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Abstract. An edge-based high-resolution scheme for the solution of the compressible Euler
equations on unstructured finite elements grids is presented. The flow solver adopted in the
present work is the approximate Riemann solver developed by Roe. A high-order spatial
approximation is achieved by means of a piecewise linear reconstruction of the interface
variables according to the MUSCL (Monotone Upstream-centered Schemes for Conservation
Laws) formulation. Finally, non-linear limiters are introduced in order to prevent the
generation of oscillations. The proposed approach corresponds with the methodology
presented by Lohner in [1].

1. INTRODUCTION

When element-based data structures are used in finite elements calculations, certain
redundancies of information occurs. For linear solvers based on triangular and tetrahedral
elements, an alternatively and more efficient data structure using only edge information can be
considered. Edge-based data structures for finite elements calculations have been ntroduced
by Morgan ef al. drawing from earlier finite volume schemes [2]. This mesh representation
allows both to take advantage of unstructured meshes and reduce CPU time and memory
required by the calculations [1,3,4] which is of vital importance when considering three-
dimensional flow calculations. Additionally, when compressible or incompressible flow
solvers are dealt with, edge-based representations make a straightforward implementation of
upwind schemes in the finite element method context possible. Several comparisons between
element and edge-based data structures performance can be found in the literature, see for
instance [1]. An excellent review of the most common upwind schemes and its application on
unstructured grids is set forth in [4].

Next the Euler equation system and its edge-based representation for two-dimensional flow is
presented. Then the flow solver scheme is shown and subsonic, transonic and supersonic test
cases are presented to demonstrate the algorithm performance.

2. EULER EQUATIONS

The Euler equations model a non-viscous, compressible and non-conductive fluid flow. This
set of conservation laws is represented by a coupled non-linear system of first order partial
differential equations, which can be written in different ways. The conservative form of the
equations must be used when it is necessary to take into account discontinuities in the fluid
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nnode

= Z; U.N, (6)
pi

where nnode 1s the total number of nodes in the element, N; 1s the standard finite elements

shape function associated with node j and U; is the value of U at the same node. Due to the

fact that the flux vectors F* are generally a non-linear function of U, the formers are also
approximated by the element shape functions as follows (group representation)

nnode nnode

F*(U)= Z. FFN = Z} F*(U,)N, (7)
j= Jj=

Assuming the Galerkin finite element formulation, #; = N; and the approximate weak
formulation can be written for a generic node 7 as

> L. T d£2 S LaN*F (U)dQ - ZjN F"dT (8)
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where the summation extends over all the elements e and boundaries b which contains the
generic node i.

Taking into consideration triangular elements with standard C” shape functions and the
approximate forms for the conservative variables vector and the flux vectors given in egs. (6)
and (7) respectively, the integral terms in eq. (8) can be evaluated as

du, dU
;L N, dQ Z[L NN, dQ |—2 - _MW_,- (9)
22 LaN’F e = 2.2, % 2f (X +Ff +F) (10)
> | N Frdr= qug(zﬁwﬁj)— (11)
bei bei L "

where M is the consistent mass matrix and Q° is the area of element e with nodes 7, j and k. In
the last expression I'y is the length of the boundary edge b defined by nodes i and J.

3.1 Edge-Based formulation

Using and edge-based data structure, nodal values of the diverse quantities are obtained
adding edge contributions. The typical edge-data consists of the nodal coordinates and a list of
all the edges in the mesh and its connectivities, i.e. the nodes to define each edge. A list of
boundary edges where physical boundary conditions are imposed is also necessary. Severa
routines to obtain an edge-data structure for finite elements calculations can be found in [1].
Once the edge-data is obtained for a particular problem, the right hand side of eq. (8) can be
evaluated for triangular linear elements in the following manner [4]
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and taken into account the above expressions, eq. (12) becomes
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Due to certain properties of the edge weights it is observed that the discretization scheme is
conservative in the sense that the sum of the contributions made for any interior edge is zero.
[t 1s demonstrable too that the discretization scheme is a central difference type discretization
for the spatial derivatives and some dissipation terms must be introduced in order to provide
the necessary stabilization for the scheme. This fact brings about the replacement of the flux

function Fj; defined in (18) by new consistent numerical fluxes. Adopting different forms for

the latter, 1t 1s possible to obtain a wide variety of algorithms in which the numerical
dissipation is introduced in a explicit manner or the flux function is modified according to the
physics of the problem. An excellent recompilation and a comparative study of the most
common algorithms 1s presented in [4]. Here, following Lohner's work [1], a first order
numerical flux according to the Roe’s approximate Riemman solver is employed in
conjunction with a limiting stage with the aim of reducing the amount of dissipation and
increasing the order of the scheme in regions where the flow is smooth.

