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Summary. Transonic flows pose unique challenges and exhibit distinctive phenomena due to the
interaction of subsonic and supersonic flow regions. One notable characteristic is the formation
of shock waves, that come with abrupt changes in the flow quantities, playing a crucial role in
transonic aerodynamics. The unsteadiness in transonic flows arises from the dynamic nature of
shock waves and their sensitivity to perturbations. A careful study of transonic flows to optimise
aerodynamic designs, mitigate adverse effects, and enhance the overall stability and efficiency
of commercial flight is essential. High-fidelity computational fluid dynamics (CFD) simulations
can provide invaluable insights into such flows. Nevertheless, the prohibitive costs associated
with these simulations limit their feasibility, particularly for tasks involving a large number of
evaluations. There is a need for aerodynamic data models that possess both speed and accuracy,
ensuring the ability to confidently predict viable design alternatives. Many engineering design
problems encounter similar challenges and address them by employing approximate mathemati-
cal models known as surrogate models. A surrogate model functions as an agent that learns the
relationship between a system input and its output, subsequently being used to predict outputs
at unevaluated inputs. Given that these models approximate the quantity of interest across the
design space, it becomes essential to assess the accuracy and uncertainty of their predictions
throughout this space. Machine learning presents tools capable of offering prediction estimates
along with associated uncertainties. The objective of this work is to leverage such model, specif-
ically Bayesian neural network, and to propose specific improvements for transonic flows. It is
applied to steady-state high-fidelity CFD simulations of an aerofoil geometry.
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1 INTRODUCTION

Transonic flows, characterised by a mix of subsonic and supersonic regions, present unique
challenges for aerodynamic analysis due to complex flow features such as shock waves and their
interaction with boundary layers. High-fidelity CFD simulations are essential for capturing these
intricate details with accuracy, particularly for the purpose of predicting pressure distributions
across the aircraft surface. Research is being pursued to push the boundaries of CFD and to
improve modelling of transonic flows [1, 2, 3]. Applying CFD may encounter difficulties, as it
can be costly and time-consuming, particularly in contexts where multiple scenarios must be
evaluated. As a result, aerodynamic data models are required to deliver both speed and accuracy
to aerodynamic studies. Similar challenges arise in many engineering design problems, where
they are often addressed by using surrogate models.

Machine learning is transforming scientific discovery by enabling the detection of patterns
and predictions from large data sets [4], offering a powerful tool for surrogate modelling tasks.
Machine learning such as neural networks are increasingly being adopted in the aerospace in-
dustry, offering new ways to optimise design, streamline manufacturing, enhance predictive
maintenance, and improve flight operations [5]. The widespread adoption of deep neural net-
works across various fields, including fluid mechanics and aerodynamics, is largely due to their
remarkable expressive power, as explained by the universal approximation theorem [6]. This
theorem states that a neural network with at least one hidden layer and a non-linear activation
function can approximate any continuous function to a desired degree of accuracy. Depending
on the problem at hand, different types and architectures of neural networks can be employed
in aerodynamic applications. For instance, a multilayer perceptron and a convolutional neural
network were used in [7] and [8], respectively, to compute the aerodynamic forces of an aerofoil.
Unsteady (multidisciplinary) phenomena, such as flutter speed or buffet pressure loads predic-
tions, were considered in [9, 10, 11]. A comparative study on pressure distribution predictions
for various geometries and input space dimensions using Gaussian processes, interpolation with
proper orthogonal decomposition and deep neural networks is provided in [12].

As surrogate models are approximation techniques, questioning their prediction quality is
crucial. This involves here epistemic uncertainty, which arises from the model’s limited knowl-
edge due to incomplete coverage of the design space by the training data. Bayesian methods
help quantify this uncertainty, enabling Bayesian surrogate models to estimate both the output
and its associated uncertainty. Bayesian Neural Network (BNN) is a type of neural network that
incorporates Bayesian inference to make probabilistic predictions. Traditional neural networks
make fixed predictions from learned weights and biases, while BNNs account for uncertainty by
treating these parameters as random variables with prior distributions. BNNs have been used
to optimise pressure tap locations in [13] and they demonstrate improvements over their non-
Bayesian counterparts on various datas ets [14, 15]. The first application of BNNs for predicting
transonic pressure distributions was presented in [16], with a main issue being the accurate
prediction of the supersonic region over the aerofoil surface.

