three components of the Lorentz force vector, F, with
F = J ×B, J · (u ×B) is the Joule heating generated by the induced electric current density,
J ·E is the Joule heating induced by the electric field, and u ·F is the work done by the Lorentz
force. Here J, E and B correspond to the vector of the electric current density, the electric field
vector and the magnetic field vector, respectively.

Hall and ion slip effects are neglected and the electrical current density is computed with the
Ohm’s law:

J = σ(u×B) (5)

Two different models are used to compute the electrical conductivity. According to the Bush
model [6], σ is expressed by:

σ = σref

(
Ttr

Tref

)n

(6)

where σref and Tref correspond to a reference electrical conductivity and a reference tem-
perature, respectively, Ttr is the trans-rotational flow temperature, and n is the temperature
exponent.

And, with the Chapman-Cowling model [29] the electrical conductivity is expressed as:

σ = 4.0229704× 10−18

(
ne−√
Ttr

)
(7)

where Ttr is the trans-rotational temperature, and ne− is the the electron number density.

2.2 Numerical methods

The computational code is an extension of that described in Ref. [30], with the addition
of the MHD source terms. The governing equations are solved with the second-order central-
upwind interpolation of Kurganov, Noelle and Petrova [23, 24]. Total variation diminishing
(TVD) scheme with van Leer limiter function were used to compute the inviscid fluxes, and
the second-order central difference scheme were used for the viscous fluxes [31, 32]. The time
discretization was performed by using the first-order Euler scheme. The transport properties
for each chemical species (N2, O2, NO, N , O, N+

2 , O+
2 , NO+, N+, O+ and e−) were computed

using Blottner’s and Eucken’s formulae [33, 34]. The mixture properties were obtained by using
the Armllly and Suton mixing rule [35].

3 DESCRIPTION OF THE TEST CASE

In this work, an axisymmetric cylindrical blunt body with a magnetic coil inside was used
for the numerical study. Figure 1 (at left) shows the computational domain, with the grid and
the boundary conditions. Five degree wedges were used to take advantage of the axysimmetry
of the problem, allowing to reduce the computational cost keeping the numerical accuracy. The
cylinder wall was considered to be fully catalytic, to be cooled, keeping at a fixed temperature
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Figure 1: Computational domain (left) and magnetic field configuration (right)

Table 1: Freestream conditions.

U (m/s) Ttr (K) Tve (K) P (Pa) YN2 YO2 Mach

5410 250 250 1300 0.7 0.3 17.1

of 300 K and to be electrically non-conductive. All the fields at the outlet are extrapolated from
the domain.

The inlet conditions in terms of velocity (U), trans-rotational temperature ( Ttr), vibro-
electronic temperature (Tve), pressure and mass fraction of molecular nitrogen and oxygen,
YN2 , YO2 , and Mach number, are described in the Table 1. The Knudsen number is very small,
about 5E-06, which confirm the contiunnum regime.

The dipole magnetic, Figure 1 (at right), is centered 75 cm from the cylindrical body frontal
face, and its maximum value, Bmax, will be varying from 0 to 2 T.

4 RESULTS

In the present section, a presentation and discussion of the results is performed, starting with
a grid independence analysis, following to the results obtained in the flow field, the results along
the stagnation line and in the hypersonic body surface with different conductivity models.

4.1 Grid independence analysis

A estimation of the discretization error was perfomed by a grid convergence analysis, ac-
cording to the Richardson extrapolation method [36, 37], using three different grid sizes, coarse,
medium and fine, respectively, with clustering at the near wall regions for a good resolution of
the boundary layer. Table 2 shows the grids used in the analysis with the corresponding number
of cells and the grid spacing, h.
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Table 2: Grid independence analysis

Grid size No. of Cells h (m)

Coarse 4042 0.021
Medium 10117 0.016
Fine 30302 0.011

Figure 2: Grid convergence analysis: extrapolation of stagnation point pressure using the Richardson
method and GCI.

Figure 2 shows the values of static pressure at the stagnation point, obtained using the three
grids, and the extrapolated continuous solution, corresponding to a grid with infinitely small
spacing, h. As it can be seen, the slope of the curve is close to zero as the grid spacing decreases,
indicating a very good mesh quality for the Fine grid, with a static pressure value very close to
the extrapolated continuous solution. The grid convergence index (CGI)[38], which is a measure
of discretization uncertainty is of 2.3%. The Fine grid proved to give sufficiently accurate results
and will be used in the subsequent analyses.