4. ROE’S APPROXIMATE RIEMMAN SOLVER

The Roe’s solver for the Euler equations based on flux difference splitting is one of the most
popular and less dissipative approximate Riemman solvers and was developed by Roe in
[981. The 1dea behind this method is to solve the Riemman problem (Godunov) at the
interface of two piecewise constant states U; and Ug 1n a approximate manner reducing the
computational cost and obtaining equally good results. The first order flux for this solver is
defined for each edge by

ﬂ:ﬁ+ﬁ—MWM%MQ—UJ (19)

where U; and U, 1s the vector of conservative variables at the edge nodes i and j and |A(U;, U))|
is the absolute value of the Roe matrix calculated in the direction of the edge e;. The last is
obtained projecting the conservative Jacobian matrices A" in the direction of the edge ¢; and
replacing the variables in the resulting Jacobian matrix by the density-average Roe variables.
Then the absolute value of the Roe matrix 1s achieved decomposing the last matrix by means
of its eigenvalues and eigenvectors matrices. General expressions for the Jacobian,
eigenvalues and eigenvectors matrices can be found in [5].

The density-average Roe variables are obtained by
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A (U“U.f ) =R AR, (24)
and
4(U,.U,)|= R A B, (25)
where \A ﬂ.| = dfag{ . ] and
4 =4,
A =i, +6, (26)
A=ty =C,

It must be remembered here that all the variables correspond with the average-density Roe
variables calculated for the edge e;. In eqs. (26) #, is the interface velocity projected on the

edge, ie: U, ', and n=(n"",n" ) n”) s a unitary vector in the direction of the edge e;;

Introducing the factorization (25), the dissipative term of the Roe first order numerical flux
can be written as

D=|aW,U)\(U,-U,) ( '|A,|R,)AU 27)

where AU;=(U;-U;) 1s a five-component vector which entries are the differences between the
conservative variables vector components at edge nodes j and i. After some algebraic
manipulations [7] the dissipative term in the first order Roe flux can be evaluated as follows

_ ,2] _ i _(2)
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1
U'=U.+—|(1-k)A; +(1+k)U,-U.
U; =U, -—E[(l—k)ﬁ.j +(1+k)(U,-U,) |

where A;,A’ are difference operators given by

A =L =L, zzljf'VUf _(Uj _U*')
A =U,, ~U,=21,VU,-(U,-U,)

/

(33)

and /; is a vector from edge node i to node j, k is a parameter that allows to obtain different

spatial order approximations and the gradients of the variables at edge nodes, VU; and VU;,
are obtained via a recovery of the first derivatives at nodes procedure. It is possible to note
that the approximations of the difference operators in (33) belong to an approximation to the
oradient of the variables at nodes / and j using a central difference formulae. As was
mentioned earlier, the parameter k in eqgs. (32) allows to obtain different order or
approximation, for example

k=-1 —  second-order fully upwind scheme
k=0 —  From’s scheme (see [9])

k=1/3 —  third-order upwind scheme

k=1 — three-point central difference scheme

A graphical representation of the high-order approximation is presented in Figure 1.

I|I : o
/ \ 5 \
e 4 - "1

Figure 1: High-order approximation

The proposed extrapolation for the interface values (32) does not guarantee monotonicity
properties, then in order to obtain an oscillation-free solution, non-linear limiters are
introduced in the extrapolation stage through
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U.({}] = Uu
UY =U" +a,At| M;' | RHS}" (37)
UTH-I — UFH]

where [M;' :I; is the lumped mass matrix at node ; and o are coefficients that depend on the

number of stages s employed. For three and four stages these parameters are set according to

3 stages — o =3/5,0p=3/5and o3 = 1.0
4 stages > oy =1/4,00=13,03=1/2and o4 = 1.0

With the aim of reducing the computational cost in the residual evaluation, the dissipative
term (28) is calculated at time t=t" and remains frozen for the next s stages of the scheme.
Other possibilities proposed by Jameson, Schmidt and Turkel can be found in the literature.