This paper proposes enhancements to BNNs for the specific prediction of pressure distri-
butions under transonic flow conditions. It also addresses model calibration by evaluating
the quality of the uncertainty estimates and evaluates a basic recalibration technique. These
advancements are applied to Reynolds-averaged Navier-Stokes (RANS) simulation data for a
two-dimensional aerofoil and are compared to a method from the literature based on proper

2



Mehdi Anhichem, Sebastian Timme, Jony Castagna, Andrew J. Peace and Moira Maina

orthogonal decomposition (POD). Progress is demonstrated on this test case, serving as a proof-
of-concept for further exploration of BNN applications in transonic flow prediction.

2 METHODS

2.1 Bayesian Surrogate Models

Bayesian modelling applies Bayes’ theorem to update knowledge about model parameters
based on observed data. Let f represent a surrogate model that maps the input vector x ∈ D
to the observed scalar output y, where D ⊆ Rd is the design space of dimension d. This can
be expressed as y = f(x,θ), where θ is the vector of model parameters. For example, in linear
regression, these parameters include the intercept and slope, while in deep learning, they are
the weights and biases of the neural network. In Bayesian modelling, instead of assigning a
single value to parameters, probability distributions are used to capture information about the
relationship between x and y. Given the prior distribution of the parameters p(θ) and the
likelihood function p(y|x,θ), Bayes’ theorem is applied to compute the posterior distribution,

p(θ|y,x) = p(y|x,θ) p(θ)
p(y|x) (1)

with p(y|x) being the marginal likelihood. It corresponds to the integrated likelihood function
over the parameter space θ. Predictions at unseen inputs x∗ are carried out through the posterior
distribution by substituting it into the expression of the predictive distribution,

p(y∗|x∗,x, y) =

∫
p(y∗|x∗,θ) p(θ|y,x) dθ (2)

In practice, computing the exact posterior distribution is often infeasible due to the com-
plexity of the models and the large volume of data involved. In such cases, variational inference
is commonly employed to approximate the true posterior distribution. This method involves
substituting the true posterior p with a variational distribution q of known form. The goal is to
optimise the parameters of q to minimise its divergence from p, thereby transforming the infer-
ence problem into an optimisation task. The Kullback–Leibler (KL) divergence [17] measures
the difference between these distributions, and optimising this divergence yields both the model
and variational parameters. This variational distribution is then used in place of the true pos-
terior for making predictions, as shown in Eq. (2). More detailed discussions and applications
can be found in [18, 19].

2.2 Bayesian Neural Network with Monte Carlo Dropout

Deep learning, a subset of machine learning inspired by the brain’s neural networks, tackles
complex tasks by learning hierarchical data representations. It employs deep neural networks
with multiple interconnected layers of artificial neurons that process and transform input data
through activation functions. These networks are trained on large data sets, with internal pa-
rameters optimised via backpropagation to minimise prediction errors. Despite their widespread
use, standard neural networks frequently suffer from overfitting, which complicates their gener-
alisation, and they lack a measure of the model uncertainty. Bayesian deep learning addresses
these issues effectively. Unlike standard neural networks, which provide deterministic predictions
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based on fixed weights and biases, Bayesian neural networks treat these parameters as random
variables with prior probability distributions. During training, the prior distribution is updated
to a posterior distribution using Bayes’ rule, reflecting parameter uncertainty given the data.
This posterior distribution allows for predictions that capture uncertainty, offering a range of
possible outcomes rather than a single estimate. Bayesian inference techniques, such as Markov
Chain Monte Carlo and variational inference, are used to derive the posterior distribution. For a
comprehensive mathematical overview, refer to [20], and extensive reviews of training methods
can be found in [21].