4.2 Impact on the flow field

Figure 3 shows the pressure distribution in the flow field around the studied body for different
applied magnetic field intensities, for the Bush conductivity model. It is possible to see the shock
layer enlargement as the magnetic field increases, confirming the predictions of past researches
and the validity of the present numerical model. The shock layer starts with a thin zone in the
frontal face of the longitudinal cylindrical body and keeps growing in frontal direction. One can
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(a) B = 0 T (b) B = 0.25 T (c) B = 0.5 T

(d) B = 0.75 T (e) B = 1 T (f) B = 1.25 T

(g) B = 1.5 T (h) B = 1.75 T (i) B = 2 T

Figure 3: Pressure in the flow field for different magnetic field intensities for Bush conductivity model.

see more clearly that for a maximum magnetic field of B = 1.75 T and B = 2 T, Figures 3(h)
and 3(i), respectively, the region near the lateral face of the cylindrical body is also affected
by the magnetic field. Is is also possible to observe that the pressure in the flow field near the
frontal face decreases in magnitude and in frontal area as the applied magnetic field increases.

Figure 4 shows the shock standoff distance as a function of the magnetic field intensity for
Bush and Chapman Cowling electrical conductivity models. It is unquestionable the influence
that the electrical conductivity model used in the numerical simulations can have in the MHD
flow predictions. The shock standoff distances obtained with the Bush conductivity model
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Figure 4: Standoff distance extension as a function of magnetic field intensity for different electrical
conductivity models.

are much higher than the ones obtained with the Chapman Cowling model and its difference
increases with increase of magnetic field intensity. We also found that the shock standoff distance
growth with magnetic field has a polynomial distribution for the Bush model, while for the
Chapman Cowling model the distribution is more likely linear.

Figure 5 represents the maximum Lorentz force obtained in the flow field with different
magnetic field intensities for Bush and Chapman Cowling conductivity models. This results
support the understanding of the previous results obtained for the shock-standoff distance. As
it can bee seen, the Lorentz force for Bush conductivity model is hundreds of time higher than the
Lorentz force obtained with the Chapman Cowling model. Further investigation here performed
showed that the difference between the maximum Lorentz force obtained with both conductivity
models decreases with the applied magnetic field, indicating that the at a certain magnetic field
value they will be the same. In this case, it would be necessary to apply a maximum magnetic
field in the flow field near the body surface of 3.8 T to get the same maximum Lorentz force
with both conductivity models.

4.3 Impact at the stagnation line

The pressure distribution along the stagnation line (Y = 0) for the different electrical conduc-
tivity models is represented at Figure 6. One can see that at the studied conditions, correspond-
ing to a Mach 17.1 flow with high stagnation enthapy of 14.9 MJ/kg, there was no significant
change in the stagnation line pressure, when using the Chapman Cowling conductivity model,
while for Bush model the pressure clearly changes with application of different values of magnetic
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(a) Bush Conductivity Model (b) Chapman Cowling Conductivity Model

Figure 5: Lorentz force maximum value in the flow as a function of magnetic field intensity for different
electrical conductivity models.

(a) Bush Conductivity Model (b) Chapman Cowling Conductivity Model

Figure 6: Pressure distribution at the stagnation line for different conductivity models.

field intensity, which was also seen in the shock standoff distance and shock-layer enlargement.

4.4 Impact at the blunt body surface

Figure 7 shows the pressure distribution along the cylindrical body surface for different mag-
netic field intensities and different conductivity models. The change in the pressure distribution
in the flow field caused by the increase of the Lorentz force with the applied magnetic field in
the Bush model is translated in a decrease on the pressure at the cylindrical body surface. This
occurs because the increase of the shock standoff distance reduces the pressure gradient inside
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(a) Bush Conductivity Model (b) Chapman Cowling Conductivity Model

Figure 7: Pressure distribution along the cylindrical body surface for different conductivity models.

the shock-layer, reducing than the pressure at the hypersonic body surface. For the Chapman
Cowling conductivity model, there was no meaningful change in the surface pressure by increas-
ing the magnetic field intensity, a expected by the pressure distribution in the flow field and
stagnation line.

5 CONCLUSIONS

The purpose of this work was to study numerically the MHD flow around a re-entry body in
thermochemical non-equilibrium using different magnetic field intensities and different electrical
conductivity models. Comparison between results with Bush and Chapman Cowling electrical
conductivity models showed that the electrical conductivity models have a great influence on the
MHD flow predictions. It was possible to observe that the shock standoff distances obtained with
the Bush conductivity model are much higher than the values obtained by the Chapman Cowling
models and that the difference between the two models results increases with the magnetic field
intensity. The maximum Lorentz force in the flow field for the Bush model is hundreds of times
higher than the Lorentz force obtained with the Chapman Cowling model. It was found that
by applying a maximum magnetic field in the flow field near the cylindrical body surface of 3.8
T, it would be possible to obtain the same Lorentz force for both conductivity models. Due to
the higher Lorentz force obtained with the Bush model, it was possible to decrease the surface
pressure at the cylindrical body surface.
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