5.1 Time step calculation

In the last paragraph the value of the time increment At must be bounded by stability criteria.
In the present work, the time increment is determined at each node i as follows

At = min{Cmﬂ.} (38)

where C is the Courant number and Az, is calculated, for each edge in the mesh that contains

node 7, according to

[ ..
At, = —F 39
ij V;‘-l-cf. (39)
and
I _
Vf = V; ' !ﬁ (40)

In the equations above, /; is a vector from node i to node j and V; and ¢; are the velocity vector
and the speed of sound at node i respectively. If a global time step is chosen to advance In
time, At in egs. (37) corresponds to the minimum At; calculated over the mesh.

6. NUMERICAL EXAMPLES

6.1 Subsonic flow around a NACA 0012 airfoil (M=0.3)

[n this example the inviscid flow field around a NACA 0012, set at an incidence angle 0=4"

is obtained. The unperturbed mach number is M.. = 0.3 and the flow is subsonic in the whole
domain. A non-structured 6932 triangular-element mesh is employed in the numerical
simulation. Figure 2 shows coefficient of pressure (Cp) contours for the flow field around the

airfoil.

[
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Figure 3 above presents the comparison between the pressure distribution over the airfoil
calculated with the present methodology and the solution obtained by means of a potential
flow calculation. A good agreement between both methods can be observed although some
discrepancy between the numerical solutions appears in the leading edge suction peak.

6.2 Transonic flow around a NACA 0012 airfoil (M=0.8)

The numerical solution for the M=0.8 inviscid flow field around a NACA 0012 airfoil set at
zero incidence angle is presented. A 7348 triangular-element non-structured mesh is employed
in the numerical simulation and certain zones where discontinuities in the solution field are

expected are refined in order to improve the accuracy. In Figure 4 Mach number contours
around the airfoil are shown.

MAaCH

— 1.2844

= 1.1417

= 0.99902
0.85633
0.71363
0.57094
0.42825

— 0.28555

= 0.14286

= 0.0001646

Figure 4: Mach number contours: NACA 0012, M = 0.8 and o. = 0°

Next, in Figure 5, Cp distribution over the airfoil obtained by the present methodology is
compared to the potential flow results due to Hafez ef al. (1984) reproduced in [S]. In the
figure below a good agreement between numerical and experimental results can be noticed.

[3
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The stagnation density value obtained in the numerical simulation is pp=1.3288 and it differs
less than 2% with respect to the analytical value given by py=1.3513.

6.3 Supersonic flow around a NACA 0012 airfoil (M=1.2)

[n this example, a NACA 0012 airfoil set to zero incidence angle and immersed in a M.=1.2
supersonic flow is studied. The mesh is composed of 10076 triangular elements and, as in the
previous example, zones where discontinuities are expected in the solution field are refined in

order to improve the sharpness of the solution. Figure 7 shows coefficient of pressure contours
for the flow field around the airfoil

0.91289
0.73246
0.55202
0.37158
0.19115
0.01071
-0.16973
-0.35016

A1 RE

A comparison between numerical and experimental results for Cp distribution over the airfoil
is shown in Figure 8. There a good agreement can be observed.

[5
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9. CONCLUSIONS

The performance of the edge-based finite element methodology here exposed was tested on
several academic simulations involving subsonic, transonic and supersonic flows. All of them
were solved with satisfactory accuracy. However, numerical solutions for particular
applications such as strong bow shocks present a negligible dependency of the oy and o
parameters that limit the eigenvalues of the Roe matrix. Also small oscillations could appear.
The performance of other sets of limiters must be studied in order to fix these problems.

The extension of the present algorithm to solve three-dimensional applications is
straightforward and in that case the advantages of the edge-based structure over the element-
based structure are really noticeable.
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