Monte Carlo Dropout (MCD), a popular variational inference technique introduced by [14],
is widely used for training BNN. MCD approximates the posterior distribution over network
weights by employing dropout regularisation, a process in which a random subset of neurons is
deactivated during each forward pass throughout an epoch, which is a complete pass through the
training data. This procedure effectively generates an ensemble of models, each with a unique
subset of active neurons, and helps to prevent overfitting. While MCD is computationally
efficient and easy to implement, it has limitations in capturing complex forms of uncertainty
and can lead to challenges in producing well-calibrated uncertainty estimates. During training,
the network parameters θ, including weights and biases, are optimised by minimising the cost
function (or objective function),

LMCD =
1

N

N∑
i=1

(yi − ŷi)
2 + λ∥θ∥2 (3)

where λ is a decay of the L2 regularisation term. The first term represents the mean squared
error calculated on the training dataset y, which consists of N samples, and the corresponding
predictions ŷ from the neural network. During testing, instead of performing a single forward
pass through the network, multiple forward passes are executed with different neurons randomly
dropped out. The outputs from these passes are averaged to generate a final prediction for a
test input. These outputs are also used to estimate the model’s predictive uncertainty. As-
suming a standard neural network with weights and biases θ, the output of the network for a
given input x can be written as ŷ(x;θ). For the BNN model here, the T forward passes made
with different dropout masks result in a set of outputs {ŷ(x;θt)}Tt=1. The predictive distribu-
tion p(y∗|x∗,x, y) = N (µMCD(x

∗), σMCD(x
∗)) at unseen point x∗ over the network’s outputs is

approximated by averaging over this set of outputs. The mean and variance of the predictive
distribution can be approximated by,

µMCD(x
∗) ≈ 1

T

T∑
t=1

ŷ(x∗;θt) (4)

σ2
MCD(x

∗) ≈ 1

T − 1

T∑
t=1

(
ŷ(x∗;θt)− µMCD

)2
(5)

This method offers computational efficiency by leveraging dropout layers, which are already
available in common deep learning frameworks. The training process remains identical to that
of standard neural networks with dropout layers. The key distinction arises during the prediction
phase, where sampling is introduced to achieve a BNN. The BNN implementation is adapted
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from the work of [14] 1 and built on TensorFlow using the Keras API [22]. This implementation
was applied to surface pressure distribution prediction in [16] and demonstrated promising results
in predicting transonic flow features such as shock waves. However, a notable issue was the
inaccurate prediction of the pressure coefficient in the supersonic region, leading to an imprecise
evaluation of the shock, despite correctly predicting its location. In neural networks, parameter
tuning is guided by the loss function, see Eq. (3), and here the idea is to embed more flow physics
into the loss function by weighting it with data points specifically located in the supersonic
region.

To know if a predicted pressure coefficient ŷi is supersonic, it can be compared to the critical
pressure coefficient. The critical pressure coefficient Cp,crit is the pressure coefficient at which
the local flow velocity first reaches the speed of sound, indicating the onset of sonic conditions
on the surface [23]. For an aerofoil, it can be expressed as a function of the Mach number M :

Cp,crit =
2

γM2

[(
(γ − 1)M2 + 2

γ + 1

) γ
γ−1

− 1

]
(6)

where γ is the heat capacity ratio. When ŷi falls below Cp,crit, the predicted value lies within the
supersonic region. If ŷi is in the supersonic region, an additional term is introduced into the loss
function, proportional to the squared difference between yi and Cp,crit. This penalises points
within the supersonic region, adjusting the loss function to account for these specific points.
The resulting loss function can be expressed as:

L = Ldropout + Lcrit =
1

N

N∑
i=1

(yi − ŷi)
2 + λ∥θ∥2 + kcrit

Ncrit

Ncrit∑
i=1

(Cp,crit − ŷi)
2 (7)

where Ncrit is the number of points in the supersonic region and kcrit is a scalar weighting this
additional term. The latter can be treated as a hyperparameter of the neural network. Although
it can be optimised using Bayesian methods along with the network architecture, in this case,
it was selected through trial and error and set to two.

2.3 POD+GP

The technique known in the literature as POD with interpolation is added as a reference in this
paper. It combines the calculation of POD modes and their coefficients with the interpolation
of these coefficients to make new predictions [24, 25, 26, 27, 12]. POD is a dimensionality
reduction method that identifies the dominant spatial patterns or modes from a dataset. This
technique, referred to as the Karhunen-Loève procedure or principal component analysis (PCA)
in statistics, is widely used across various fields. Initially applied in fluid mechanics by [28]
to extract coherent structures from turbulent flows, POD has since been utilized for analyzing
turbulence [29] and other aerodynamic phenomena, such as shock buffet [30].

There are two primary methods for performing POD: the direct method using singular value
decomposition and an alternative known as the snapshot method. The direct method provides
accurate results but can be computationally intensive when the matrix being decomposed has
more rows than columns. Let Nsnap be the number of snapshots and Npoints the number of points

1http://www.github.com/yaringal/DropoutUncertaintyExps
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per snapshot. In aerodynamic applications, snapshots correspond to different timesteps or flow
conditions while points correspond to the data points on the surface or in the volume. The data
can be organised into an Npoints ×Nsnap matrix denoted as S. Instead of applying the singular
value decomposition on S, the method of snapshots considers the eigenvalue decomposition of
S⊤S,

S⊤Sψj = λjψj , ψj ∈ RNsnap , j ∈ [[1;Nsnap]] (8)

where ψj are the eigenvectors and λj the eigenvalues of the matrix S⊤S. The POD modes are
then computed and given as

ϕj = Sψjλ
− 1

2
j , ϕj ∈ RNsnap , (9)

or in matrix form,

Φ = SΨΛ− 1
2 = SV−1, Φ ∈ RNpoints×Nsnap (10)

where V represents the resulting POD coefficients organised in an Nsnap × Nsnap matrix. In
most scenarios involving the study of fluid mechanics, the snapshot matrix has a tall and narrow
structure (Nsnap ≪ Npoints), signifying the presence of numerous degrees of freedom compared to
the number of snapshots. In this case, using the snapshot method provides a faster but slightly
less accurate solution [29]. Equation 10 shows that the matrix S can be expressed as a linear
combination of the POD modes Φ,

S = ΦV . (11)

More specifically, each individual snapshot can be reconstructed as a linear combination of the
POD modes, denoted as si = Φvi, where si and vi correspond to the i-th column of S and V ,
respectively.

POD can then be used as a regression technique and generate “unseen” snapshots by inter-
polating the POD coefficients. Essentially, to predict values within the design space that are not
part of the original snapshot matrix, it is necessary to estimate the coefficients linked to each
mode at the predicted inputs. POD with interpolation involves selecting a limited number r of
POD modes that account for the majority of the system’s energy (determined by the ratio of the
sum of the eigenvalues of the selected modes to the total energy). The interpolation process then
uses the information from V to calculate the corresponding POD coefficients. When considering
a limited number of modes, Eq. (11) can be written, si = Φrvi where the matrix Φr contains r
POD modes and i ∈ [[1;Nsnap]]. It can be expanded into:

si = v11ϕ1 + · · ·+ v1rϕr
...
sNsnap = vNsnap1ϕ1 + · · ·+ vNsnaprϕr

(12)

where each snapshot is associated with a flow condition (M,α). To predict a snapshot s at an
unseen flow condition, r GP are trained on the data sets {(M,α)i, vij |i ∈ [[1;Nsnap]]} for j ∈ [[1; r]].
In other words, each GP predict the coefficient associated with each POD mode at the flow
condition. These GP are trained on the coefficients obtained from the POD decomposition, given
int the column of Eq. (12). When employing GP for interpolation, each GP offers a prediction
uncertainty linked to POD coefficients. The predicted snapshot is derived by multiplying the GP
predictions with the chosen POD modes. Consequently, a snapshot emerges from the product
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of means with their corresponding POD modes, while an uncertainty estimate stems from the
product of standard deviations with their corresponding POD modes,

µPOD+GP(x
∗) = µ1(x

∗)ϕ1 + · · ·+ µr(x
∗)ϕr (13)

σMCD(x
∗) = σ1(x

∗)ϕ1 + · · ·+ σr(x
∗)ϕr (14)

where µ1, . . . , µr and σ1, . . . , σr are, respectively, the posterior means and standard deviations of
the r GP. Hence, under this configuration, the model designated here as POD+GP is Bayesian.

2.4 Evaluation Criteria

At each input x∗, Bayesian surrogate models provide a prediction and a measure of its
uncertainty. To assess both quantities, metrics for the accuracy of both the model’s predictions
and its uncertainty estimates are introduced. The mean-squared error (MSE), is considered to
evaluate the models’ performance:

MSE =
1

Nt

Nt∑
n=1

(yn − ŷn)
2 (15)

where Nt is the number of testing points. Lower MSE values are preferred, as they signify a
better fit of the model. We also evaluate the 99th percentile of the squared errors, denoted
as SE99, which reveals the value below which 99% of the squared errors fall. This percentile
provides insight into the error distribution and the robustness of the model. While accurate pre-
dictions are essential for surrogate models, Bayesian models also require assessing the reliability
of their uncertainty estimates. Ideally, a well-calibrated Bayesian model’s uncertainty estimates
should accurately reflect the true data distribution, meaning that, for example, a 90% posterior
confidence interval should contain the true simulation outcome approximately 90% of the time.
In the context of regression [32, 33], the surrogate model’s uncertainty estimates are deemed
well-calibrated when, as Nt → ∞,

1

Nt

Nt∑
n=1

I{yn ≤ F−1
n (p)} → p for all p ∈ [0, 1] (16)

where I is the Boolean function and Fn is the cumulative distribution function (CDF) target-
ing yn. Here, F−1

n denotes the quantile function F−1
n (p) = inf{y : p ≤ Fn(y)}. In other words,

as the dataset grows to an infinite size, the empirical CDF should converge with the predicted
CDF. To assess the quality of calibration, we measure the proportion of test data observations
that fall within the confidence intervals predicted by the quantile function. We then visualize
the calibration quality in Bayesian models using a calibration plot, where perfectly calibrated
uncertainty estimates would align exactly with the diagonal line.

2.5 Model Recalibration

Model predictions are derived exclusively from the training data. The uncertainty estimates
are not always well-calibrated, meaning that the predicted standard deviations may not align
with the empirical errors observed in the data. When model predictions are systematically
overconfident or underconfident, recalibration can be applied to scale the predicted standard
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deviations. Standard deviation scaling is a technique used to adjust the predicted uncertainties
of a model to better reflect the true uncertainties observed in the data. If the model’s stan-
dard deviations are well-calibrated, the standardised residuals should follow a standard normal
distribution. The standardised residuals vector is computed on the validation set. First, the
following operations are performed element-wise:

y− µMCD

σMCD
(17)

Then, the standard deviation of this vector, denoted as σemp for empirical standard deviation,
serves as a scaling factor for the predicted standard deviations. The recalibrated standard
deviation σrecalibrated is then simply calculated by:

σrecalibrated = σemp × σMCD (18)

This approach effectively incorporates additional data information into the model calibration.
Nevertheless, more sophisticated ad-hoc recalibration techniques, such as percentile-based iso-
tonic regression [32], could offer further refinement.

3 TEST CASE

ONERA’s OAT15A profile has been studied widely since its first experimental investigation
in [34], such as for numerical shock-buffet stability analyses in [35, 36, 37]. To solve the non-linear
governing equations, the TAU code of the German Aerospace Center (DLR), commonly used in
the European aerospace industry, was chosen. It employs a cell-vertex second-order finite-volume
spatial discretisation. The inviscid fluxes of the governing RANS equation are discretised via
a central scheme that employs matrix artificial dissipation, whereas a first-order Roe upwind
scheme is used for those of the turbulence model. For the computation of gradients of flow
variables, required for viscous fluxes and the turbulence model’s source term, the Green–Gauss
theorem is employed. The no-slip adiabatic condition is strongly enforced on the solid walls of the
aerofoil, and the far field is considered to be a free-stream flow through a characteristic boundary
condition. The code’s standard backward Euler scheme with the lower-upper symmetric Gauss–
Seidel method, together with local time-stepping and multigrid for convergence acceleration,
is chosen for obtaining steady-state solutions converged by seven orders of magnitudes in the
density residual norm.

For the two-dimensional aerofoil simulations herein, a baseline mesh was generated that has
a quasi-structured region in the near-field with an O-type topology around the blunt trailing
edge, while unstructured triangular cells are employed towards the circular far-field boundary
with a radius of 100 chord lengths. The domain is discretised with approximately 80,000 control
volumes altogether, and the aerofoil surface is divided into 626 elements. Figure 1a illustrates the
pressure coefficient in comparison to corresponding experimental data from [34] at two specific
angles of attack, specifically around the onset of shock buffet. Additionally, it includes numerical
results for the same two-dimensional aerofoil obtained from [37], using a very similar version of
the turbulence model. The simulations at α = 3.5◦ demonstrate good agreement with the wind-
tunnel data at α = 3.0◦. This discrepancy is often reported and attributed to the particular
choice of turbulence model.

Along with the aerofoil surface coordinates (X,Z), the Mach number M and angle of attack
α are considered as input space parameters. The Reynolds number is assumed constant at

8



Mehdi Anhichem, Sebastian Timme, Jony Castagna, Andrew J. Peace and Moira Maina

(a) (b)

Figure 1: (a) Pressure coefficient results at Mach number M = 0.73 and Reynolds number
Re = 3 × 106 compared with experiments from [34] and steady-state two-dimensional aerofoil
results from [37] and (b) and design of experiment for present OAT15A test case.
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Figure 2: Bayesian neural network with MCD architecture example.

Re = 3×106 throughout. Figure 2 presents the BNN architecture for this four-dimensional input
space with Cp as output. Following a Halton sequence [38], as outlined in [12], 98 steady-state
simulations have been carried out within the parameter ranges M = [0.3, 0.75] and α = [−3◦, 5◦],
leading to a total of 61,348 data points. Each M–α combination has a complete set of (X,Z)
coordinates. Figure 1b shows the sample locations of the numerical experiments which are
divided into three subsets; specifically 70% for training, 20% for validation and 10% for testing.

4 RESULTS

To evaluate the proposed improvements, a BNN model was trained on the presented test case,
alongside another BNN model incorporating a modified loss function, as explained in Eq. (7) and
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Table 1: Evaluation metrics of Bayesian models on test set.

Model MSE SE99

BNN 0.0046 0.0992
BNN crit 0.0024 0.0516
POD+GP 0.0156 0.3086

(a) M = 0.33, α = −2.21◦ (b) M = 0.31, α = 1.74◦

(c) M = 0.64, α = 4.21◦ (d) M = 0.71, α = 3.81◦

Figure 3: Comparison between predictions made by the models on four points of the test set
(highlighted in Fig. 1b with bigger symbols).

referred to as BNN crit. These models are compared against the POD+GP model, commonly
used as a reference in the literature. The architecture for the BNN models (see Fig. 2), adopted
from [16], was determined through Bayesian optimisation [39]. It features three hidden layers
with 384 neurons in the first layer and a shrinkage rate of 0.661. The final BNN architectures are
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Figure 4: Calibration plot assessing the different model standard deviations on the OAT15A
test case.

trained for 1,000 epochs using the Adam optimiser [40], with the default learning rate of 1×10−3

applied to minimise the mean-squared error. Following training, the predictive distribution is
approximated by running T forward passes through the trained network, each using different
dropout masks. As demonstrated in [16], both the predicted mean and standard deviation
converge within a 1% range of µMCD after approximately 1,000 samples, although 2,000 samples
are used here to achieve a more refined predictive distribution.

Table 1 summarises the results for the metrics for the test set. Predictions on the test set
have been carried out to evaluate the models’ accuracy on unseen data. The results reveal
differences in performance between the approaches. In general, BNN models demonstrate a
more than threefold reduction in MSE and SE99 compared to POD+GP, showing its superior
capability to closely approximate the correct values. These differences in accuracy are evident
in Fig. 3, where at higher Mach numbers and angles of attack (Figs. 3c and 3d), significant
discrepancies are observed in the ability of the POD+GP model to predict the shock location on
the aerofoil’s upper surface. This aligns well with the observations reported in [12, 16]. When
comparing the two BNN models, identical predictions are observed at lower Mach numbers and
incidence angles (Figs. 3a and 3b), as expected, since no supersonic regions are present at these
flow conditions. However, in the transonic regime, BNN crit provides a closer match to the
reference CFD data when predicting shock waves. BNN crit accurately captures the supersonic
regions, while the standard BNN overestimates the pressure coefficient. Both models predict
the shock location similarly, but discrepancies arise in the transition between the supersonic
plateau and the shock for both models. These findings generalise to the entire test set, with a
reduction by a factor of two in MSE and SE99 achieved by incorporating an additional term in
the loss function. This demonstrates the effectiveness of this approach in improving transonic
flow predictions. Alternative formulations of the loss function accounting for supersonic (and/or
separated) flow features can be considered in the future.

A key advantage of Bayesian models is their ability to estimate epistemic uncertainty, shown
as transparent regions in Fig. 3. This provides a measure of confidence in the predicted val-
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(a) Before recalibration. (b) After recalibration.

Figure 5: A comparison of standard deviation predictions made by the models at M = 0.64 and
α = 4.21◦ before and after recalibration.

ues, especially in areas distant from the training data. For a thorough uncertainty analysis, a
calibration plot is presented in Fig. 4, following the methodology outlined by [32], as described
in Section 2.4. Uncertainty is evaluated by comparing the expected probabilities of specific
outcomes with the empirically observed rates across twenty defined intervals. The model’s cal-
ibration plot before recalibration, presented in Section 2.5, are represented by a solid red line,
while the recalibrated model’s calibration plot is depicted using a red dashed line. The BNN
tends to overestimate uncertainty, while the POD+GP underestimates it, as reflected in the
confidence intervals in Figs. 3 and 5. After applying recalibration (via standard deviation scal-
ing), the recalibrated model, shown by the dashed line, moves closer to the diagonal, indicating
better calibration. Although the improvement is modest, it demonstrates the potential of this
approach to enhance Bayesian surrogate model predictions, especially since a simple recalibra-
tion method was used here. Fig. 5 shows the recalibration’s effect on the confidence intervals,
which become smaller in Fig. 5b compared with Fig. 5a, particularly in the supersonic region
where the standard deviation was initially overestimated.

5 CONCLUSIONS

This paper builds upon the comparison conducted in [16] and contributes to the broader effort
to develop uncertainty-aware surrogate models for surface pressure distributions in transonic
flows. It introduces a specific enhancement to a BNNmodel, which is tested on a two-dimensional
case, along with the assessment of a simple recalibration technique.

Neural networks have demonstrated significant potential for predicting flow features in tran-
sonic conditions due to their capability to capture complex non-linearities, offering advantages
over more traditional methods like POD+GP. Despite this, challenges remain, as discrepancies
in predictions persist in the supersonic region and shock resolution. The incorporation of a
penalty term based on the critical pressure coefficient has led to some improvements, indicating
a promising direction for further advancements in transonic flow modelling. The modification
of the loss function is not specific to BNN and can be applied to any type of multilayer percep-
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tron. However, the definition of Cp,crit provided here is specific to aerofoils [23], complicating its
application to three-dimensional configurations.

This paper also proposes the evaluation of a recalibration technique as a proof-of-concept for
this application. Note that this recalibration method can be applied to any type of Bayesian
surrogate model, as it is an ad-hoc process that directly adjusts the model’s outputted standard
deviation. While more sophisticated recalibration methods are planned for future exploration,
the integration of additional data-driven information through standard deviation scaling has
demonstrated a positive impact on model calibration. This approach has improved the reliability
of predictions and helped reduce the model’s dependency on the specific training data, thereby
enhancing the robustness of the model.
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